
3
Direction-Oriented Motion Search Algorithm

As discussed in Chapter 2, the motion estimation process consumes significant computations

and time in video compression. This chapter aims to develop efficient and effective motion search

algorithms for motion estimation. Hence, a fast motion estimation algorithm is proposed to address

three main problems. First, how to dynamically switch SR to achieve improved matching performance

for blocks present at the object boundaries? Second, how to identify suitable search patterns for

exploiting direction-oriented motion trajectory for computational efficiency and which has lower

chances of becoming trapped in the local minimum. The third one is to find out an optimal threshold

value for partial distortion computations.

The proposed work targets to address the problemsmentioned above. The detailed discussion

on challenges in the traditional motion search algorithms is presented in the next section. Our three

major contributions in this chapter are:

• Dynamic switching between SR with adaptive SR dimension,

• New direction-oriented search patterns, and

• Speed-up mechanism with optimal threshold value based partial distortion computation

In this work, the first problem is addressed by introducing a dynamic switch between SR

based on the location of the predicted initial search center. The second problem is addressed by the

proposed four number of direction-oriented search patterns: horizontal and vertical wings-diamond

search patterns, and two ±45◦ inclined hexagon-shaped search patterns. For the third problem, we

present a method for the selection of optimal threshold values based on the distortion statistics for

different partial distortion calculations. The experiments with varying motion videos: slow, medium,

fast, and directional motion content are performed to evaluate the performance of the proposed

algorithm against competitive methods.

The remainder of the chapter is organized as follows. Section 3.1 summarizes the MV

distribution statistics. The proposed direction-oriented motion search algorithm is described in Section

3.2. Experimental setup, results, and performance comparisons between the proposed algorithm and

state-of-the-art methods are presented in Section 3.3. Section 3.4 summarizes the chapter.

3.1MOTION VECTOR DISTRIBUTION CHARACTERISTICS

The probability distribution (PDF) of MV is popularly used in the selection of appropriate search

patterns for fast convergence. For example, in CDHS [Cheung and Po, 2005], 97% of blocks are found

to possess cross-center biased MV. To demonstrate the behavior of MV distribution, FS is employed on

sixteen video sequences, each consisting of different motion contents. The details of the test video

sequences used for the study are given in Table 3.1.

In literature, video sequences are traditionally classified into three categories: slow, medium,

and fast based on the motion content. After a thorough analysis of MV distribution of each video
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sequence, ‘Akiyo’, ‘Mother-Daughter’, ‘News’, and ‘Discussion’ are classified as slow-motion content

sequences, ‘Carphone’, ‘Foreman’, ‘Coastguard’, and ‘Crowd run’ are classified as medium-motion

content sequences, and ‘Stefan’, ‘Football’, ‘Cheerleaders’, and ‘Soccer’ are classified as fast-motion

content sequences. However, some video sequences are observed to follow dominant motion in only

one of the possible directions: horizontal, vertical, or diagonal. For example, ‘Shields’ video sequence

contains significantmotion in the horizontal direction. Hence, the proposed study focused on test video

sequences with four motion categories: slow, medium, fast, and directional. Among them, ‘Harbour’,

‘Park joy’, ‘Shields’, and ‘ReadySteadyGo’ are classified as directional-motion content sequences.

The PDF and the cumulative distribution (CDF) of MV corresponding to the slow and medium

motion category are shown in Figure 3.1. For slow-motion sequences, it is observed that more than

80% of MV are (0,0) and about 93% of MV lie within Chebyshev distance of 2. Similarly, for medium

motion sequences, themajor part of the distribution ofMV is located around (0,0). However, Figure 3.2

indicates that this is not the case for fast and directional motion sequences. For fast motion sequences,

about 33% of MVs are (0,0), but the remaining MVs are scattered in all the directions. On the other

hand, for directional motion sequences, the distribution of MV is observed to be scattered mostly in

the horizontal direction, for test sequences considered in this work. About 70% of MV for directional

motion content lie within a vertical Chebyshev distance of 1 from the center (0,0).

Conventional methods of finding of MV for a candidate block use either default location (0,0)
or median location for initial search center. For this, the median value of MVs of adjacent blocks (left,

top, and top-right) as shown in Figure 3.3 is computed. Let a MV corresponding to adjacent block Bk is

denoted as mvk = (xk,yk). Then, the median value of MVs of adjacent blocks is computed as follows:

(xm,ym) = median(mv1,mv2,mv3) (3.1)

CDF of MV distribution shown in Figs. 3.1 (c), (f) and Figs. 3.2 (c), (f) illustrates the advantage

provided by the selection of median (xm,ym) as initial search center over traditional approach of

choosing (0,0) as search center. It is observed that the median (xm,ym) is more useful for test video

sequences containing highermotion content. Although the selection ofmedian (xm,ym) as initial search
center helps in a rapid convergence of the search process, this approach severely hits the matching

accuracy for blocks located at the object boundaries, as these blocks may follow different motion

trajectory than its neighboring blocks. The proposed method addresses this issue by dynamically

selecting a better search region with a search center corresponding to the SAD minimum.

