

 23

4

Proposed Methodology using Artificial Neural Network and
Generalized Neural Network Approach

4.1 INTRODUCTION
Over the past several years, neural networks (NN) have received a great deal of

attention and proposed as a powerful computational tool. Neural Networks have abilities to
recognize patterns and provide appropriate outputs. These are the strengths which make neural
networks suitable for complex forecasting problems. The two key aspects of neural networks
are the processing elements and their interconnections. Neural network resembles the brain in
two respects [Martin and Araque, 2005]:

1. Knowledge is acquired from its internal network of neurons through a learning
process.

2. Interneuron connection strengths (known as synaptic weights) are used to store the
acquired knowledge.

They have been successfully applied in nonlinear problems like handwriting
recognition, speech recognition, Robotics and load forecasting problems [Hippert et al., 2001; S.
Haykins et al., 1999; Colter et al., 1990; Hornik et al., 1989]. A number of papers have been
published in last two decades on applications of neural networks for forecasting. Neural
network-based models have following inherent properties [Martin and Araque, 2005]:

 Inherent parallelism

 Similarity of components

 Access to locate information

 Incremental learning

In neural network-based models, parallelism in the execution has always been observed.

Any particular node‘s output will depend exclusively on its current states. All the parameters of
neural networks undergo several small changes over time, would settle on to their final values
[Chaturvedi et al., 2008]. In last two decades several papers have been published and reported
that multilayered feed-forward neural network models perform better compared to
conventional regression models like Auto-Regression (AR), Moving Average (MA), Auto-
Regression Moving Average (ARMA), Autoregressive Integrated Moving Average (ARIMA) [
John et. al., 2016] and other time series models. Above discussion shows that artificial neural
networks (ANN) offer a reasonable alternative to the classical methods of load forecasting.
ANN technology provides a more general framework to solve regression analysis, time series
prediction and classification problems than other classical statistical methods.

Although, ANNs perform better than other time series models, they have their own

limitations. To overcome some of the problems of ANN and to improve performance
[Chaturvedi et al., 2008] proposed generalized neural networks. Generalized Neural Network is
proposed for load forecasting problems and to improve the efficiency of forecasting accuracy
[Chaturvedi et al., 2008]. In this chapter, we discuss the methodology of forecasting using
Artificial Neural Network (ANN) and Generalized Neural Network (GNN).

24

4.2 ARTIFICIAL NEURAL NETWORK
The first artificial neuron was introduced in 1943 by the neurophysiologist Warren

McCulloch and the logician Walter Pitts (M&P). It is also a mathematical model of a neuron.
Any linear problem can be represented as logic function and can be modeled by an M&P
neuron model. These logic functions are basically OR, AND and NOT. With the help of these
logic functions, one can easily implement any Boolean function. Because of some limitations,
weights and threshold are analytically determined (cannot learn), very difficult to minimize the
size of a network. The first learning rule was developed in 1949 [Hebb et al., 1949].

A few years after, Frank Rosenblatt (1951) developed a learning rule that could be useful

to decide if a sample belongs to one class or the other. A simple neuron model with learning
rule is called a Perceptron. This learning algorithm (weight adjustment) was used in M&P
model and it was found that it performed better than the learning rule proposed by [Hebb et al.,
1949].

In 1960 Widrow and Hoff developed the least mean square (LMS) learning algorithm for

M & P neural network model which is called Adaptive Linear Neuron (ADALINE) model.
Windrow-Hoff (delta rule) rule of the ADALINE updates the weights based on a linear
activation function rather than a unit step function. ADALINE model is a linear model so it has
some limitation in its ability to process data, and is capable of any mapping that is linearly
separable.

Dr. Herbert Simon, Allen Newell and Cliff Shaw also discuss the neural network

approach in the early 1950s. Over the past few years, the artificial neural network (ANN) has
received a great deal of attention and is proposed as a powerful computational tool. In 1969 it is
reported that perceptron model is not capable of learning those functions which are not linear in
nature [Minsky and Papert, 1969].

