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Literature Survey

In this chapter, a detailed review of the existing work in the field of motion estimation and

predictive coding is provided. First, attempts are made to provide the basics of data compression

with primary emphasis on lossless predictive coding and lossy video coding. Secondly, motion

estimation, which plays a crucial role in the lossy video coding framework, is introduced in detail.

Later, typical computational challenges inmotion estimationprocesses are described alongwith various

computationally efficient solutions for motion estimation. Advanced algorithms used for motion

estimation in surveillance videos are also described in detail. Lastly, a special case for human skeleton

information coding is explored. To this end, various challenges in the existing motion estimation

approaches and skeleton predictive coding frameworks are explored.

The remainder of the chapter is organized as follows. Section 2.1 describes the basics of data

compression. Themotion estimation process, which plays a vital role in video compression, is described

in Section 2.2. Skeleton sequence codingmethods are presented in Section 2.3. Section 2.4 summarizes

the chapter.

2.1 BASICS OF DATA COMPRESSION

The compression of information is a reduction in the total number of bits needed to represent

data. Compression is useful because it reduces data storage and transmission resources. In the

compression process and usually in the process reversal (decompression), computational resources are

consumed. The compression of data is subject to a trade-off between space and time complexity. Data

compression can save storage space significantly, speed up data transmission and, in effect, reduce

data storage capacity and network bandwidth costs. The idea of data compression dates back to 1838

when [Barrett, 1875] invented Morse codes. Morse code is a character encoding scheme that provides

shorterMorse codes for themore common letters in theEnglish language suchas ‘a’, ‘e’, and ‘t’. Modern

work on data compression began in the late 1940s when [Shannon, 1948] and [Fano, 1949] presented

systematic approaches for information theory and coding.

At the heart of data compression, lies information theory concepts, which act as the blood

pumping the heart. In information theory, it is of utmost importance to understand the probabilistic

behavior of the source data that needs to be compressed. This probabilistic behavior representing

the distribution of the occurrence of symbols from the source data could provide theoretical bound

on bit-rate. An information-theoretic bit-rate bound is computed using entropy. Information entropy

is the average bit-rate at which a stochastic source of data produces information. An information

entropy indicates the amount of information particular source data carries. To this end, a mathematical

representation was developed such that, a data-source with low-probability value carries more

information than the data-source with high-probability. [Shannon, 1948] presented a mathematical

representation for an information entropy, and it is computed as:

Entropy = ∑
i

P(xi)× logb(1/P(xi)) (2.1)
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Figure 2.1 : Illustration of a differential encoding scheme.

where xi is the ith symbol in the data source, P(xi) is the probability of occurrence of ith symbol,

and b is the base of the logarithm used. A typical value of b is 2 for binary representation. This

representation is considered as the information-theoretic bound on bit-rate in the data compression

process. In later years, numerous works on data compression specific to the type of data were

presented. In general, the data compression methods can be broadly categorized into two types: (1)

lossless compression, and (2) lossy compression. The details of these categories are provided in the

next sections.

2.1.1 Lossless Compression
Lossless compression techniques do not allow any loss of data, as their name implies. When

data has been compressed losslessly, it is possible to recover the original data from the compressed

data exactly. The core principle of the lossless compression is tominimize the storage capacity required

to represent the original input data without losing any information. Hence, lossless compression is also

termedas a reversible process. Lossless compression is generally used in applicationswhere theoriginal

and reconstructed data can not tolerate any difference. Lossless compression is possible because there

is statistical redundancy in most real-world data. The statistical redundancy mostly comes from the

probability distribution of symbols in the source data. In entropy based encoding schemes, the symbols

which are highly probable are assigned lower bit-length codes, and symbols that are less probable are

assignedhigher bit-length codes. By doing so,weaim toget as close as possible to the theoretic entropy

bound. Hence, the statistical redundancy helps in reducing the bit-rate requirement.

In practice, various entropy coding methods are employed for lossless data compression. In

entropy coding, each symbol is assigned a unique prefix-free code. Then, each symbol in the source data

is encoded using the corresponding prefix-free code, such that it is exactly recovered at the decoder.

