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4 

Proposed Methodology using Artificial Neural Network and 
Generalized Neural Network Approach  

 
 
 
 

4.1 INTRODUCTION  
Over the past several years, neural networks (NN) have received a great deal of 

attention and proposed as a powerful computational tool. Neural Networks have abilities to 
recognize patterns and provide appropriate outputs. These are the strengths which make neural 
networks suitable for complex forecasting problems. The two key aspects of neural networks 
are the processing elements and their interconnections. Neural network resembles the brain in 
two respects [Martin and Araque, 2005]: 

1. Knowledge is acquired from its internal network of neurons through a learning 
process. 

2. Interneuron connection strengths (known as synaptic weights) are used to store the 
acquired knowledge. 
 

They have been successfully applied in nonlinear problems like handwriting 
recognition, speech recognition, Robotics and load forecasting problems [Hippert et al., 2001; S. 
Haykins et al., 1999; Colter et al., 1990; Hornik et al., 1989]. A number of papers have been 
published in last two decades on applications of neural networks for forecasting. Neural 
network-based models have following inherent properties [Martin and Araque, 2005]: 

 Inherent parallelism 

 Similarity of components  

 Access to locate information  

 Incremental learning 
 
In neural network-based models, parallelism in the execution has always been observed. 

Any particular node‘s output will depend exclusively on its current states. All the parameters of 
neural networks undergo several small changes over time, would settle on to their final values 
[Chaturvedi et al., 2008]. In last two decades several papers have been published and reported 
that multilayered feed-forward neural network models perform better compared to 
conventional regression models like Auto-Regression (AR), Moving Average (MA), Auto-
Regression Moving Average (ARMA), Autoregressive Integrated Moving Average (ARIMA) [ 
John et. al., 2016] and other time series models. Above discussion shows that artificial neural 
networks (ANN) offer a reasonable alternative to the classical methods of load forecasting. 
ANN technology provides a more general framework to solve regression analysis, time series 
prediction and classification problems than other classical statistical methods. 

   
Although, ANNs perform better than other time series models, they have their own 

limitations. To overcome some of the problems of ANN and to improve performance 
[Chaturvedi et al., 2008] proposed generalized neural networks. Generalized Neural Network is 
proposed for load forecasting problems and to improve the efficiency of forecasting accuracy 
[Chaturvedi et al., 2008]. In this chapter, we discuss the methodology of forecasting using 
Artificial Neural Network (ANN) and Generalized Neural Network (GNN).  
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4.2  ARTIFICIAL NEURAL NETWORK  
The first artificial neuron was introduced in 1943 by the neurophysiologist Warren 

McCulloch and the logician Walter Pitts (M&P). It is also a mathematical model of a neuron. 
Any linear problem can be represented as logic function and can be modeled by an M&P 
neuron model. These logic functions are basically OR, AND and NOT. With the help of these 
logic functions, one can easily implement any Boolean function. Because of some limitations, 
weights and threshold are analytically determined (cannot learn), very difficult to minimize the 
size of a network. The first learning rule was developed in 1949 [Hebb et al., 1949].   

 
A few years after, Frank Rosenblatt (1951) developed a learning rule that could be useful 

to decide if a sample belongs to one class or the other. A simple neuron model with learning 
rule is called a Perceptron. This learning algorithm (weight adjustment) was used in M&P 
model and it was found that it performed better than the learning rule proposed by [Hebb et al., 
1949].  

  
In 1960 Widrow and Hoff developed the least mean square (LMS) learning algorithm for 

M & P neural network model which is called Adaptive Linear Neuron (ADALINE) model. 
Windrow-Hoff (delta rule) rule of the ADALINE updates the weights based on a linear 
activation function rather than a unit step function. ADALINE model is a linear model so it has 
some limitation in its ability to process data, and is capable of any mapping that is linearly 
separable.   

 
Dr. Herbert Simon, Allen Newell and Cliff Shaw also discuss the neural network 

approach in the early 1950s. Over the past few years, the artificial neural network (ANN) has 
received a great deal of attention and is proposed as a powerful computational tool. In 1969 it is 
reported that perceptron model is not capable of learning those functions which are not linear in 
nature [Minsky and Papert, 1969]. 