In the 1970s to 1980s, neural network research declined because of perceptron model

was not able to learn non-linear functions. Then the researchers also developed a back
propagation learning algorithm for a multilayered network that could provide a method to
solve non-linear functions. They have been successfully applied in pattern recognition
classification and nonlinear control problems [Fausett et al., 1994].

A trained neural network can be thought of as an "expert" in the category of information

it has been given to analyze. It has been demonstrated that multi-layered ANN are universal
approximators and they are able to approximate any nonlinear continuous function up to the
desired level of accuracy.

The main advantages of the neural network models are given below:

i. Adaptive learning
ii. Self-organization
iii. Real-time operation
iv. Fault tolerance

 They are extremely versatile and need to fulfill a specification of any particular model.
They can perform better with chaotic components of the non-linear problems compare to
traditional methods [Master et al., 1995]. These are some of the reasons that artificial neural
networks are widely used in the field of finance, consumption, medicine, meteorology and
electrical power system application [Palmer, 2008].

4.2.1 Development of Artificial Neural Network

 25

Receptors
Neural

Network/ Brain

Effectors

Stimulus
Response

 An artificial neural network model is a biologically inspired model and mimics the
human brain. In Figure 4.1 shows the direction of the information in the human nervous system
and it can be broken down into three main stages where the main task for the receptors is a
collection of information from the environment. The effectors generate interactions with the
environment, for example, activate muscles.

Figure 4.1: Block diagram of A Human Nervous System

In this system, the brain plays an important role in processing of information via biological
neurons, having a large number (approximately 1011) of interconnected elements
(approximately 104 connections per element). This complete network is called neural network.
Figure 4.2 shows the biological neuron and, it consists of three main components cell, body or
soma, dendrites or axon. In a biological neural network, dendrites receive the information and
information processed in the soma. The final processed information is transferred via the axon.

Figure 4.2: Structure of biological neuron structure

 ANNs have self-adapting capabilities which make them suitable to handle non-
linearities, uncertainties, and complexity which occurs in forecasting problems. Data processing
of a neuron is shown in Figure 4.3.

Dendrite

Synaptic gap

Soma

Axon

26

Figure 4.3: Data processing of a neuron

4.2.2 Basic Element of Artificial Neuron
 The basic structure of an ANN consists of processing elements, called neurons, which
are fully interconnected with one-way signal channels called connections. Each input is
multiplied by a corresponding weight, which is analogous to biological neuron‘s synaptic
strength. All of the weighted inputs are then summed to determine the activation level of the
neuron. The flow of information/activation is represented by arrows. Figure 4.4 represents a
structure of artificial neuron network with its inputs, weights, activation function, and outputs
[Laurene, 1994; Chaturvedi, 2005].

Figure 4.4: Artificial neuron structure

Propagation
Function

(Dendrite)

•Often weighted sum, transforms output of
other neurons to net input

Activation
Function

•Transforms net input

Output
Function

•Transforms
activation to output

 27

Weight Factor (W):
 A set of input observations X=[x1, x2… xn] are associated with its weights w1 , w2, .., wn.

Weighted sum of its each input parameters is processed by summation block through ‗an‘
activation. The ‗+ve‘ and ‗-ve‘ weight excites and inhibits the output of each node.

 (4.1)

Threshold ():
 Internal threshold () of the node is the magnitude offset. It affects the output of a node
which is represented as:

 ∑

 (4.2)

Then final output Y is a function of processed output from activation block and it may be
written as:

 (4.3)

For computing the final output , the node output is passed on to a non-linear filter which is
and it is called transfer function or activation function which releases the final output .

 (∑

)

 (4.4)

Threshold of a Neuron:
 In computation, neurons usually do not activate unless and until their total input goes
above a threshold value. Total input for every neuron is the weighted sum of its inputs plus its
threshold value then its passed through the activation function. For example if activation
function (af) is sigmoidal function then it can represented as:

 (4.5)

Where;

 ∑

(4.6)

Activation Function:
 The activation rate of the action potential is modeled using activation function (transfer
function). It is a mathematical operation on a signal output. It helps in activating the neuron and
calculates the final output using the following activation functions. In the last two decades
researchers introduced some linear and non-linear activation functions which are helpful for
nonlinear and complex problem shown in Figure 4.5 [Laurene, 1994].