The Lempel-Ziv compression methods are among most popular lossless compression algorithms [Ziv

and Lempel, 1977, 1978;Wyner and Ziv, 1976; Lempel and Ziv, 1986]. However, it was Huffman encoding

and Arithmetic encoding schemes that significantly contributed to lossless data compression. These

algorithms are simple to understand and easy to implement. The detailed overview of these entropy

coding schemes is out of the scope of this Thesis. However, discussion on various approaches for the

reduction in entropy for source data is of key importance. To this end, the simplest entropy reduction

technique with data prediction is explored in this survey.

The data sources, such as images and videos, have a significant correlation from sample to

sample. This fact can be used to predict the sample value based on its adjacent sample values. The

strong correlation between samples contributes to the optimal sample prediction. Hence, only the

difference between the original sample value and predicted sample value could be encoded, resulting

in a reduction in entropy. This technique is termed as differential encoding. A simple illustration of a

differential encoding scheme is shown in Figure 2.1. In real-world data, sample values do not change

drastically from one sample to the next sample. Hence, this means that the entropy of a sequence of

differences between consecutive sample values is significantly smaller than the original data source.

The difference between consecutive sample values could be computed as:
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di = xi − xi−1 (2.2)

where xi denotes the ith sample in the data source sequence. For highly correlated data sources,

the probability distribution of di is highly peaked at zero. This kind of distribution makes a critical case

for entropy coding. Hence, the difference sequence di is more suitable for data compression than the

original data source sequence xi. As discussed in the previous chapter, the lossless compression has

higher bit-rate requirements as compared to lossy compression techniques. Next, our emphasis and

discussion are on lossy compression techniques,which contributes tobetter compressionperformance.

2.1.2 Lossy Compression
Lossy compression techniques involve some information loss, and data compressed using lossy

techniques can not necessarily be recovered or accurately restored. We can generally get much higher

compression ratios than it is possible with lossless compression in return for accepting this distortion in

the reconstruction. Hence, lossy data compression permanently removes some inherent redundancies

that are unimportant or imperceptible. To this end, the entire focus is on achieving a better trade-off

between preserving information and reducing storage capacity requirements. In practice, only a small

loss in information could provide a significant reduction in storage space requirements. It is to bring

to readers kind notice that, this small loss in information is permanent. Hence, lossy compression is

also termed as an irreversible process. This compression is used only in the applications where perfect

reconstruction of the original data is not of critical importance. In such cases, our target is to find any

possible repetitive patterns which can help to identify redundant information in the given data. These

data redundancies could lead to better compression.

In the best possible scenario, wewould like a data compression system to incur a minimum loss

in information while reducing the minimum possible bit-rate. Hence, for obvious reasons, there is a

trade-off to be achieved between minimizing the loss in information or distortion and minimizing the

bit-rate. The study of this trade-off is termed as rate-distortion theory in the field of data compression.

Rate is defined as the average number of bits used to represent each sample value. On the other hand,

distortion is defined as the amount of similarity or fidelity of a reconstructed sample sequence to the

original data source sequence. The simplest way to compute fidelity is to evaluate the differences

between the reconstructed sequence and the original sequence. The popular distortion metrics are

the sum of absolute differences (SAD), mean of absolute differences (MAD), and mean squared error

(MSE). If xi is the original data sequence and yi is the reconstructed data sequence, then SAD, MAD and

MSE is computed as:

SAD = ∑
i
|xi − yi| (2.3)

MAD =
1
N ∑

i
|xi − yi| (2.4)

MSE =
1
N ∑

i
(xi − yi)

2 (2.5)

where N is the length of the data sequence, it can be understood that when the reconstructed

sequence is highly similar to the original sequence, then, resulting distortion value would be small. The

rate-distortion theory plays a vital role in limited bandwidth systems, especially in video compression

systems.
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Figure 2.2 : Illustration of a lossy encoding and decoding scheme.

2.1.3 Lossy Compression of Video Data
It is a well-known fact that video data sources generate probably the most substantial

amount of data. Hence, video compression is of vital importance in limited bandwidth scenarios.

Video compression can be treated as compression of images in the temporal dimension. The

temporal correlation among consecutive frames in the video is remarkably high and contributes to

the considerably high temporal redundancy. The temporal redundancy is widely explored in the video

compression standards.

To this end, an illustration of the coding principle, which has been adopted in the state-of-the-art

lossy compression techniques, is shown in Figure 2.2. This simple illustration contains both the encoding

and decoding processes. In the encoder, first, the input data is transformed into a more compressible

form. For compression, Discrete Cosine Transform (DCT) is the widely adopted transformation.