 
In the 1970s to 1980s, neural network research declined because of perceptron model 

was not able to learn non-linear functions. Then the researchers also developed a back 
propagation learning algorithm for a multilayered network that could provide a method to 
solve non-linear functions. They have been successfully applied in pattern recognition 
classification and nonlinear control problems [Fausett et al., 1994].  

 
A trained neural network can be thought of as an "expert" in the category of information 

it has been given to analyze. It has been demonstrated that multi-layered ANN are universal 
approximators and they are able to approximate any nonlinear continuous function up to the 
desired level of accuracy. 

The main advantages of the neural network models are given below: 
 
i. Adaptive learning 
ii. Self-organization  
iii. Real-time operation  
iv. Fault tolerance  

 
 They are extremely versatile and need to fulfill a specification of any particular model. 
They can perform better with chaotic components of the non-linear problems compare to 
traditional methods [Master et al., 1995]. These are some of the reasons that artificial neural 
networks are widely used in the field of finance, consumption, medicine, meteorology and 
electrical power system application [Palmer, 2008].  
 

4.2.1 Development of Artificial Neural Network 
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   An artificial neural network model is a biologically inspired model and mimics the 
human brain. In Figure 4.1 shows the direction of the information in the human nervous system 
and it can be broken down into three main stages where the main task for the receptors is a 
collection of information from the environment. The effectors generate interactions with the 
environment, for example, activate muscles. 

 

 

 

Figure 4.1:  Block diagram of A Human Nervous System 

In this system, the brain plays an important role in processing of information via biological 
neurons, having a large number (approximately 1011) of interconnected elements 
(approximately 104 connections per element). This complete network is called neural network. 
Figure 4.2 shows the biological neuron and, it consists of three main components cell, body or 
soma, dendrites or axon. In a biological neural network, dendrites receive the information and 
information processed in the soma. The final processed information is transferred via the axon.  

 

 

 

Figure 4.2: Structure of biological neuron structure 

 ANNs have self-adapting capabilities which make them suitable to handle non-
linearities, uncertainties, and complexity which occurs in forecasting problems. Data processing 
of a neuron is shown in Figure 4.3. 
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Figure 4.3: Data processing of a neuron 

 
4.2.2 Basic Element of Artificial Neuron  
  The basic structure of an ANN consists of processing elements, called neurons, which 
are fully interconnected with one-way signal channels called connections. Each input is 
multiplied by a corresponding weight, which is analogous to biological neuron‘s synaptic 
strength. All of the weighted inputs are then summed to determine the activation level of the 
neuron. The flow of information/activation is represented by arrows. Figure 4.4 represents a 
structure of artificial neuron network with its inputs, weights, activation function, and outputs 
[Laurene, 1994; Chaturvedi, 2005]. 
  

 

 

Figure 4.4: Artificial neuron structure 
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Weight Factor (W): 
 A set of input observations X=[x1, x2… xn] are associated with its weights w1 , w2, .., wn.  

Weighted sum of its each input parameters is processed by summation block through ‗an‘ 
activation. The ‗+ve‘ and ‗-ve‘ weight excites and inhibits the output of each node. 

                  (4.1) 

 
Threshold ( ): 
 Internal threshold ( ) of the node is the magnitude offset. It affects the output of a node 
which is represented as:  

  ∑      

 

   

 
  

            (4.2) 

Then final output Y is a function of processed output from activation block and it may be 
written as: 

                      (4.3) 

For computing the final output  , the node output is passed on to a non-linear filter which is   
and it is called transfer function or activation function which releases the final output  . 

   (∑      

 

   

) 
 

 (4.4) 

Threshold of a Neuron: 
 In computation, neurons usually do not activate unless and until their total input goes 
above a threshold value. Total input for every neuron is the weighted sum of its inputs plus its 
threshold value then its passed through the activation function. For example if activation 
function (af) is sigmoidal function then it can represented as: 

   
 

         
 

 

                                                               (4.5) 

Where; 

  ∑      

 

   

 

 

 

(4.6) 

                       

                     

Activation Function: 
 The activation rate of the action potential is modeled using activation function (transfer 
function). It is a mathematical operation on a signal output. It helps in activating the neuron and 
calculates the final output using the following activation functions. In the last two decades 
researchers introduced some linear and non-linear activation functions which are helpful for 
nonlinear and complex problem shown in Figure 4.5 [Laurene, 1994].   
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Figure 4.5: Outcome of different activation functions 

 

The most common activation functions are: 

 Logistic Function 

 Hyperbolic Tangent Function  

 Identity Function  

 Gaussian Function  

 Hard limit Function  
 

In Table 4.1 Mathematical expressions of these activation functions are given [Laurene, 1994]. 