28

Figure 4.5: Outcome of different activation functions

The most common activation functions are:

 Logistic Function

 Hyperbolic Tangent Function

 Identity Function

 Gaussian Function

 Hard limit Function

In Table 4.1 Mathematical expressions of these activation functions are given [Laurene, 1994].

Table 4.1: Mathematical equations of different activation functions

S. No. Activation Function Mathematical

Equation

Limit

1. Sigmoidal

(0, 1)

2. Hyperbolic tangent
 (

)

(-1, 1)

3. Identify (Linear) (-∞, ∞)

4. Gaussian (0, 1)

5. Hardlimit (Step) (0, 1)

 29

4.2.3 Architecture of Artificial Neural Network
 Neural Networks are generally classified into two main categories: Feed–Forward
Neural Network (FFNNs) and Recurrent Neural Network. FFNNs do not have any feedback
loop in the network. The flow of Information is only in the forward direction. Present input is
responsible for neural network activation. In a recurrent neural network, feed forward neural
network with output is fed back to the input. In this section, we discuss different types of neural
network architectures.

i. Single layered feedforward neural network:
 In a feed forward layered neural network the neurons are organized in the form of
layers. In a single layered feed-forward neural network (SLFFNN) source nodes are in the input
layer. In a network, ‗single layer‘ refers to the output layer of computation nodes. There is only
one input and one output layer. The input layer is not counted as a layer since no mathematical
calculations takes place at this layer [Cornelius et al., 1990]. This is shown in Figure 4.6.

Figure 4.6: Single layered feed-forward neural network

ii. Multi-layered feed forward neural network:

A multi-layered feed forward neural network has one or more hidden layers as shown
in Figure 4.7. The computational nodes are hidden neurons. The output signal of the second
layer is used as inputs to the third layer for the rest of the network [Hornik et al., 1989].

Figure 4.7 : Multi--layered feed-forward neural network

iii. Recurrent networks
 A recurrent network consists of a single layer of neurons with each neuron feeding its
output signal back to the inputs of all the other neurons at input layer. It has at least one
feedback loop. Self-feedback refers to a situation where the output of a neuron is fed back into
its own input, shown in Figure 4.8. The presence of feedback loops has a profound impact on
the learning capability of the network and on its performance [Senjyu et al., 2006].

Input layer

Output layer

Input layer

Output layer

Hidden layer

30

Figure 4.8 : Recurrent neural network

The idea is that the input-output relationship in an ANN model provides more flexibility and
can accommodate an increased level of complexity. As far as the question of complex and
dynamic problem like forecasting is concerned, the main concern is to improve the accuracy of
forecasting procedures. Artificial Neural Networks can be one of the tools for improving the
accuracy of forecasting. This gives the idea that accuracy of solar forecast may also be further
improved by modifying the conventional artificial neural network itself, as far as possible. Very
few researchers have considered changes in the internal structure of a neuron of ANN
[Chaturvedi et al., 2002].

4.2.4 Learning Paradigms of Artificial Neural Network

 In the computation of neural network model, the learning process plays an important
role. A learning process is a method of adaptation in which computing units self-organize to
implement the desired behavior and also systematically changes the weight matrix which
makes the network capable of performing a useful task by understanding the internal structure
of the data.

 Back Propagation Learning

 Back-Propagation (BP) with multi-layered feed forward neural network (MLFFNN)
is one of the most recognized neural network architecture due to its ability of non-linear
mapping. Amari(1967) proposed gradient descent to the training of MLFFNNs using a single
hidden layer to solve a non-linear problem. Dynamic feedback and Learning logic are published
by Werbos and Parker in 1974 and 1987 respectively. After decades, Rumelhart, Hilton, and
Williams published the concept of back-propagation algorithm, which shows its great impact
on the complex and dynamic problems. The combination of the input set and target set is called
training pair. Following steps are required for training of back-propagation [Chaturvedi D. K. et
al., 2008] as shown in Figure 4.9.