Secondly, the transformation coefficients can be quantized to remove redundant information. The

quantizer introduces additional distortion to achieve better compression. Lastly, the quantized

coefficients are encoded into the binary code-words using entropy encoder. An entropy encoder

ensures the variation in the length of code words such that the length of code-words is inversely

proportional to the frequency of occurrence. The entire process is termed as encoding.

On the other hand, reverse operations are performed at the decoder to reconstruct the original

signal. It should be noted that the original signal can only be reconstructed exactly in the lossless

encoding and decoding process. In this case, the quantization step in the encoder is skipped, and

transformation coefficients are directly entropy coded. However, for most of the application scenarios,

where real-time encoding and transmission is of paramount importance, the lossy encoder is employed.

Thebest exampleof the lossy encoder isH.264 [Marpe et al., 2006] andHEVC [Sullivan et al., 2012], which

is used for video compression.

The standard video encoder is built using two key components, namely: (1) Discrete Cosine

Transform and (2) Motion compensation. DCT is a basis in image and video compression standards,

and it is widely adopted for intra-frame coding. On the other hand, motion compensation helps in

improved inter-frame coding. The typical video encoder is shown in Figure 2.3. The encoder can

judiciously choose between intra-frame or inter-frame coding schemes. For intra-frame coding, a frame

is divided into blocks of size 8 × 8. Then, the 2D-DCT is employed on each block, and the obtained

coefficients are entropy coded for better compression. On the other hand, for inter-frame coding, a

motion-compensated frame is obtained. Themotion-compensated frame is expected to be very similar

to the current frame. In turn, this would result in lower differences between the motion-compensated
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Figure 2.3 : Illustration of a video encoding process.

frame and the current frame. The difference between these two frames is termed as a prediction error.

Thedistributionof prediction error is highly peakedat zero. Hence, theprediction error is entropy coded

to achieve better compression.

The compression capability strongly depends on the quantizer employed to transform

coefficients. In the absence of quantizer, it is theoretically possible to achieve lossless compression.

That means we can reconstruct the frame that is the same as the original frame. On the other

hand, the introduction of quantizer incurs the distortion in the reconstructed frame, which in turn

results in lossy compression. The quantization is used to remove the least important transform

coefficients and roughly approximate the remaining non-zero transform coefficients. This mechanism

intends to remove the least important data, which is not perceptible by the human visual system.

To this end, low-frequency coefficients are lightly quantized, whereas high-frequency coefficients are

heavily quantized. Since the human visual system is more concerned about low-frequency changes as

compared to the high-frequency changes, this type of adaptive quantization is more suitable to achieve

trade-off compression performance. [Jamali and Coulombe, 2019] reported rate-distortion trade-off in

HEVC. The value of the quantizer step depends on the quantization parameter (QP) value, which may

vary from 0 to 51. It should be emphasized that higher QP value results in higher quantization, which

contributes not only to the better compression but also to the higher distortion. Hence a rate-distortion

trade-off needs to be established during the video compression process. This combination results in an

efficient video compression process. The key component in the video compression process is motion

estimation, which is discussed in detail in the next section.

2.2MOTION ESTIMATION: REVIEW AND CHALLENGES

Motion estimation, which used to reduce temporal redundancies through successive frame

matching, plays a vital role in video compression. In this section, firstly, the typical block-based

motion search process is explained, followed by a discussion on computational complexity associated

with these algorithms. The discussion on existing efficient motion search solutions is presented to

understand the research gaps. This discussion will be further extended frommotion search for generic

video sequences to motion search for a specific type of video sequences. Hence, it is expected that at

the end of this section, the readers get all necessary knowledge about the motion estimation process
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Figure 2.4 : Traditional block matching process for M×N candidate block.

with special emphasis on challenges associated with traditional approaches.

2.2.1 Block-based Motion Search Algorithms
For motion estimation, the current frame is divided into non-overlapping blocks of size M ×N

referred to as candidate blocks. For each candidate block, the most matched block is searched in the

reference frame, typically the previous frame. This process is termed as blockmatching. The basic block

matching process is illustrated in Figure 2.4. The block matching for each candidate block is carried out

within the predefined search area. The size of the search area can be kept limited. Video sequences

acquired at a high frame rate will have significant similarity in its consecutive frames. Hence, a limited

search area, termed as search region (SR), in the reference frame is required in the motion search

process for the candidate blocks. The size of SR is based on search displacement parameter p= (px, py),
where px and py denotes maximum displacement in horizontal and vertical directions, respectively.