3.2 PROPOSED EFFICIENT DIRECTION-ORIENTED SEARCH

This section introduces the new approach for efficient block matching. It consists of mainly

three parts: A) dynamic switch between SRwith adaptive SR dimension, B) selecting direction-oriented

search patterns, followed by C) introducing efficient partial distortion measure.

3.2.1 Dynamic Switch between SR with Adaptive SR Dimension
In literature, starting point is considered as 1) (0,0) or 2) median (xm,ym). It is a well-known

fact that the median start point contributes to faster convergence. However, we propose to select the

best starting point among the two. The selection of the best starting point is based on distortion (SAD)

minimum. It has resulted in the novel idea of switching between two different search regions.
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Figure 3.1 : Average MV distribution characteristics for slow and medium motion video sequences: (a) Average MV distribution for slow motion video

sequences, (b) Average MV distribution for slow motion video sequences after dynamically selecting SR based on location of DISC, (c) CDF of

MVdistribution for slowmotion video sequences, (d) AverageMVdistribution formediummotion video sequences, (e) AverageMVdistribution

for medium motion video sequences after dynamically selecting SR based on location of DISC, (f) CDF of MV distribution for medium motion

video sequences.
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Figure 3.2 : Average MV distribution characteristics for fast and directional motion video sequences: (a) Average MV distribution for fast motion video

sequences, (b) Average MV distribution for fast motion video sequences after dynamically selecting SR based on location of DISC, (c) CDF

of MV distribution for fast motion video sequences, (d) Average MV distribution for directional motion video sequences, (e) Average MV

distribution for directional motion video sequences after dynamically selecting SR based on location of DISC, (f) CDF of MV distribution for

directional motion video sequences.
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Figure 3.3 : Illustration of proposed block matching algorithm with dynamically switched SR for

candidate block corresponding to the minimum SAD location: (0,0) or (xm,ym).

In the proposed work the SAD is obtained at two locations: 1) (0,0) and 2) (xm,ym) to select

different SRs. In Figure 3.3, two different SRs corresponding to SR center locations: 1) (0,0) and 2)

(xm,ym) are represented as R0 and Rm. One of these SR centers, where SAD is minimum, is treated as

dynamically chosen initial search center (DISC). Then, among two different SRs: R0 and Rm, SR with

DISC being its center is chosen as shown in Figure 3.3. The dynamic selection of SRs in this way ensures

following bound on SAD is satisfied.

min
MV∈R0∪Rm

SAD ≤ min
MV∈R0

SAD (3.2)

Before moving ahead, let us understand the idea behind considering two different SRs. As FS

comprehensively search for optimal motion vectors in a fixed search space, it is expected to provide

optimal performance. However, it should be noted that the search space is already fixed using the

search start center and search range. However, we have tweaked the search start centers in the

proposed approach, and hence it created a new opportunity to explore different search spaces at the

same time. The FSmechanism considers search space to be either R0 or Rm based on the search center.

There can be only one fixed search space at a time. For example, if our search space isR0 for a traditional

FS approach, then it could find the best matching block only in R0. However, we propose to select the

best starting point among the R0 and Rm. The selection of the best starting point is based on distortion

(SAD) minimum. It has resulted in the novel idea of switching between two different search regions.

It would provide us an advantage over traditional approaches that consider fixed search space. It is

also supported by Eq. (3.2). In a nutshell, FS with R0 would be most likely to provide sub-optimal

performance as compared to the proposed search, which selects the best search space among R0 and

Rm.

PDF of MV distribution shown in Figs. 3.1 (b), (e) and Figs. 3.2 (b), (e) depict that dynamically

chosen SR using DISC, R0 or Rm, always outperformed traditionally chosen single SR R0. Figure 3.1

and Figure 3.2 clearly indicates that most of the MVs are distributed around the newly chosen initial

search center, DISC. CDF of MV distribution shown in Figs. 3.1 (c), (f) and Figs. 3.2 (c), (f) illustrates the
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comparison between these approaches. This mechanism provided a remarkable increment of 1.92%,

24.23%, 26.81%, and 43.46% in the proportion of MVs falling within Chebyshev distance of 1 for slow,

medium, fast, and directional motion content videos, respectively.

In general, SR dimension p = (px, py) is kept fixed. However, to reduce the total number of

search points, it is suggested to keep SR dimension adaptive while maintaining the same quality. For

DISC= (xm,ym), the predicted MV is highly likely to be located near the DISC location. Hence, a limited

dimension search area could also suffice. This reasoning holds good if the candidate block has similar

motion characteristics as that of adjacent blocks. However, variability in motion characteristics of

adjacent blocks demands a higher dimension search area. For this, the SR dimension is chosen to be

adaptive as follows:

pd = (pd
x , pd

y ) (3.3)

where pd
x and pd

y denotesmaximum adaptive displacement in horizontal and vertical directions,

respectively. It is computed as follows:

pd
x = min(px,max(|xm − x1| , |xm − x2| , |xm − x3|))

pd
y = min(py,max(|ym − y1| , |ym − y2| , |ym − y3|))

(3.4)

It should be noted that adaptive search range is bounded such that:

pd
x ≤ px, pd

y ≤ py (3.5)

The dynamic switch between SR based on SAD value drastically improved the block matching

accuracy. Moreover, the proposed adaptive search range selection ensured the fast convergence

of the block matching process without compromising on performance. This type of adaptive SR

dimension selection provided around 90% reduction in search points for DISC = (xm,ym). However,

the SR dimension is kept fixed for DISC = (0,0) considering the chances of deterioration in matching

performance with an adaptive approach.