(a) Choose the training pair from the training set; apply the input vector to the network
input.

(b) Compute the output of the network.
(c) Compute the error between the network output and the desired output.
(d) Adjust the weights of the network in a way that minimize the error.
(e) If an error is not acceptable then repeat from step (a) to step (e).

Input layer

Output layer

Hidden layer

 31

Figure 4.9 : line diagram for a supervised back-propagation learning

Back-propagation Algorithm:
 The main objective of back propagation is to obtain the global minimum on the error
surface. Gradient descent algorithm helps in finding the global minimum and network weights
which are adjusted according to the steepest downhill slope. The algorithm finds the nearest
local minima using many small steps and the possibility to find the global minima is shown in
Figure 4.10.

Figure 4.10 : Error Curve with respect to weight

Apply input-target to the network

Calculate the output

Compute the error

Yes

Goal
Achieved

Modify the weights and
biases based on error

Start

Resulting Output=desired output

No

E
rr

o
r

(Є
)

Weights (W)

Global
Minima

Local
Minima

32

Learning is divided into following four main steps [Kriesel, 2007]:
(a) Feed Forward computation
(b) Back Propagation to the output layer
(c) Back Propagation to the hidden layer
(d) Weight updates

The derivation of back-propagation is given below;
Notation:

Table 4.2: Notation used in back propagation

Notation Description

 Instantaneous sum of error squares at iteration

 Error signal at output of neuron j for iteration

 Desired response for neuron j used to compute

 Activation signal appearing at the output of neuron j for iteration n

 Synaptic weight connecting neuron I to neuron j at iteration n

 The correction applied to the synaptic weight at iteration n

 The net internal activity level of neuron j at iteration n

 The activation function associated with neuron j

 Threshold value

 The ith element of the input vector

 The kth element of the overall output vector

 Learning rate

 Local gradient

The error signal at the output of neuron j at iteration

 (4.7)

Here, j is an output node and instantaneous sum of squared error of the network at the output
of neuron j can be written as:

∑

(4.8)

where, c is a set of all neurons in the output layer of the network.
If N is the total number of input from training set, the average squared error is given by:

∑

(4.9)

 33

Here, Eav indicates the cost function of the training process, which modifies the free parameters
of weights and value of threshold and errors calculated for each pattern shown into the network
Figure 4.11.

 ∑

 (4.10)

Here p indicates the total number of inputs excluding the threshold applied on neuron j.

 (4.11)

The learning process applies a correction Δwij (n) to weights wij (n), which is proportional to

gradient

. We may express the gradient on the basis of chain rule of partial derivatives as

below [Rojas, 1996] .

(4.12)

Using equation (4.7), (4.8),(4.9) & (4.11) we get,

(4.13)

After correction of the weights using delta learning rule

(4.14)

Where positive constant is called the learning rate, from Eq. (4.13-4.14).

 (4.15)

Where is called the global gradient at neuron j and it is an equal to the product of

corresponding error signal and the derivatives of the associated activation

function.

In back propagation error correction and weights, adjustments are the key factor so there are
two cases of adjustment given below [Krose, 1996; Kriesel, 2007].

(a) When Neuron j is an output node: With the help on Eq.(4.7) to calculate error signal
 which is associated with the neuron j and from Eq.(4.15) we can calculate the local

gradient.