Table 4.1: Mathematical equations of different activation functions 

 

S. No. Activation Function  Mathematical 

Equation 

Limit 

1.  Sigmoidal 
  

 

       
 

(0, 1) 

2.  Hyperbolic tangent 
  (

         

         
) 

(-1, 1) 

3.  Identify (Linear)     (-∞, ∞) 

4.  Gaussian             (0, 1) 

5.  Hardlimit (Step)        (0, 1) 
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4.2.3 Architecture of Artificial Neural Network 
 Neural Networks are generally classified into two main categories: Feed–Forward 
Neural Network (FFNNs) and Recurrent Neural Network. FFNNs do not have any feedback 
loop in the network. The flow of Information is only in the forward direction. Present input is 
responsible for neural network activation. In a recurrent neural network, feed forward neural 
network with output is fed back to the input. In this section, we discuss different types of neural 
network architectures. 

i. Single layered feedforward neural network: 
 In a feed forward layered neural network the neurons are organized in the form of 
layers. In a single layered feed-forward neural network (SLFFNN) source nodes are in the input 
layer. In a network, ‗single layer‘ refers to the output layer of computation nodes. There is only 
one input and one output layer. The input layer is not counted as a layer since no mathematical 
calculations takes place at this layer [Cornelius et al., 1990]. This is shown in Figure 4.6.  
 

 

Figure 4.6: Single layered feed-forward neural network 

 
ii.  Multi-layered feed forward neural network: 

A multi-layered feed forward neural network has one or more hidden layers as shown 
in Figure 4.7. The computational nodes are hidden neurons. The output signal of the second 
layer is used as inputs to the third layer for the rest of the network [Hornik et al., 1989].  

 

Figure 4.7 : Multi--layered feed-forward neural network 

 
iii. Recurrent networks 
 A recurrent network consists of a single layer of neurons with each neuron feeding its 
output signal back to the inputs of all the other neurons at input layer. It has at least one 
feedback loop. Self-feedback refers to a situation where the output of a neuron is fed back into 
its own input, shown in Figure 4.8. The presence of feedback loops has a profound impact on 
the learning capability of the network and on its performance [Senjyu et al., 2006]. 
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Figure 4.8 : Recurrent neural network 

The idea is that the input-output relationship in an ANN model provides more flexibility and 
can accommodate an increased level of complexity. As far as the question of complex and 
dynamic problem like forecasting is concerned, the main concern is to improve the accuracy of 
forecasting procedures.  Artificial Neural Networks can be one of the tools for improving the 
accuracy of forecasting. This gives the idea that accuracy of solar forecast may also be further 
improved by modifying the conventional artificial neural network itself, as far as possible. Very 
few researchers have considered changes in the internal structure of a neuron of ANN 
[Chaturvedi et al., 2002].  

 
4.2.4 Learning Paradigms of Artificial Neural Network 

  In the computation of neural network model, the learning process plays an important 
role. A learning process is a method of adaptation in which computing units self-organize to 
implement the desired behavior and also systematically changes the weight matrix which 
makes the network capable of performing a useful task by understanding the internal structure 
of the data. 

  
 Back Propagation Learning 

      Back-Propagation (BP) with multi-layered feed forward neural network (MLFFNN) 
is one of the most recognized neural network architecture due to its ability of non-linear 
mapping. Amari( 1967) proposed gradient descent to the training of MLFFNNs using a single 
hidden layer to solve a non-linear problem. Dynamic feedback and Learning logic are published 
by Werbos and Parker in 1974 and 1987 respectively. After decades, Rumelhart, Hilton, and 
Williams published the concept of back-propagation algorithm, which shows its great impact 
on the complex and dynamic problems. The combination of the input set and target set is called 
training pair. Following steps are required for training of back-propagation [Chaturvedi D. K. et 
al., 2008] as shown in Figure 4.9. 
 