For computing matching between two blocks, various metrics, based on distortion error

function, are reported in the literature. [Chen et al., 1995] presented a overview of these criteria in

detail. The list of block matching criteria includes SAD, MAD, and MSE, among others. In general, SAD

metric is preferred over other distortion error functions. SAD is a popularly used measure of similarity

between two frame blocks: candidate block (C) and reference block (R). For the block of size M ×N,

SAD is computed as:

SAD(x,y,mx,my) =
M−1

∑
i=0

N−1

∑
j=0

∣∣∣∣ C(x+i,y+ j)−
R(mx+x+i,my+y+ j)

∣∣∣∣ (2.6)

where, (x,y) represents position of the candidate block and (mx,my) denotes relative

displacement from the candidate block location. The displacement between the candidate block and

the best-matched block in SR is termed as the motion vector (MV), as shown in Figure 2.4. The FS

method is reported to provide accurate MV since it computes the SAD values at all possible locations
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Table 2.1 : Overview of popular block matching algorithms (BMA).

BMA Description
Computational

Complexity

FS
FS [Lin and Tai, 1997] exhaustively search at each possible location in the search window and hence it

is the computationally extensive method.
(2p+1)2

DS
DS [Zhu and Ma, 2000] uses two search patterns: small (SDSP), and large (LDSP) diamond-shaped

patterns. DS provides PSNR as similar to FS with significantly reduced computations.
9+5n+4

HS

HS [Zhu et al., 2002] uses two search patterns: small (SHSP), and large (LHSP) hexagon-shaped

patterns. HS slightly compromise on PSNR as compared to DS, but with significantly fewer

computations.

7+3n+4

CDHS

CDHS [Cheung and Po, 2005] firstly uses two cross-shaped search patterns: small (SCSP), and large

(LCSP) cross-shaped patterns. Then it employs two diamond-shaped patterns: small (SDSP), and large

(LDSP). The computations are further reduced by using LHSP instead of LDSP. CDHS provides PSNR as

similar to HS with reduced computations.

5+4+2+3n+4

ARPS

ARPS [Nie and Ma, 2002] rely on the fact that the motion of the candidate block is usually coherent,

and hence it uses MV of the neighboring block to predict its MV. In general, ARPS outperforms other

algorithms due to its ability to provide higher PSNR at a very lower number of computations.

1+5+4+3n

TZS

TZS [JCT-VC, 2013] uses MV prediction technique comprising of five predictors: median, left, up,

up-right, and zero predicted MV. Then it combines diamond search and raster search methods to

outperform FS. Sometimes, square shaped search patterns are employed instead of diamond search.

In TZS, iRaster is raster scan sampling factor for the search window, uiBD is uiBestDistance where

uiBD =
{

iRaster, iRaster
2 , iRaster

4 , ...,0
}
.

1 + 4 +
8(blog2(p)c) +(⌈

2p+1
iRaster

⌉)2
+

8 ∑
uiBD

⌊
log2

( uiBD
2

)⌋
where p is search displacement parameter, and n is number of intermediate search steps.

in SR. The block with the minimum SAD value is considered as the best-matched block. Since the FS

technique exhaustively searches all possible locations, it is considered as a computationally expensive

method.

2.2.2 Computational Complexity and Efficient Motion Search Algorithms
In practice, motion search complexity for the FS algorithm is maximum. For example, motion

search complexity for a candidate block of size 16×16with SR p=±8would require SAD computations

at all (2p+1)2 = 289 search points. It should be noted that a single frame contains multiple candidate

blocks, and hence, the computational complexity is high and does not suit for practical applications. In

end-to-end video compression, almost 60-70% of the computational time is consumed by the motion

estimation process, alone.

For this problem, several efficient motion search approaches were presented in the literature.

In general, computational complexity can be reduced by (1) reducing the total number of search points,

and (2) reducing the total number of computations required to compute distortion measure. On this

basis, these efficient motion search approaches are broadly categorized into two classes: (1) fast block

matching algorithms, and (2) partial distortion measure based block matching algorithms.