(b) When Neuron j is a hidden node: In this case, when neuron j is located at the hidden
layer, there is no specific desired response for that neuron j shown in Figure 4.11. Local
gradient can be defined as:

34

Figure 4.11 : Signal flow in multi-layered neural network

 (4.16)

 ()
(4.17)

To calculate the partial derivative

 , the average error is:

∑

(4.18)

Neuron k is an output node

 ∑

(4.19)

Using the chain rule of partial derivatives we can rewrite the Eq.(4.19) as:

 ∑

(4.20)

So, Computed error is:
 (4.21)

 ()
(4.22)

The internal output of neuron k is:

 35

 ∑

(4.23)

Where q = a total number of input applied to neuron k.
After differentiating Eq.(4.23) with respect to then yield is:

(4.24)

So, using Eq.(4.22) and Eq.(4.24), we get:

 ∑

 () ∑

(4.25)

So, finally, the local gradient for the hidden neuron j is [Hagan, 1996; Laurene, 1994] :

 ()∑

(4.26)

So, it can summarise the relations as follows [Krose, 1996; Kriesel, 2007]:

() () (()) (())

The rate of learning and momentum: The BP algorithm helps to compute the approximation
and error-weight space (which is computed by steepest descent). According to this, weights are
modified with respect to error surface. During the learning process, the rate of learning is
adjusting the gradient of the error surface which is used for weight adjustment. The smaller
learning rate can provide the smoother trajectory in error–weight space. If it is too large then
trajectory will be unstable and oscillatory.
Here one another method to increasing the learning rate:

 (4.27)

Where =momentum constant.

The stopping criteria of BP algorithm: It is a process for improving generalization of the
algorithm. The complete data set is divided into three parts, the first one is called training set,
which can help to calculate the gradient and updating the network weights. The second subset
of data is the validation set and it is monitored during the training process. If a validation error
is increased after a number of iteration then training of network is stopped [Krose, 1996].

4.2.5 Development of forecasting model using artificial neural network model
Following steps are necessary to develop forecasting model using artificial neural

network as shown in Figure 4.12.
a) Selection of input parameters
b) Selection of neural network
c) Selection of perfect training algorithm
d) Selection of training parameter

36

Figure 4.12 Schematic diagram of neural network methodology

a) Selection of Input Parameters
 Selected input parameters have been used for training, testing, and validation of the
model. Here in forecasting models following parameters are taken as input parameters:

 Global horizontal irradiation

 Global tilted irradiation

 Ambient temperature

 Module temperature

 Sun availability

For the 5 MW plant, these are daily average. For the rooftop plant, there are average values of
15-minute time interval.

b) Selection of Neural Network
 In this paper, multilayered feed-forward neural network is used for solar power
forecasting modeling. It is having more than two layers and all the layers are adaptive and there
is no cyclic process from later layers back to earlier layers, therefore the name of the network is
called ―feed-forward‖. Learning of neural network is defined as any progressive systematic
change in the memory (weight matrix) and can be supervised or unsupervised. Supervised
learning is used in multi-layered net.

Yes

No

Selection the input parameters from
database

Normalization of all input parameters

Neural network modelling and selection of
hidden layer, epochs

Random initial weight and bias

Initialization of learning rate and
momentum factor in back propagation

algorithm

Calculate output and Error metrics

=Epochs
I=i+1

Weight
adjustment

Reiterate with data test and calculate RMSE

Output

 37

 The neural network selected has five nodes in the input layer, six nodes in the hidden
layer and a single node in the output layer. All hidden neurons‘ outputs are connected with
single node in the output layer. Each hidden or output neuron of a multi-layered perceptron is
designated to perform following two computations [Chaturvedi et al., 2008].

1. The function signal appearing at the output of a neuron which is expressed as a
continuous non-linear function of the input signals and synaptic weights.

2. The gradient of the error surface with respect to the weights connected to the inputs of a
neuron, which is needed for the backward pass through the network.

Fig. 4.13 : Structure of ANN model

And following the specific selection of neurons and layers provides a better result.