(a) Choose the training pair from the training set; apply the input vector to the network 
input. 

(b) Compute the output of the network. 
(c) Compute the error between the network output and the desired output. 
(d) Adjust the weights of the network in a way that minimize the error.  
(e) If an error is not acceptable then repeat from step (a) to step (e). 
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Figure 4.9 : line diagram for a supervised back-propagation learning 

Back-propagation Algorithm:  
 The main objective of back propagation is to obtain the global minimum on the error 
surface. Gradient descent algorithm helps in finding the global minimum and network weights 
which are adjusted according to the steepest downhill slope. The algorithm finds the nearest 
local minima using many small steps and the possibility to find the global minima is shown in 
Figure 4.10. 

 

Figure 4.10 : Error Curve with respect to weight 
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Learning is divided into following four main steps [Kriesel, 2007]: 
(a) Feed Forward computation  
(b) Back Propagation to the output layer  
(c) Back Propagation to the hidden layer  
(d) Weight updates 

 
The derivation of back-propagation is given below; 
Notation: 
 

Table 4.2: Notation used in back propagation 

 

Notation Description  

     Instantaneous sum of error squares at iteration  

      Error signal at output of neuron  j for iteration  

      Desired response for neuron j used to compute       

      Activation signal appearing at the output of neuron j for iteration n 

       Synaptic weight connecting neuron I to neuron j at iteration n 

        The correction applied to the synaptic weight at iteration n 

      The net internal activity level of neuron j at iteration n 

      The activation function associated with neuron j 

   Threshold value  

      The ith element of the input vector  

      The kth element of the overall output vector  

  Learning rate  

      Local gradient  

 
The error signal at the output of neuron j at iteration  

                  (4.7) 

Here, j is an output node and instantaneous sum of squared error of the network at the output 
of neuron j can be written as:  

     
 

 
∑  

 

   

     
(4.8) 

 
where, c is a set of all neurons in the output layer of the network. 
If N is the total number of input from training set, the average squared error is given by: 

    
 

 
∑     

 

   

 
(4.9) 
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Here, Eav indicates the cost function of the training process, which modifies the free parameters 
of weights and value of threshold and errors calculated for each pattern shown into the network 
Figure 4.11. 

      ∑           

 

   

 
 (4.10) 

  
Here p indicates the total number of inputs excluding the threshold applied on neuron j. 

                 (4.11) 

 
The learning process applies a correction Δwij (n) to weights wij (n), which is proportional to 

gradient 
     

    
. We may express the gradient on the basis of chain rule of partial derivatives as 

below [Rojas, 1996] . 
 

     

    
 

     

      
 
      

      
 
      

      

 
      

       
 

(4.12) 

 
Using equation (4.7), (4.8),(4.9) & (4.11) we get, 

     

    
                        

(4.13) 

 
After correction of the weights using delta learning rule  

       
     

       
 

(4.14) 

 
Where   positive constant is called the learning rate, from Eq. (4.13-4.14). 

                 (4.15) 

 
Where       is called the global gradient at neuron j and it is an equal to the product of 

corresponding error signal        and the derivatives             of the associated activation 

function. 
 
In back propagation error correction and weights, adjustments are the key factor so there are 
two cases of adjustment given below [Krose, 1996; Kriesel, 2007]. 
 

(a) When Neuron j is an output node: With the help on Eq.(4.7) to calculate error signal  
      which is associated with the neuron j and from Eq.(4.15) we can calculate the local 

gradient. 
 