Firstly, various approaches to reducing the total number of search points are discussed. To

understand the importance of fast block matching algorithms, it is also important to understand the

Full Search (FS) algorithm. [Lin and Tai, 1997] reported that the FS technique provided the best block

matchingperformancedue to theuseof all possible locations in the search region. However, FS requires

a significantly high computational cost. Several computationally efficient block matching algorithms

based on various search patterns are reported in literature such as: cross-search (CS) [Ghanbari, 1990],

three-step search (TSS) [Koga, 1981], new three-step search (NTSS) [Li et al., 1994], four-step search

(FSS) [Po and Ma, 1996], diamond search (DS) [Zhu and Ma, 2000], hexagon-shaped search (HS) [Zhu

et al., 2002], cross diamond search (CDS) [Lam et al., 2003], kite cross diamond search (KCDS) [Lam

et al., 2004], cross diamond hexagon-shaped search (CDHS) [Cheung and Po, 2005], modified hexagon

grid search (MHGS) [Singh and Ahamed, 2018], and adaptive rood pattern search (ARPS) [Nie and Ma,

2002], among others. Overview of these state-of-the-art algorithms is summarized in Table 2.1.

15



DS and its variants are widely used block matching algorithms. [Zhu and Ma, 2000] presented

the DS algorithm, which uses two diamond-shaped search patterns. The first one referred to as a large

diamond search pattern (LDSP), and the second one being a small diamond search pattern (SDSP),

which consists of nine and five checking points respectively in the diamond shape. The motion search

in DS is straightforward and easy to implement. LDSP is continuously used in the DS algorithm until

the minimum SAD block is found in the search center. If the best block is in the center, then SDSP

will be used to find the optimum motion vector. DS works well with wide variations in motion content

for various types of motion sequences. It can provide better performance than both TSS and NTSS.

This algorithm can accurately find a global minimum as it has block matching accuracy similar to that

of FS with a significantly lower computational cost. However, DS suffers from local minimum and

early search termination problems. These problems might arise issues in our aim for faster motion

search convergencewithout compromise in blockmatching accuracy. For videos containing directional

motion, the traditional DS algorithm is not suitable since it still requires several search points for

convergence. In a similarway, other fast blockmatchingalgorithms fail toprovideoptimal performance.

In fast block matching algorithms, the improvement in computational efficiency is at the

expenseof some loss inmatchingperformance. [Purwar andRajpal, 2013] reported that, for fastmotion

content video sequences, almost all of the previous methods provide unsatisfactory performance due

to their fixed search patterns. On the other hand, ARPS uses predicted MV to form an adaptive

search pattern and provides matching performance similar to that of FS, with enormously alleviated

computations. The test zone search (TZS) algorithm is employed in the reference software of the

latest HEVC standard called HM software [JCT-VC, 2013], which is claimed to provide superior matching

performance as compared to other fast blockmatching algorithms, but at amuch higher computational

cost.

Secondly, various approaches in reducing the total number of computations required to

compute distortion measure are discussed. [Cheung and Po, 1997] presented hierarchical block

matching techniques and [Lee, 2010] reported partial distortion measure calculations, which provided

a significant reduction in computations. [Cheung and Po, 2003a] described that the partial distortion

measure is based on the assumption that all the pixels of the candidate block belong to the

homogeneous region and hence have the same distortion behaviour. However, [Cheung and Po,

2000] reported that these methods provide sub-optimal performance compared to the full distortion

measure. SAD is a popularly used measure of similarity between two frame blocks: candidate block (C)
and reference block (R). [Yi and Ling, 2007] presented sub-sampling in pixel domain, which substantially

speeds-up the calculation of SAD, due to reduction in the total number of pixels used for this purpose. In

literature, [Xia et al., 2015] reported that 1 : 2, and 1 : 4 sub-sampled SAD is mostly used, which provides

50% and 75% reduction in computations, respectively. The 1 : 2, and 1 : 4 sub-sampled SAD is computed

as follows:

SAD1:2 =

⌊M−1
2

⌋
∑

i=0

⌊N−1
2

⌋
∑
j=0

[∣∣∣∣ C(x+2i,y+2 j)−
R(mx+x+2i,my+y+2 j)

∣∣∣∣ + ∣∣∣∣ C(x+2i+1,y+2 j+1)−
R(mx+x+2i+1,my+y+2 j+1)