Table 4.3: Structure of Neural Network

S. No Network parameters Value

1. Number of input variables 5

2. Number of outputs 1

3. Number of input layers 1

4. Number of hidden layers 1

5. Number of Hidden layer neurons 6

c) Selection of Perfect Training Algorithm
 In this work, a back-propagation training algorithm is used for learning of network. The
steepest descent minimization method is a back-propagation algorithm. It directly helps in the
adjustment of the weight and threshold coefficients. Figure 4.14 shows the signal flow of input
parameter toward to hidden and output layer. The successive adjustments to the weights are in
the direction of the steepest descent of the error surface. In hidden layer, every node calculated
the weighted sum of its inputs to form its scalar net activation, which is denoted simply as a net.
Net activation refers to the inner product of the inputs with the weights at the hidden unit. Net
activation at hidden layer to output layer can be written as in Eq.(4.28-4.31) [Laurene, 1994]:

Where,

38

 ∑

 (4.28)

 (∑

)

 (4.29)

 ∑

 ∑(

 (∑

))

 (4.30)

 (

) (∑

) (∑(

 (∑

))

)

 (4.31)

Fig. 4.14: Signal flow of the network for computation

In pre-processing stage transfer functions plays an important role in the network. In this work,
the input variables are normalized in the range of 0.1 to 0.9 so here log sigmoidal function is
used as activation (transfer) function as it generates output in the range 0 to 1. In a multi-
layered network, the log-sigmoid transfer function is commonly used and it is trained by the
back-propagation algorithm because this function is differentiable. The log sigmoidal function
expressed by Eq.(4.32)- (4.33) and shown in Figure 4.16 [Laurene, 1994].

 39

Fig. 4.15: Log-Sigmoid Transfer Function

Where

 (4.32)

 ()

(4.33)

Advantages of proposed back propagation algorithm (Arbib et al., 2003) are:

 Scale the data.

 Direct input–output connections.

 Vary the sharpness (gain) of the activation.

 Use of a different activation.

 Use of better algorithms.

d) Selection of training parameter

Back-propagation algorithm involves the use of learning rate, momentum factor because for
weight adjustment the rate of learning ‗η‘ decides the scaling of the gradient of the error surface.
Here momentum factor is used for the danger of instability in network training and it provides
stability into the learning process. In back propagation algorithm the weight adjustment
equation is written as in Eq.(4.34) [Laurene, 1994]:

 (4.34)

(4.35)

When the error of validation set reaches a minimum, then network training stops. Error
tolerance specifies how close the output value must be to the desired value.

40

Table 4.4 Values of training parameters

S. No. Parameters value

1. Number of epochs 1000

2. Error tolerance 0.001

3. Learning rate 0.9

4. Momentum factor 0.3

4.3 Generalized Neural Network
In this section generalization of the conventional neural network is discussed which can

overcome some of the drawbacks and improve the accuracy of the artificial neural network. In a
generalized neural network, the simple neuron is transformed into the generalized neural
network. Artificial neural network is commonly constructed using summation (∑) Aggregation
function. This has been improved to obtain a generalized neural network model using fuzzy
compensatory operators as aggregation operators as proposed by [Mizumoto, 1989] to
overcome large number of neurons and layers that are required for nonlinear, dynamic and
complex function approximation problems.

Figure 4.16: Simple summation and product type neuron model

Generally, the conventional neural network is constructed by aggregation function with linear
or non-linear activation function is shown in Figure 4.16.

4.3.1 Conventional Neural Architecture
On the basis of variation in aggregation functions neurons are classified into two major

categories which are given below:
(a) Summation Neuron (∑-type)
(b) Product Neuron (∏-type)

(a) Summation Neuron (∑-type): Generally summation neuron is used in a conventional
neural network where summation function is used as an aggregation stage and non-linear
functions are used as activation stage which is shown in Figure 4.17.

Σ ∫ ∫ ∏

Bias

Input

 Aggregation Function Threshold functions
Bias

Output

Input
Output

 Aggregation Function Threshold functions

 41

∫ ∏

Input layer Output layer

(∏- Neuron)

Hidden layer

(∏- Neuron)

In
p

u
t

Output

Figure 4.17: Summation type Neural Network

(b) Product Neuron (∏-type): It is constructed by product function and nonlinear activation

function at aggregation and activation stage respectively as shown in Figure 4.18.

Figure 4.18: Product type neural network

With the help of the combination of summation and product type of neuron model following
the type of neural network model could be developed:

(a) Summation types neural network

It is constructed with summation neuron at hidden layer and output layer as shown in
Figure 4.17.