3.2.2 Direction-Oriented Search Patterns
It is reported thatmost of the fast blockmatching algorithms converge to SADminimum rapidly,

but they suffer from becoming trapped in the local minimum [Lin et al., 2009]. It is mainly due to the

smaller size of search patterns used in the algorithms such as DS [Zhu and Ma, 2000]. To reduce the

chances of becoming trapped in the local minimum, we propose to add more appropriate points to

traditional patterns. Moreover, the second issue of exploiting directional motion characteristics of a

video sequence is addressed by introducing direction-oriented search patterns shown in Figure 3.4.

For tracking horizontal and vertical movements, we propose new search patterns by adding wings

to the small diamond search pattern (SDSP) [Zhu and Ma, 2000] in horizontal and vertical directions,

respectively. These patterns are termed as horizontal wings diamond search pattern (HWDS) and

vertical wings diamond search pattern (VWDS), shown in Figs. 3.4 (f), (g) respectively. Similarly, for

diagonal movements, ±45◦ inclined hexagon-shaped search patterns (IHS) are shown in Figs. 3.4 (h),

(i).

To compute predicted MV, intermediate MV’s (IMV) are used, and for this, five SADs are

obtained at all the dark circle points of SDSP shown in Figure 3.4 (a). The center of the SDSP is treated
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Figure 3.4 : Search patterns: (a) 1st step pattern: SDSP, (b) 2nd step north directional pattern, (c)

2nd step east directional pattern, (d) 2nd step south directional pattern, (e) 2nd step west

directional pattern, (f) 3rd step onward horizontal directional pattern: HWDS, (g) 3rd step

onward vertical directional pattern: VWDS, (h) 3rd step onward inclined directional pattern:

+45◦ IHS, (i) 3rd step onward inclined directional pattern: −45◦ IHS.

as IMV of the first step. If SAD at the center is the minimum of the five SADs, the search is terminated

and predicted MV would be the IMV itself. In subsequent steps, the IMV will be a point in a search

pattern, where SAD is a minimum. In the second step, one of the vertices of the SDSP where SAD is

minimum is used in further processing for a finding of IMV. A three-point search patternwith this vertex

at its center is chosen from four possible patterns, shown in Figs. 3.4 (b-e). Now SADs are obtained

at the neighboring points of the vertex also. In this way, three SADs, at the chosen pattern points, are

available. The point, where SAD is minimum, of these three SADs, is treated as IMV of the second step.

Since the total number of search steps for the predicted MV may be more than two, a

generalized description of the search process is given as follows. For ith search step, for i > 2, the new
pattern selection is based on the coordinate difference of the IMVs obtained in (i− 1)th and (i− 2)th

search steps. Let coordinates of IMV point at the ith search step be (xi,yi). Let coordinate difference of

IMVs of the (i−1)th and (i−2)th search steps be denoted as (∆xi,∆yi), such that:

(∆xi,∆yi) = (xi−1 − xi−2,yi−1 − yi−2) (3.6)

A point with the coordinate of (∆xi,∆yi) could take any location with Manhattan length ≤ 2,
shown in Figure 3.5. These coordinates are shown in a way that depicts one of the patterns in Figs. 3.4
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Figure 3.5 : Selection of one of the four direction-oriented search patterns based on the coordinate

location (∆xi,∆yi).
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Figure 3.6 : Typical search path examples: (a) 1st step search stop with predicted MV (0,0), (b) 3rd step

search stop with predicted MV (1,0), (c) 3rd step search stop with predicted MV (1,1), (d)
4th step search stop with predicted MV (2,2), (e) 8th step search stop with predicted MV

(5,4). Note: The checked search points are marked with the corresponding step number.

The IMV and predicted MV is represented in the gray and dark circle respectively.

(f-i), to be selected for the IMV. The search for IMV is terminated if (∆xi,∆yi) = (0,0) as further search
attempts will bring no change to IMV. Otherwise, the search is repeatedly continued until the selected

search pattern reaches the search region boundary.

The path traversed by the IMV of each search step is termed as the search path. Five typical

search path examples are shown in Figs. 3.6 (a-e). In each sub-figure, the checked search points are
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Figure 3.7 : Ratio of SADs obtained with sub-sampling and without sub-sampling and denoted by ϕ ,

follows Gaussian distribution.

marked with the corresponding step number. Figure 3.6 (a) shows that search of predicted MV stops

in one step, and the MV is (0,0) representing zero (no) motion while, Figure 3.6 (b) shows that search

of predicted MV stops in three steps and the MV is (1,0) representing horizontal (directional) motion.