∣∣∣∣] (2.7)

SAD1:4 =

⌊M−1
2

⌋
∑
i=0

⌊N−1
2

⌋
∑
j=0

∣∣∣∣ C(x+2i,y+2 j)−
R(mx+x+2i,my+y+2 j)

∣∣∣∣ (2.8)

However, due to sub-sampling, the accuracy of theMVprediction is compromised. The accuracy

of the MV prediction is observed to be superior in a 1 : 2 sub-sampled pixel structure as compared to

a 1 : 4 sub-sampled pixel structure [Seidel et al., 2015]. The search for MV is terminated at a search
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point whenever the SAD value is lower than the pre-set threshold value (T ). Traditionally, T = 512 is

used for blocks of size 16× 16 and the threshold value is modified by a scaling factor of 1/β where

1 : β sub-sampling is employed, i.e. T new
1:β = T/β . Both the techniques discussed earlier contribute to

computational complexity reduction. However, the motion search process convergence still requires

multiple iterations. These methods are highly likely to fail for specific directional motion sequences. In

the pursuit of fastermotion search convergence, a highly likelymotion search center could be obtained.

Then, the motion search could start directly from the newly obtained search center instead of the

traditionally employed zero search center.

For exploiting the inherent characteristics of blocks with direction-oriented motion, motion

vectors of adjacent blocks can be explored. Motion vectors of adjacent blocks are used for the

prediction of the initial search center of the candidate block. [Chen, 2000] and [Luo et al., 2015] reported

an initial search center prediction scheme, which provided a notable reduction in computational cost

and also improved matching efficiency. [Nisar and Choi, 2009] claimed that these methods are biased

with the assumption that the candidate block follows the same motion trajectory as their neighboring

blocks. This assumption severely hits thematching accuracy for blocks located at the object boundaries,

as these blocks may follow different motion trajectory than its neighboring blocks. [Lin et al., 2009]

described that, although these algorithms can rapidly converge to the distortion minimal location, they

suffer frombecoming trapped in the local minimum. Although the approaches discussed above provide

faster convergence and considerable reduction in computational complexity, they still need to reduce

computational requirements for real-time processing and analysis. For real-time motion search, the

primary focus is on reducing computational complexity without any compromise in matching accuracy.

Surveillance video is the best example of real-time processing and analysis. Today, surveillance video

is almost everywhere, mainly for security purposes. Hence, it is of utmost importance to develop

computationally efficient motion search algorithms for motion search in surveillance videos.

2.2.3 Efficient Motion Search Algorithms for Surveillance Videos
Surveillance video plays a vital role in today’s security and navigation applications. The need

for fine-tuned motion search algorithms to address computational efficiency challenges in surveillance

videos is prevalent. To understand this, let us first review the motion search solutions for natural

videos, followed by a brief discussion on motion search algorithms tailored specifically for surveillance

videos. In literature, the H.264 standard uses different variants of DS and HS patterns, whereas the

HEVC employed the TZS pattern for better motion estimation accuracy. [JCT-VC, 2013] analyzed the

flow of the TZS algorithm. Various attempts weremade to reduce the computational complexity of TZS

[Nalluri et al., 2015; Singh and Ahamed, 2018; Guarda et al., 2017; Jia et al., 2019; Oh, 2018; Zhang et al.,

2015]. Still, TZS suffers from very high computational requirements. In another approach, hexagon

pattern based motion search reported providing faster convergence without significant compromise

in matching performance. [Singh and Ahamed, 2018] presented the MHGS algorithm, which uses

different mechanisms of complexity reduction in addition to hexagon patterns. [Poularakis et al., 2017;

Manafifard et al., 2017] reported a reduction in computational complexity for fast activity recognition

applications. These algorithms use different search patterns for reducing the total number of search

points. [Zhu and Ser, 2005] described that different early search termination methods also reduce the

number of search points. [Yang and Chen, 2002] reported the zero-motion termination method, which

compared the distortion measure: the SAD value with a threshold at the zero MV point. The search

process is terminated if the SAD value is less than the threshold. In another approach, [Cheung and

Po, 2003b] reported that the partial distortionmeasures (partial SAD) could be employed to reduce the

total number of computations involved at each search point. [Shinde and Tiwari, 2018] proposed the

work on an efficient direction orientedmotion search, which uses both a reduction in search points and

partial distortion measure.