∫ Σ

Input layer Output layer
(Σ- Neuron)

Hidden layer
(Σ- Neuron)

In
p

u
t

Output

42

(b) Product Type neural network
It is constructed with Product neuron at hidden layer and output layer as shown in Figure
4.18.

(c) Mixed type neural network

 Summation- Product type neural network
Summation neurons and product neurons used in hidden and output layer respectively are as
shown in Figure 4.19.

 Product-Summation types neural network
Product neurons and summation neurons used in hidden and output layers respectively are as
shown in Figure 4.20.

Figure 4.19: Summation and Product type neural network (Σ-∏ ANN)

∫ Σ

Input layer Output layer
(∏- Neuron)

Hidden
layer
(Σ- Neuron)

In
p

u
t

Output

∫ ∏

 43

Figure 4.20: Product -Summation type neural network (∏- ΣANN)

4.3.2 Development Methodology of Generalized Neural Network
 As discussed above the combination of neuron model at hidden and output layers helps
in the generalization of the conventional neural network. In [Chaturvedi D K, 2008] it is shown
that combination of different type of neuron model gives a better result compared to
conventional neuron model. The generalized neural network is a combination of conventional
neuron models and fuzzy compensatory operator which is proposed by [Mizumoto, 1989] and
is given in Table [4.5].

Table 4.5 Compensatory operators [Mizumoto, 1989]

Summation types fuzzy operator Product type fuzzy operator

[] [] []
 []

Real life problems deal with non-linearity and complexity in nature. So a generalized neural
network model has flexibility at aggregation and activation level to use Sigmoidal and Gaussian
functions with weights of nodes [Chaturvedi and Malik, 2005]. Here summation and product
function are used with sigmoidal and Gaussian functions respectively. So the mathematical
expression of the output of summation and product type of generalized neuronal network is
given below:

(4.36)

 (4.37)

(4.38)

 (4.39)

∫

Input layer Output layer

(Σ - Neuron)

Hidden layer

(∏- Neuron)

In
p

u
t

Output

∫

∏

Σ

44

 (4.40)

 ()

(4.41)

Here,

 O∑ =0 < O∑ < 1
 O∏ =0 < O∏ < 1

4.3.3 Generalized Neural Network as Universal Approximator
 In the previous studies, Multi-layered feed forward neural network has been shown to

have the capability to process the input and output data and approximate any continuous and
non-linear function [Cybenko, 1989; Hornik, 1991; Barron, 1993]. Accuracy of any universal
approximator depends on the measure of closeness with function‘s output of neural network
[Hornik, 1991]. In the previous studies [Barron, 1993; Hornik et al., 1989; Hornik, 1991] authors
describe that MLFFNN with activation function as a universal approximator. In the previous
studies, it is shown that neural network with any number of hidden layers and activation
functions is supposed to be monotone and continuous [Barron, 1993]. Neural network is formed
from compositions and super composition of single, simple non-linear activation or response
function [Cybenko, 1989]. For activation function, any function should be continuous, bounded.
So universal approximation theorem stated that [Cybenko, 1989; Hornik, 1991; Barron, 1993]:

― Let Ф(.) be a non-constant, bounded, and monotone-increasing continuous function.
Let Denotes the n- dimensional unit hypercube[] , and let the space of continuous
function on be denoted by . Then given any function and , there exists an
integer p and sets of real constants and , where i=1, … , n and j=1, … , p such that we

may define:‖

 ∑ (∑

)

(4.42)

| | (4.43)

 In previous section, it is mentioned that in generalized neural network two activation
functions are used with the help of fuzzy compensatory operators. Fuzzy compensatory
operators are additive type and it is shown in [Bart, 1994], that any continuous real function can
be approximated by fuzzy system. So with the help of mathematical expressions we can
describe that a Generalized neural network fulfils the criteria of universal approximation
theorem as given below in Eq.(4.44).

| | (4.44)

In the previous section it is mentioned that, sigmoidal and gaussian activation function are used
to calculate the GNN output. So output of GNN model is given below:

 (4.45)

(4.46)

 (4.47)

 45

With the help of Eq.(4.45-4.47), Generalized Neural Network model can be rewrite in the form
of given Eq.(4.48)

(4.48)

| (

)|

(4.49)

Let be the sigmoidal function [Cybenko, 1989]
Here

(4.50)

Let two cases where
W=0 and 1

Where, 0 worst case and 1 is better case

|

 ((

) (
))|

(4.51)

When w=0 then; (4.52)

|

 (
)|

(4.53)

When w=1 then;

|

 (

)|

(4.54)

Figure 4.21 : Generalized Neural Network model

In the Figure 4.21, f1 and f2 are Sigmoid and Gaussian functions,

The range of Sigmoidal activation function is:

 {

The range of Gaussian activation function is:

46

 {

Above activation functions are universal approximators according to (Cybenko, 1979).
Here of an n—dimensional real variable, Є n , is given by finite linear combination of
the form

 ∑

 ∑

Here, is any continuous Sigmoidal and Gaussian function.

The output of the network is the value of the function that results from this particular
composition. It is enough to approximate any function, thus we can say, GNN works as
universal approximator.

4.3.4 Learning Paradigms of Generalized Neural Network ()
 Training of Generalized neural network () includes the following steps to

calculate the output of the network and training of network [Chaturvedi, 2008].

-- Forward calculation
In forward calculation output of a neuron is calculated in following three steps.

Step-1
Output of summation types neuron

(4.55)

Where
 (4.56)

Step-2
Output of Product types neuron

 (4.57)

Where,
 (4.58)

Step-3
Final Output of Generalized Neural Network

 (4.59)

Reverse calculation
After the forward calculation for the output of summation type neuron, the outcome of a
neuron is compared with desired output to calculate the error. With the help of
backpropagation learning algorithm the generalized neural network is trained to minimize the
error which is shown in following steps:

Step-4
In this step, the error is calculated for the ith input data set and Ep is a simplified sum-squared
error for convergence.

 47

Error (4.60)

 (4.61)

Step-5
(a) Here summation neuron model is associated with the weights. So updated weights for the

network are

 (4.62)

Where,

and

(b) When weights are associated with summation part then updated weights at summation

part are :

Where,

and

 *

(4.63)

(c) When weights are associated with product part then updated weights at product part are:

Where

and

 *

(4.64)

Here,
α=momentum factor

η= learning rate

4.3.5 Efficacy of Generalized Neural Network Model
 In previous sections development, learning rules of generalized neural network are
described. GNN model can overcome of drawbacks of the ANN model. ANN model have
various drawback as given below:

 Large number of neurons are required in hidden layers.

 Hidden layers are required for non-linear and complex problems [Lippmann, 1987].

 Due to presence of hidden layers in neural network its takes large time to compute the
output.

 Higher number of iterations required for desired output [Gorman and Sejnowski, 1988].

48

 Generalized neural network have following advantages compare to multilayered feed forward
neural network model [Chaturvedi, 2008].

 Required unknown values of weights are less compare to multilayered feed forward
neural network.

 Due to less number of unknown weights, training time of the network is reduced.
 Single neuron based GNN model can solve any non-linear problem.
 Due to generalization of neural network, we can choose the suitable aggregation and

activation function on the basis of complexity of the problem.

4.4 ERROR METRICS FOR ACCURACY OF FORECASTING MODEL
In this section, Assessment of above forecasting models are discussed which is basically:

the root mean square error (RMSE) and mean square error (MSE). In (Marquez et al., 2012)
statistical error metrics to characterize the quality of neural network model in Eq. (4.65)-(4.67)
are given. These include the coefficient of determination () which compares the variance of
the errors to the variance of the data which is to be modeled:

 ̂

 (4.65)

The Root-Mean-Squared Error (RMSE), which is a measure of the average, spread of the errors:

 √

 (̂)

 (4.66)

The Mean Squared Error (MSE) which is a measure of the average spread of the errors:

 (̂)

…