However, Figs. 3.6 (c), (d) haveMVs representing the diagonal motion. The search stops in eight steps,

shown in Figure 3.6 (e) clearly depicts the use of+45◦ IHS in the third and fourth step, HWDS in the fifth

and sixth step, and VWDS in seventh and eighth step representing the diagonal, horizontal and vertical

motions respectively. These patterns are effective for tracking directional motion content as compared

to conventional algorithms [8, 9, 14, 17, 18], mainly because search is carried out in the minimum SAD

value direction.

3.2.3 Efficient Partial Distortion Measure
For 1 : β sub-sampling, the threshold value T new

1:β = T/β is popularly used in literature [Seidel

et al., 2015]. Hence, for 1 : 2 sub-sampling, i.e. β = 2, the new threshold value T new
1:2 = 0.5 × T is

considered. However, we observed an erroneous search termination at this scaling factor. Instead,

another approach is explored in our work for calculating T new
1:β based on distortion statistics. It is evident

that T new
1:β depends on the ratio of SADs obtained with sub-sampling and without sub-sampling and

denoted by ϕ and computed as:

ϕ =
SAD1:β

SAD1:1
(3.7)

It is experimentally observed that, ϕ follows a Gaussian distribution with mean µ = 0.5, when

FS with 1 : 2 sub-sampled SAD is employed. The distribution shown in Figure 3.7 depicts the same.

A significance level of α=0.0001 is obtained at a scaling factor s = 0.4, i.e. T new
1:2 = 0.4× T minimizes

erroneous search termination with 99.99% confidence. For similar reasons, in 1 : 4 sub-sampling, i.e.

β = 4, the new threshold value T new
1:4 = 0.2×T is chosen instead of T new

1:4 = 0.25×T .
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Table 3.1 : Test video sequences used in the study.

Index Sequence Name Resolution Total Frames Frame Rate Database Motion Type

1 Akiyo 352×288 300 25 [YUV, 2013]

Slow2
Mother

Daughter
352×288 300 25 [YUV, 2013]

3 News 352×288 300 25 [YUV, 2013]

4 Discussion 640×480 300 25 [Vranješ et al., 2013]

5 Carphone 352×288 382 25 [YUV, 2013]

Medium
6 Foreman 352×288 300 25 [YUV, 2013]

7 Coastguard 352×288 300 25 [YUV, 2013]

8 Crowdrun 704×576 250 25 [De Simone et al., 2010]

9 Stefan 352×288 300 25 [YUV, 2013]

Fast
10 Football 352×288 260 25 [YUV, 2013]

11 Cheerleaders 640×480 300 25 [Vranješ et al., 2013]

12 Soccer 704×576 300 30 [De Simone et al., 2010]

13 Harbour 704×576 300 30 [De Simone et al., 2010]

Directional
14 Park Joy 704×576 250 30 [De Simone et al., 2010]

15 Shields 768×432 500 50 [Seshadrinathan et al., 2010a]

16 ReadySteadyGo 1920×1080 600 120 [Group, 2012]

3.3 EXPERIMENTS AND ANALYSIS

3.3.1 Test Video Sequences
Sixteen test video sequences with varying motion content and of different resolutions

are chosen from benchmark databases [YUV, 2013; Vranješ et al., 2013; De Simone et al., 2010;

Seshadrinathan et al., 2010a; Group, 2012; Xiph, 2012]. All test sequences are in YUV 4:2:0
(uncompressed) color format. Only the luminance (Y) component of each test sequence is used for

motion estimation. Table 3.1 shows the details of test sequences used for experimental analysis. In

Figure 3.8, each row corresponds to one of the four different motion categories: slow, medium, fast,

and directional motion content video sequences. Test video sequences with a frame rate higher than

30 are temporally sub-sampled for fast motion estimation. For this, video sequences: Shields and

ReadySteadyGo are temporally sub-sampled by a factor of 2 and 4, respectively, to bring the effective

frame rate to about 30. The first 150 frames of each sequence are considered for experimentation.

3.3.2 Evaluation Metrics
Prediction quality: Objective quality metrics such as Peak-Signal-to-Noise-Ratio (PSNR) and

Structural Similarity Index (SSIM) are considered for the performance evaluation. SSIM is considered to

be consistent with human visual perception than PSNR [Wang et al., 2004]. PSNR can be computed as:

PSNR = 10log10

(
V 2

max

MSE

)
(3.8)

whereVmax is the maximum pixel intensity for the given k-bit resolution such thatVmax = 2k −1.
For example, a bit-depth of 8 has Vmax equal to 255. As PSNR correlates poorly with perceptual video

quality; it would be interesting to use, the latest video quality metrics such as Video Multi-Method

Assessment Fusion (VMAF) [Li et al., 2016] for comparisons.