Although these fastmotion search algorithmsdemonstrated the significant computational gain,
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they do not consider specific properties of surveillance videos. In general, the surveillance videos are

captured from fixed-angle or fixed-view cameras. For better compression, [Ma et al., 2019] presented

a pre-built dictionary-based coding scheme for traffic surveillance videos. These videos always have

considerable static background regions, unless the camera is moving. Traditionally surveillance video

contains two regions: background and foreground. For the foreground region, a motion search could

use already discussed efficient block matching algorithms. However, the main question arises, if the

traditional motion search approaches hold the similar importance for motion search at the background

or static regions. To address this issue, we need to understand that the background region in the

surveillance video is mostly static and does not exhibit anymotion. Hence, there is no compulsory need

tousemotion search algorithms. This could significantly reduce theoverall computational requirements

in the motion search process for surveillance videos.

[Zhao et al., 2014] reported a motion search algorithm on a similar understanding. The

background-foreground-division-based search (BFDS) method exploited these surveillance-specific

characteristics for fast motion estimation. The BFDS algorithm accelerated the motion search process

for surveillance videos. The basic idea of BFDS is to classify a candidate block into two classes:

foreground block and background block. Then different search strategies are employed for each

category. That is, a zero motion vector biased search strategy is applied for background blocks to

reduce the search complexity. On the other hand, a precise global search strategy is applied for the

foreground block to achieve higher coding performance. This approach helped to significantly reduce

overall search complexity since the proportion of static regions is generally high in surveillance videos.

The BFDS outperformed TZS in search complexity reduction. The computational complexity is reduced

in BFDS while maintaining a similar block matching accuracy. Although BFDS searched only zero-MV

points for background areas and used variants of TZS in the foreground areas for fast and efficient

motion estimation, it failed to exploit inherent directional motion characteristics. Besides, BFDS needs

additional computations for generating and updating the background frame. Moreover, only the

bi-level classification of each block is done: either background or foreground. However, multilevel

classification is desired for better matching accuracy. Hence, motion search for surveillance videos

poses a stiff challenge for real-time processing.

Surveillance videos are not only crucial for video analysis but also human action analysis and

recognition tasks for security purposes. Human action or body part movement in the video can be

captured using various body-joint recognition techniques. This body-joint information results in human

skeleton information. Independent storage of the skeleton information can play a vital role in various

applications. In this pursuit, lossless compression of skeleton information is surveyed in the next

section.

2.3 FROM VIDEO ANDMOTION CAPTURE CODING TO SKELETON SEQUENCE CODING

The human body joint information carries great importance in security applications. To this end,

the body-joint information for a human is termed as a skeleton. The motion of objects or humans from

the frame-to-frame result in the motion of skeletons. The moving nature of skeletons in videos results

in a skeleton sequence. The skeleton sequence needs to be stored as semantic information for further

analysis. However, the storage of the skeleton sequence is not straightforward and rarely investigated

in the literature. In this section, firstly, the existing video coding schemes are explored to establish a

correlation between videos and skeleton sequences, if any. Then, the closest possible literature to the

skeleton sequence coding mechanism is discussed and analyzed.

Traditional image and video coding methods have extensively exploited the spatial, temporal,

and spectral redundancies [Brunello et al., 2003; Sun and Shi, 2008; Memon and Sayood, 1996; Fang

et al., 2019; Lu et al., 2019; Zhou et al., 2018; Liu et al., 2014]. The image compression schemes employed

various Intra predictors to exploit the inherent spatial redundancies [Weinberger et al., 1996]. On the
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other hand, the temporal predictive block matching scheme for motion estimation is widely used in

video compression schemes. [Zafar et al., 1991] described the nature of predictive coding approaches

used in video compression. For effective video compression, both intra-prediction and inter-prediction

are important. Both predictive coding modes are judiciously chosen to achieve optimal compression

performance. [Wang et al., 2019] reported the use of the intra-prediction scheme for spatial redundancy

removal and [Memon and Sayood, 1996; Wang et al., 2019; Jiang et al., 2019] reported the use of the

inter-prediction scheme for temporal redundancy removal. Once the spatial and temporal redundancies

are removed, thedifferencebetweenoriginal informationandpredicted information termedas residual,

is employed to entropy coding. The entropy coding scheme further helps to reduce the residual

coding redundancy. In this pursuit, arithmetic coding techniques are widely adopted to handle coding

redundancy in image and video compression methods. However, since skeleton data has different

characteristics from video data, the redundancymodels and codingmethods cannot be directly applied

to the compression of skeleton sequences.