(b) When Neuron j is a hidden node: In this case, when neuron j is located at the hidden 
layer, there is no specific desired response for that neuron j shown in Figure 4.11. Local 
gradient can be defined as: 
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Figure 4.11 : Signal flow in multi-layered neural network 

 
 
                      (4.16) 

      
     

      
 
      

      
 

     

      
    

 (      ) 
(4.17) 

 

To calculate the partial derivative  
     

      
 , the average error is: 

     
 

 
∑  

 

   

    
(4.18) 

 
Neuron k is an output node 

     

      
 ∑  

 

   
      

      
 

(4.19) 

 
Using the chain rule of partial derivatives we can rewrite the Eq.(4.19) as: 

     

      
 ∑  

 

   
      

      
 
      

      
 

(4.20) 

So, Computed error is: 
                                   (4.21) 

      

      
    

 (      ) 
(4.22) 

The internal output of neuron k is: 



 
 

 35 

       ∑           

 

   

 
(4.23) 

 
Where q = a total number of input applied to neuron k. 
After differentiating Eq.(4.23) with respect to       then yield is: 

 
      

      
        

(4.24) 

So, using Eq.(4.22) and Eq.(4.24), we get: 
 

     

      
 ∑  

 

     
 (      )        ∑  

 

           
(4.25) 

So, finally, the local gradient for the hidden neuron j is [Hagan, 1996; Laurene, 1994] : 
 

        
 (      )∑  

 

           
(4.26) 

So, it can summarise the relations as follows [Krose, 1996; Kriesel, 2007]:  
 

(                         )  (                           ) (               (     ))  (                        (     )) 

 
The rate of learning and momentum: The BP algorithm helps to compute the approximation 
and error-weight space (which is computed by steepest descent). According to this, weights are 
modified with respect to error surface. During the learning process, the rate of learning   is 
adjusting the gradient of the error surface which is used for weight adjustment. The smaller 
learning rate can provide the smoother trajectory in error–weight space. If it is too large then 
trajectory will be unstable and oscillatory. 
Here one another method to increasing the learning rate: 
 

                                   (4.27) 

Where   =momentum constant. 
 
The stopping criteria of BP algorithm:  It is a process for improving generalization of the 
algorithm. The complete data set is divided into three parts, the first one is called training set, 
which can help to calculate the gradient and updating the network weights. The second subset 
of data is the validation set and it is monitored during the training process. If a validation error 
is increased after a number of iteration then training of network is stopped [Krose, 1996]. 
 

4.2.5 Development of forecasting model using artificial neural network model 
Following steps are necessary to develop forecasting model using artificial neural 

network as shown in Figure 4.12. 
a) Selection of input parameters 
b) Selection of neural network 
c) Selection of perfect training algorithm 
d) Selection of training parameter 
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Figure 4.12 Schematic diagram of neural network methodology 

 
a) Selection of Input Parameters 
 Selected input parameters have been used for training, testing, and validation of the 
model. Here in forecasting models following parameters are taken as input parameters: 

 Global horizontal irradiation 

 Global tilted irradiation 

 Ambient temperature 

 Module temperature 

 Sun availability 
 

For the 5 MW plant, these are daily average. For the rooftop plant, there are average values of 
15-minute time interval. 
 
b) Selection of Neural Network 
 In this paper, multilayered feed-forward neural network is used for solar power 
forecasting modeling. It is having more than two layers and all the layers are adaptive and there 
is no cyclic process from later layers back to earlier layers, therefore the name of the network is 
called ―feed-forward‖. Learning of neural network is defined as any progressive systematic 
change in the memory (weight matrix) and can be supervised or unsupervised. Supervised 
learning is used in multi-layered net.  
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 The neural network selected has five nodes in the input layer, six nodes in the hidden 
layer and a single node in the output layer. All hidden neurons‘ outputs are connected with 
single node in the output layer. Each hidden or output neuron of a multi-layered perceptron is 
designated to perform following two computations [Chaturvedi et al., 2008]. 
 

1. The function signal appearing at the output of a neuron which is expressed as a 
continuous non-linear function of the input signals and synaptic weights.  

2.  The gradient of the error surface with respect to the weights connected to the inputs of a 
neuron, which is needed for the backward pass through the network. 

 

Fig. 4.13 : Structure of ANN model 

And following the specific selection of neurons and layers provides a better result. 
 