Search complexity: In general, the efficiency of the selected blockmatching algorithm (BMA) is

determined by an average number of search points traversed in the search process. But sub-sampling

for partial SAD computation ensured a lower number of pixels used in each SAD calculation. To

incorporate both: the number of search points and the proportion of pixels used for computing partial

SAD, we have introduced a new parameter: the average number of checked pixels per candidate block

(ANCPB). ANCPB determines the efficiency of selected BMA. The ANCPB not only depends on the
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Akiyo Mother Daughter News Discussion

Carphone Foreman Coastguard Crowdrun

Stefan Football Cheerleaders Soccer

Harbour Park Joy Shields ReadySteadyGo

Figure 3.8 : Representative frames of the test video sequences used in the analysis.

average number of search points but also on the proportion of pixels used for computing the partial

SAD value for each search point. The ANCPB for 1 : β sub-sampled SAD is computed as:

ANCPB1:β =
Average Number of Search Points

β
(3.9)

For performance comparisons, speed-up over FS is computed for all fast block matching

algorithms. The speed-up is defined as ratio of computational complexity of full search algorithm and

fast search algorithm and it is computed as:

Speed −up =
ANCPBFS

ANCPB f ast_algorithm
(3.10)

3.3.3 Experimental settings
Search parameters: The candidate block of size 16 × 16, maximum search displacement

parameter p=±8 andSADas a distortion errormeasure, is considered in our experiments. For slowand

31



Table 3.2 : Performance comparisons in terms of PSNR, SSIM, and ANCPB for slow motion sequences.

Sequence Akiyo Mother Daughter News Discussion Average

Algorithm PSNR SSIM ANCPB PSNR SSIM ANCPB PSNR SSIM ANCPB PSNR SSIM ANCPB PSNR SSIM ANCPB

FS 42.85 0.993 289.00 39.55 0.967 289.00 36.75 0.978 289.00 38.85 0.990 289.00 39.50 0.982 289.00

DS 42.83 0.993 13.09 39.45 0.967 14.32 36.50 0.978 13.73 38.81 0.990 14.48 39.40 0.982 13.90

HS 42.71 0.992 11.04 39.26 0.965 11.77 36.21 0.977 11.39 38.71 0.990 11.86 39.22 0.981 11.52

CDHS 42.62 0.992 5.13 39.02 0.964 6.40 36.16 0.976 5.78 38.56 0.989 6.29 39.09 0.980 5.90

ARPS 42.82 0.992 5.35 39.45 0.967 6.82 36.44 0.978 6.12 38.79 0.990 6.63 39.38 0.982 6.23

TZS 42.85 0.993 29.20 39.52 0.967 32.89 36.67 0.978 30.23 38.84 0.990 33.03 39.47 0.982 31.34

EDOS(B) 42.80 0.992 1.69 39.35 0.966 3.22 36.38 0.977 2.81 38.73 0.989 2.59 39.31 0.981 2.58

EDOS(A+B) 42.81 0.992 1.60 39.41 0.966 2.81 36.44 0.977 2.51 38.77 0.990 2.38 39.36 0.981 2.32

EDOS0.6
1:2 42.81 0.992 0.74 39.36 0.966 1.26 36.41 0.977 1.17 38.75 0.990 1.00 39.33 0.981 1.04

EDOS0.5
1:2 42.81 0.992 0.80 39.39 0.966 1.40 36.42 0.977 1.25 38.76 0.990 1.19 39.34 0.981 1.16

EDOS0.4
1:2 42.81 0.992 0.88 39.40 0.966 1.61 36.43 0.977 1.36 38.77 0.990 1.59 39.35 0.981 1.36

EDOS0.3
1:4 42.77 0.992 0.37 39.31 0.965 0.63 36.27 0.976 0.59 38.72 0.989 0.50 39.26 0.981 0.52

EDOS0.25
1:4 42.78 0.992 0.40 39.33 0.966 0.70 36.26 0.977 0.62 38.72 0.990 0.59 39.27 0.981 0.58

EDOS0.2
1:4 42.78 0.992 0.44 39.34 0.966 0.81 36.26 0.977 0.68 38.72 0.990 0.78 39.28 0.981 0.68

Table 3.3 : Performance comparisons in terms of PSNR, SSIM, and ANCPB for medium motion

sequences.