Besides video coding methods, there are some limited methods designed to encode some

specific semantic data types in images or videos. [Daribo et al., 2012; Park, 2015] presented object

boundary coding schemes, and [Gerogiannis et al., 2015; Wang et al., 2016] presented shape coding

schemes, among others. These coding schemes are very specific to the task or application at the desk.

However, since the targeted data types are different from the skeleton data in our approach, they

cannot be directly applied for handling skeleton sequences. Skeleton sequence can be considered as a

close associate of motion capture (MoCap) data. The MoCap data consists of motion information for

human skeletons. [Kuo et al., 2010] reported that MoCap data were frequently used for movement

synthesis applications in the literature. The mocap data are obtained by recording the temporal

trajectories of position sensors, where the temporal trajectory of each position is represented inmarker

positions and joint rotations. [Hou et al., 2015b, 2014, 2015a] presented many effective compression

schemes to accommodate a larger MoCap data collection for higher quality motion synthesis.

[Liu and McMillan, 2006; Karni and Gotsman, 2004] presented compression methods based

on transforms like principal component analysis (PCA). [Cheng et al., 2015; Beaudoin et al., 2007]

presented discrete wavelet transform (DWT) and discrete cosine transform-basedMoCap compression

schemes [Hou et al., 2015b]. On the other hand, [Arikan, 2006; Gu et al., 2009] presented various

hybrid methods for motion-based prediction, post-processing, and [Chattopadhyay et al., 2007]

presented resource-constrained applications. Although the MoCap data compression schemes are

well established for lossy coding, their performance would be degraded for lossless coding due to

their design and framework. Moreover, MoCap data compression methods commonly suffer from

substantial computational complexity, as automatic motion clustering is difficult and computationally

demanding. For example, PCA based clustering demands a significant amount of similar MoCap data

for training. On the contrary, this Thesis develops a novel adaptive lossless compression framework

for skeleton sequences. The well-designed framework exploits specific spatial and temporal motion

characteristics of the skeleton data to improve the efficiency of lossless compression. Themost related

work to ours is the method to compress region-of-interest (RoI) location sequences [Chen et al., 2014].

However, since RoI location sequences are much simpler than the skeleton sequences, only part of the

redundancies are considered [Chen et al., 2014]. Thus, itwill still haveunsatisfactoryperformanceswhen

directly applied to compress skeleton data.

2.4 SUMMARY

In this chapter, a detailed review, analysis, and research gaps in the field of data compression,

motion estimation, and skeleton sequence coding are explored. Firstly, the basics of data compression

are discussed with a primary focus on lossy compression techniques. The video compression process is

described in detail, explaining the role of transformation, quantization, and rate-distortion trade-off.
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Further, the motion estimation process, which consumes most computations and time in the video

compression process, is described in detail. Later, typical computational challenges in motion

estimation processes are described along with various computationally efficient solutions for motion

estimation. The computational complexity reduction can be achieved using primarily two ways: (1)

reducing the number of search points in the motion search process and (2) reducing the total number

of computations in each distortion measure computation. The study is further extended to motion

search in surveillance videos. An effect of two-level block classification is studied, and it is expected

that multi-level block classification could help in achieving a better trade-off between computational

complexity and compression performance. The existing methods for surveillance video coding are

discussed in detail. Lastly, a special case for human skeleton information present in surveillance videos

is addressed. In this pursuit, existing mechanisms, are discussed for skeleton sequence coding.

In a nutshell, the literature survey is primarily described to address the three objectives of this

Thesis. In the next chapters, the three solutions to the research objectives are described in detail.

Firstly, the proposedmechanism to reduce the computational complexity for motion search algorithms

without compromise in matching accuracy is presented in Chapter 3. Secondly, the motion search

complexity reduction idea is investigated for surveillance video coding in Chapter 4. Lastly, the lossless

codingmechanism is developed to store skeleton informationgenerated fromhuman skeletonspresent

in the surveillance videos is presented in Chapter 5.

…
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