Table 4.3: Structure of Neural Network 

 

S. No Network parameters Value 

1.  Number of  input variables  5 

2.  Number of outputs 1 

3.  Number of input layers  1 

4.  Number of hidden layers 1 

5.  Number of Hidden layer neurons 6 

 
 
c) Selection of Perfect Training Algorithm 
 In this work, a back-propagation training algorithm is used for learning of network. The 
steepest descent minimization method is a back-propagation algorithm. It directly helps in the 
adjustment of the weight and threshold coefficients. Figure 4.14 shows the signal flow of input 
parameter toward to hidden and output layer. The successive adjustments to the weights are in 
the direction of the steepest descent of the error surface. In hidden layer, every node calculated 
the weighted sum of its inputs to form its scalar net activation, which is denoted simply as a net. 
Net activation refers to the inner product of the inputs with the weights at the hidden unit. Net 
activation at hidden layer to output layer can be written as in Eq.(4.28-4.31) [Laurene, 1994]: 
  
Where, 
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  (4.31) 

 

 

Fig. 4.14:  Signal flow of the network for computation 

In pre-processing stage transfer functions plays an important role in the network. In this work, 
the input variables are normalized in the range of 0.1 to 0.9 so here log sigmoidal function is 
used as activation (transfer) function as it generates output in the range 0 to 1. In a multi-
layered network, the log-sigmoid transfer function is commonly used and it is trained by the 
back-propagation algorithm because this function is differentiable. The log sigmoidal function 
expressed by Eq.(4.32)- (4.33)  and shown in Figure 4.16 [Laurene, 1994]. 
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Fig. 4.15: Log-Sigmoid Transfer Function 

 
 
Where  

                     (4.32) 

   (    )  
 

     
 

(4.33) 

 
Advantages of proposed back propagation algorithm (Arbib et al., 2003) are: 
 

 Scale the data. 

 Direct input–output connections. 

 Vary the sharpness (gain) of the activation. 

 Use of a different activation. 

  Use of better algorithms. 
 
d) Selection of training parameter  

Back-propagation algorithm involves the use of learning rate, momentum factor because for 
weight adjustment the rate of learning ‗η‘ decides the scaling of the gradient of the error surface. 
Here momentum factor is used for the danger of instability in network training and it provides 
stability into the learning process. In back propagation algorithm the weight adjustment 
equation is written as in Eq.(4.34) [Laurene, 1994]: 
 

             (4.34) 

 
       
 

         
    

  
                

(4.35) 

 
                     
                    
                          

 
When the error of validation set reaches a minimum, then network training stops. Error 
tolerance specifies how close the output value must be to the desired value. 
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Table 4.4 Values of training parameters 

 

S. No. Parameters value 

1. Number of epochs 1000 

2. Error tolerance 0.001 

3. Learning rate 0.9 

4. Momentum factor 0.3 

 
 

4.3 Generalized Neural Network 
In this section generalization of the conventional neural network is discussed which can 

overcome some of the drawbacks and improve the accuracy of the artificial neural network. In a 
generalized neural network, the simple neuron is transformed into the generalized neural 
network. Artificial neural network is commonly constructed using summation (∑) Aggregation 
function. This has been improved to obtain a generalized neural network model using fuzzy 
compensatory operators as aggregation operators as proposed by [Mizumoto, 1989] to 
overcome large number of neurons and layers that are required for nonlinear, dynamic and 
complex function approximation problems.  
      

Figure 4.16: Simple summation and product type neuron model 

 
Generally, the conventional neural network is constructed by aggregation function with linear 
or non-linear activation function is shown in Figure 4.16. 
 

4.3.1 Conventional  Neural Architecture  
On the basis of variation in aggregation functions neurons are classified into two major 

categories which are given below: 
(a) Summation Neuron (∑-type) 
(b) Product Neuron (∏-type) 
 
(a) Summation Neuron (∑-type): Generally summation neuron is used in a conventional 
neural network where summation function is used as an aggregation stage and non-linear 
functions are used as activation stage which is shown in Figure 4.17. 
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Figure 4.17: Summation type Neural Network 

 
(b) Product Neuron (∏-type): It is constructed by product function and nonlinear activation 

function at aggregation and activation stage respectively as shown in Figure 4.18.     
 

 

Figure 4.18: Product type neural network 

 
 

With the help of the combination of summation and product type of neuron model following 
the type of neural network model could be developed: 
 
(a) Summation types neural network  

It is constructed with summation neuron at hidden layer and output layer as shown in 
Figure 4.17. 
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(b) Product Type neural network  
It is constructed with Product neuron at hidden layer and output layer as shown in Figure 
4.18. 
 