Sequence Carphone Foreman Coastguard Crowdrun Average

Algorithm PSNR SSIM ANCPB PSNR SSIM ANCPB PSNR SSIM ANCPB PSNR SSIM ANCPB PSNR SSIM ANCPB

FS 33.27 0.933 289.00 31.67 0.923 289.00 28.06 0.874 289.00 22.25 0.864 289.00 28.81 0.899 289.00

DS 33.10 0.932 15.94 31.47 0.920 16.94 27.96 0.868 17.91 21.95 0.851 19.31 28.62 0.893 17.53

HS 32.67 0.927 12.60 31.15 0.912 13.28 27.15 0.843 12.25 21.85 0.846 14.64 28.20 0.882 13.19

CDHS 32.64 0.925 8.17 30.89 0.909 9.06 27.26 0.841 9.37 21.29 0.815 12.02 28.02 0.872 9.65

ARPS 33.03 0.931 8.46 31.40 0.920 9.19 28.05 0.873 9.02 22.03 0.855 11.09 28.63 0.895 9.44

TZS 33.22 0.933 32.02 31.61 0.923 31.71 28.06 0.874 28.93 22.20 0.863 31.58 28.77 0.898 31.06

EDOS(B) 32.99 0.930 7.69 31.32 0.918 9.53 27.89 0.865 12.27 21.79 0.843 14.35 28.50 0.889 10.96

EDOS(A+B) 33.05 0.931 6.06 31.43 0.921 6.90 28.05 0.874 7.34 22.09 0.858 9.11 28.65 0.896 7.35

EDOS0.6
1:2 33.00 0.930 2.74 31.39 0.918 3.25 28.04 0.873 3.68 22.06 0.857 4.55 28.62 0.895 3.56

EDOS0.5
1:2 33.02 0.930 3.02 31.41 0.920 3.45 28.04 0.873 3.69 22.06 0.857 4.56 28.63 0.895 3.68

EDOS0.4
1:2 33.03 0.930 3.41 31.43 0.921 3.64 28.04 0.873 3.69 22.06 0.857 4.56 28.64 0.896 3.83

EDOS0.3
1:4 32.59 0.926 1.34 31.30 0.917 1.63 27.96 0.871 1.87 21.91 0.851 2.29 28.44 0.891 1.78

EDOS0.25
1:4 32.60 0.927 1.49 31.33 0.919 1.72 27.96 0.871 1.87 21.91 0.851 2.29 28.45 0.892 1.84

EDOS0.2
1:4 32.61 0.927 1.70 31.35 0.920 1.83 27.96 0.871 1.88 21.91 0.851 2.29 28.46 0.892 1.92

mediummotion video sequences, average SAD values lie in the range of 600 ∼ 1200; hence a threshold
value of T = 512 is conservatively considered. The 1 : 2 and 1 : 4 sub-sampling is employed for partial

SAD calculations with T new
1:2 = 0.4×T = 205 (rounded) and T new

1:4 = 0.2×T = 102 (rounded) respectively.

Test setup for rate-distortion comparison: The test sequences listed in Table 5.1, are also used

for rate-distortion (RD) comparisons between different block matching algorithms. In this pursuit, all

the block matching algorithms, including the proposed algorithm, are integrated into simple video

encoder and simulated under QP values of 22, 27, 32, and 37. For comparing the average difference

between RD curves, the Bjontegaard’s method created [Bjontegaard, 2001] is used to calculate the

average Bit-rate and PSNR.

All theblockmatchingalgorithmsare implemented tobest of our knowledgeandunderstanding

in MATLAB 2015a running on 64-bit Windows 7 platformwith Intel Xeon(R) CPU E5-2650 v2@ 2.60 GHz

with 32.0 GB RAM.
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Table 3.4 : Performance comparisons in terms of PSNR, SSIM, and ANCPB for fast motion sequences.

Sequence Stefan Football Cheerleaders Soccer Average

Algorithm PSNR SSIM ANCPB PSNR SSIM ANCPB PSNR SSIM ANCPB PSNR SSIM ANCPB PSNR SSIM ANCPB

FS 23.86 0.865 289.00 23.73 0.712 289.00 21.25 0.788 289.00 23.93 0.808 289.00 23.19 0.793 289.00

DS 23.23 0.835 18.39 22.98 0.671 23.81 20.61 0.773 18.24 22.89 0.762 22.27 22.43 0.760 20.68

HS 22.77 0.813 13.27 22.98 0.663 16.28 20.71 0.774 13.67 22.83 0.745 14.90 22.32 0.749 14.53

CDHS 22.67 0.812 11.11 22.51 0.644 16.91 20.38 0.764 10.94 22.55 0.745 16.01 22.03 0.741 13.74

ARPS 23.66 0.857 9.04 23.33 0.692 14.37 20.98 0.781 11.40 23.63 0.796 12.52 22.90 0.781 11.83

TZS 23.83 0.864 26.59 23.49 0.705 25.30 21.03 0.784 30.75 23.74 0.801 22.28 23.02 0.788 26.23

EDOS(B) 22.91 0.822 11.49 22.93 0.662 20.26 20.89 0.775 13.29 23.34 0.762 19.44 22.52 0.755 16.12

EDOS(A+B) 23.60 0.865 7.31 23.76 0.730 14.23 21.45 0.792 11.75 26.28 0.877 11.78 23.77 0.816 11.27

EDOS0.6
1:2 23.56 0.863 3.59 23.71 0.720 7.01 21.41 0.791 5.67 26.18 0.872 5.83 23.72 0.811 5.52

EDOS0.5
1:2 23.56 0.863 3.64 23.73 0.720 7.02 21.41 0.791 5.79 26.22 0.873 5.84 23.73 0.812 5.57

EDOS0.4
1:2 23.57 0.864 3.71 23.74 0.721 7.25 21.41 0.791 5.94 26.24 0.874 5.86 23.74 0.812 5.69

EDOS0.3
1:4 23.31 0.853 1.80 23.51 0.710 3.38 21.19 0.783 2.72 25.89 0.857 2.88 23.48 0.801 2.69

EDOS0.25
1:4 23.32 0.853 1.83 23.51 0.710 3.39 21.19 0.783 2.77 25.92 0.859 2.90 23.49 0.801 2.72

EDOS0.2
1:4 23.33 0.854 1.87 23.51 0.710 3.40 21.19 0.783 2.85 25.95 0.860 2.91 23.49 0.802 2.76

Table 3.5 : Performance comparisons in terms of PSNR, SSIM, and ANCPB for directional motion