(c) Mixed type neural network  

 Summation- Product type neural network  
Summation neurons and product neurons used in hidden and output layer respectively are as 
shown in Figure 4.19. 

 

 Product-Summation types neural network  
Product neurons and summation neurons used in hidden and output layers respectively are as 
shown in Figure 4.20. 

 
 

   

Figure 4.19: Summation and Product type neural network (Σ-∏ ANN) 
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Figure 4.20: Product -Summation type neural network (∏- ΣANN) 

 

4.3.2 Development Methodology of Generalized Neural Network 
 As discussed above the combination of neuron model at hidden and output layers helps 
in the generalization of the conventional neural network. In [Chaturvedi D K, 2008] it is shown 
that combination of different type of neuron model gives a better result compared to 
conventional neuron model. The generalized neural network is a combination of conventional 
neuron models and fuzzy compensatory operator which is proposed by [Mizumoto, 1989] and 
is given in Table [4.5]. 
 

Table 4.5 Compensatory operators [Mizumoto, 1989] 

 

Summation types fuzzy operator Product type fuzzy operator 

[      ]    [      ]        [      ]
  [      ]

      

 
Real life problems deal with non-linearity and complexity in nature. So a generalized neural 
network model has flexibility at aggregation and activation level to use Sigmoidal and Gaussian 
functions with weights of nodes [Chaturvedi and Malik, 2005]. Here summation and product 
function are used with sigmoidal and Gaussian functions respectively. So the mathematical 
expression of the output of summation and product type of generalized neuronal network is 
given below: 
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   (              )
     

 
(4.41) 

 
Here,          

 O∑ =0 < O∑ < 1 
  O∏ =0 < O∏ < 1 

 

4.3.3 Generalized Neural Network as Universal Approximator   
   In the previous studies, Multi-layered feed forward neural network has been shown to 

have the capability to process the input and output data and approximate any continuous and 
non-linear function [Cybenko, 1989; Hornik, 1991; Barron, 1993]. Accuracy of any universal 
approximator depends on the measure of closeness with function‘s output of neural network 
[Hornik, 1991]. In the previous studies [Barron, 1993; Hornik et al., 1989; Hornik, 1991] authors 
describe that MLFFNN with activation function as a universal approximator. In the previous 
studies, it is shown that neural network with any number of hidden layers and activation 
functions is supposed to be monotone and continuous [Barron, 1993]. Neural network is formed 
from compositions and super composition of single, simple non-linear activation or response 
function [Cybenko, 1989]. For activation function, any function should be continuous, bounded.  
So universal approximation theorem stated that [Cybenko, 1989; Hornik, 1991; Barron, 1993]: 

 

― Let Ф(.) be a non-constant, bounded, and monotone-increasing continuous function. 
Let    Denotes the n- dimensional unit hypercube[   ] , and let the space of continuous 
function on     be denoted by      . Then given any function         and    , there exists an 
integer p and sets of real constants        and    , where i=1, … , n and j=1, … , p such that we 

may define:‖  

       ∑    (∑   

 

   

     )

 

   

              
(4.42) 

|           |    (4.43) 

 In previous section, it is mentioned that in generalized neural network two activation 
functions are used with the help of fuzzy compensatory operators. Fuzzy compensatory 
operators are additive type and it is shown in [Bart, 1994], that any continuous real function can 
be approximated by fuzzy system. So with the help of mathematical expressions we can 
describe that a Generalized neural network fulfils the criteria of universal approximation 
theorem as given below in Eq.(4.44). 

 
|         |                                                        (4.44) 

In the previous section it is mentioned that, sigmoidal and gaussian activation function are used 
to calculate the GNN output. So output of GNN model is given below: 
 

                    (4.45) 
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With the help of Eq.(4.45-4.47), Generalized Neural Network model can be rewrite in the form 
of given Eq.(4.48) 

      
 

           
      

            
             

(4.48) 
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(4.49) 

 
Let      be the sigmoidal function [Cybenko, 1989] 
Here  

     
 

           
      

 
(4.50) 

Let two cases where  
W=0 and 1 

Where, 0 worst case and 1 is better case  
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When w=0 then; (4.52) 

|
 

           
      

 (         
            )|    

(4.53) 

When w=1 then; 
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(4.54) 

 

 

Figure 4.21 : Generalized Neural Network model 

In the Figure 4.21, f1 and f2 are Sigmoid and Gaussian functions, 
 

             
 

           
      

 

 
The range of Sigmoidal activation function is: 
 

     {
      
      

 

 

                      
       

 
The range of Gaussian activation function is: 
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Above activation functions are universal approximators according to (Cybenko, 1979). 
Here      of an n—dimensional real variable,   Є  n , is given by finite linear combination of 
the form  

     ∑   
      

 

   

 

      ∑       

 

   

 

 
Here,    is any continuous Sigmoidal and Gaussian function.  
 
The output of the network is the value of the function that results from this particular 
composition. It is enough to approximate any function, thus we can say, GNN works as 
universal approximator. 
 

4.3.4 Learning Paradigms of Generalized Neural Network (      ) 
 Training of Generalized neural network (      ) includes the following steps to 

calculate the output of the network and training of network [Chaturvedi, 2008].  
 
-- Forward calculation 
In forward calculation output of a neuron is calculated in following three steps. 
 
Step-1 
Output of summation types neuron 

   
 

           
 

(4.55) 

Where 
                (4.56) 

Step-2 
Output of Product types neuron 

               (4.57) 

Where, 
                 (4.58) 

Step-3 
Final Output of Generalized Neural Network 

                   (4.59) 

Reverse calculation  
After the forward calculation for the output of summation type neuron, the outcome of a 
neuron is compared with desired output to calculate the error. With the help of 
backpropagation learning algorithm the generalized neural network is trained to minimize the 
error which is shown in following steps: 
 
Step-4 
In this step, the error is calculated for the ith input data set and Ep is a simplified sum-squared 
error for convergence. 
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Error              (4.60) 

         
  (4.61) 

Step-5 
(a) Here summation neuron model is associated with the weights. So updated weights for the 

network are   
 

               (4.62) 

Where,  

                           

and  

 

             

 
(b) When weights are associated with summation part then updated weights at summation 

part are : 
 

                     

 

Where, 

 

                        

and 

               *    

 

(4.63) 

 

 
(c) When weights are associated with  product part then updated weights at product part are: 

                        

Where 

                        

and   

                               *    

(4.64) 

Here, 
α=momentum factor 

η= learning rate    
 
 

4.3.5 Efficacy of Generalized Neural Network Model  
        In previous sections development, learning rules of generalized neural network are 
described. GNN model can overcome of drawbacks of the ANN model. ANN model have 
various drawback as given below: 

 Large number of neurons are required in hidden layers. 

 Hidden layers are required for non-linear and complex problems [Lippmann, 1987]. 

 Due to presence of hidden layers in neural network its takes large time to compute the 
output. 

 Higher number of iterations required for desired output [Gorman and Sejnowski, 1988].  
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 Generalized neural network have following advantages compare to multilayered feed forward 
neural network model [Chaturvedi, 2008]. 
 

 Required unknown values of weights are less compare to multilayered feed forward 
neural network. 

 Due to less number of unknown weights, training time of the network is reduced. 
 Single neuron based GNN model can solve any non-linear problem. 
 Due to generalization of neural network, we can choose the suitable aggregation and 

activation function on the basis of complexity of the problem. 
 
    

4.4 ERROR METRICS FOR ACCURACY OF FORECASTING MODEL 
In this section, Assessment of above forecasting models are discussed which is basically: 

the root mean square error (RMSE) and mean square error (MSE). In (Marquez et al., 2012) 
statistical error metrics to characterize the quality of neural network model in Eq. (4.65)-(4.67) 
are given. These include the coefficient of determination (  ) which compares the variance of 
the errors to the variance of the data which is to be modeled: 

     
     ̂   

      
                                               (4.65) 

The Root-Mean-Squared Error (RMSE), which is a measure of the average, spread of the errors: 
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                        (4.66) 

 
The Mean Squared Error (MSE) which is a measure of the average spread of the errors: 
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