sequences.

Sequence Harbour Parkjoy Shields ReadySteadyGo Average

Algorithm PSNR SSIM ANCPB PSNR SSIM ANCPB PSNR SSIM ANCPB PSNR SSIM ANCPB PSNR SSIM ANCPB

FS 27.55 0.928 289.00 20.62 0.832 289.00 27.80 0.950 289.00 19.57 0.705 289.00 23.89 0.854 289.00

DS 27.42 0.926 16.03 18.98 0.680 23.43 25.98 0.904 22.06 18.93 0.661 24.43 22.83 0.793 21.49

HS 27.03 0.919 12.86 19.05 0.689 16.80 25.25 0.878 15.46 19.02 0.667 16.77 22.59 0.788 15.47

CDHS 27.04 0.917 8.61 18.48 0.640 16.60 24.79 0.872 16.39 18.70 0.645 17.94 22.25 0.769 14.88

ARPS 27.36 0.925 8.94 20.30 0.808 11.43 27.62 0.947 9.46 19.43 0.693 15.71 23.67 0.843 11.38

TZS 27.51 0.928 32.00 20.57 0.830 18.98 27.79 0.950 23.58 19.29 0.685 25.75 23.79 0.848 25.08

EDOS(B) 27.32 0.924 10.54 18.51 0.637 18.77 24.96 0.870 18.13 19.29 0.677 20.61 22.52 0.777 17.01

EDOS(A+B) 27.38 0.926 7.90 20.47 0.828 9.39 27.62 0.947 7.08 21.15 0.767 16.13 24.15 0.867 10.12

EDOS0.6
1:2 27.37 0.926 3.92 20.35 0.822 4.61 27.56 0.946 3.53 21.11 0.764 7.75 24.10 0.864 4.95

EDOS0.5
1:2 27.37 0.926 3.95 20.36 0.822 4.62 27.57 0.946 3.55 21.11 0.765 7.79 24.10 0.865 4.98

EDOS0.4
1:2 27.37 0.926 3.97 20.36 0.822 4.63 27.57 0.946 3.55 21.12 0.765 7.84 24.10 0.865 5.00

EDOS0.3
1:4 27.28 0.924 1.97 20.07 0.806 2.30 27.42 0.943 1.80 20.91 0.753 3.74 23.92 0.856 2.45

EDOS0.25
1:4 27.28 0.924 1.99 20.07 0.806 2.31 27.44 0.943 1.80 20.92 0.754 3.76 23.93 0.857 2.46

EDOS0.2
1:4 27.28 0.924 2.00 20.07 0.806 2.31 27.44 0.943 1.81 20.93 0.755 3.78 23.93 0.857 2.47

3.3.4 Results and Comparisons for the Proposed and Existing Methods
The performance of the proposed Efficient Direction-Oriented Search (EDOS) method is

compared against six popular block matching algorithms: FS, DS [Zhu and Ma, 2000], HS [Zhu et al.,

2002], CDHS [Cheung and Po, 2005], ARPS [Nie and Ma, 2002] and TZS [JCT-VC, 2013]. Overview of

these state-of-the-art algorithms is summarized in Table 2.1. The EDOS algorithm consists of mainly

three parts: A) dynamic switch between SRwith adaptive SR dimension, B) selecting direction-oriented

search patterns, followed by C) efficient partial distortion measure. In this study, EDOS(B), and

EDOS(A+B) is evaluated independently to analyze the effect of each part. Moreover, multiple variants

of EDOS(A+B+C) with different sub-sampling parameters (1 : β = {1 : 2,1 : 4}) and respective threshold
values are considered. For this, six sub-sampled variants of EDOS: EDOSs

1:β = {EDOS0.6
1:2, EDOS

0.5
1:2,

EDOS0.4
1:2, EDOS

0.3
1:4, EDOS

0.25
1:4 , EDOS0.2

1:4}, whereβ is the sub-sampling factor and s represents scaling factor
corresponding to the selected sub-sampling factor, such that threshold value T s

1:β = s×T .

The PSNR and SSIM of the video sequences reconstructed by the different block matching

algorithms are listed in Table 3.2. It is reported that FS provides the best matching quality for the

predefined search region at the cost of the highest ANCPB values. Experimental evaluation of the

proposed method reported negligible decrements in PSNR for slow and medium motion videos as
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compared to FS. On the other hand, an average increment in PSNR of about 0.58 dB and 0.26 dB is

observed for fast and directional motion videos, respectively. All fast block matching algorithms [Zhu

and Ma, 2000; Zhu et al., 2002; Cheung and Po, 2005; Nie and Ma, 2002; JCT-VC, 2013] provided similar

effectiveness for slow-motion videos. DS, HS, and CDHS severely fail to provide good block matching

quality for fast and directionalmotion videos, while the proposedmethod is observed to be superior for

thesemotion categories. However, the performance of TZS is observed to be superior to DS, HS, CDHS,

and ARPS. It is apparent from Table 3.2 that the PSNR is in the order FS > EDOS(A+B) > EDOS0.4
1:2 >

EDOS0.5
1:2 > EDOS0.6

1:2 > EDOS0.2
1:4 > EDOS0.25

1:4 > EDOS0.3
1:4 > TZS > ARPS > EDOS(B) > DS > HS > CDHS

for high motion content video sequences. Hence, an overall PSNR performance for the proposed

method is evaluated over FS. The PSNR performance shown in Figure 3.9 (a) clearly indicates that

EDOS(A+B) outperformed other competitive algorithms. A similar trend as of PSNR results is observed

for SSIM values as well. The increment of 8.8% in SSIM is observed for directional video sequence

‘ReadySteadyGo’, largely due to the part A of the proposed EDOS method.

FS is the computationally complex method and requires (2p+1)2 search points for the single

MV prediction. It is evident from Table 3.2 that the ANCPB is in the order FS > TZS > DS > HS >
EDOS(B) > CDHS > ARPS > EDOS(A+B) > EDOS0.4

1:2 > EDOS0.5
1:2 > EDOS0.6

1:2 > EDOS0.2
1:4 > EDOS0.25

1:4 >
EDOS0.3

1:4. An overall speed-up for the fast BMA is evaluated over FS. Figure 3.9 (b) indicates that

EDOS(A+B) provided speed-up of about 125, 45, 25, and 35 times for slow, medium, fast, and directional

motion video sequences respectively. EDOS(A+B) and EDOS(B) provided significant speed-up without

any degradation in PSNR. It should be noted that both EDOS(A+B) and EDOS(B) provided similar

performance for slow and medium motion sequences. However, EDOS(A+B) outperformed EDOS(B)

for the remaining test sequences due to the presence of the fast and directional motion content in

them. EDOS(A+B) could directly start the search process from the highly probable vicinity of true MV

and hence provided better results.

Moreover for fair comparison, sub-sampling (1 : β = {1 : 2,1 : 4}) is also applied to six popular

BMAwith s= {0.5,0.25}, respectively resulting into twelvemore combinations. Due to space limitation,

the results for sub-sampled versions of six popular BMA are not tabulated in Table 3.2. However,

comparisons in terms of curves are shown in Figure 3.9. The performance of sub-sampled variants

of EDOS is separately compared against respective sub-sampled versions of popular BMA. In our

experiments, we have considered three different threshold values for each partial SAD computation.

For example, for 1 : 2 sub-sampled partial SAD computation s = {0.6,0.5,0.4} is considered resulting

into three variants of EDOS: {EDOS0.6
1:2, EDOS

0.5
1:2, EDOS

0.4
1:2}. The PSNR and speed-up performance for

1 : 2 and 1 : 4 sub-sampled algorithms are shown in Figs. 3.9 (c), (d) and Figs. 3.9 (e), (f) respectively.

The superiority of EDOSover otherBMA is alsoobservedafter employingpartial SADcomputations. Our

idea of choosing s = 0.4 for 1 : 2 sub-sampled SAD computation provided slightly better PSNR results

as compared to other threshold values. However, this is achieved at the cost of slight compromise in

speed-up. Threshold value with s = 0.4 avoided early erroneous termination in the search process as

compared to s = 0.6 and hence resulted in better PSNR values. The variation in speed-up for different

threshold values is higher for slow-motion sequences. However, for fast anddirectionalmotion content,

the speed-up values are indistinguishable. Hence, EDOS0.4
1:2 is preferred over EDOS0.6

1:2 and EDOS0.5
1:2 due

to better PSNR results. A similar analysis could be extended for 1 : 4 algorithms.

Next, to study the effect of different sub-sampled versions of EDOS, all the variants of EDOS are

analyzed together in Figs. 3.10 (a), (b). The PSNR for EDOS(A+B) is highest among different variants

of EDOS, whereas EDOS(B) performed worst. It is also observed that degradation in PSNR increases

with an increase in sub-sampling from 1 : 2 to 1 : 4. However, speed-up is doubled with the increase in

sub-sampling from 1 : 2 to 1 : 4. Hence, our algorithmcould be used for different high-speed applications

if slight PSNR degradation is acceptable.

Overall, FS, TZS, EDOS(A+B) provided superior results than other competitive methods.
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Figure 3.9 : Performance comparison in terms of PSNR and speed-up for proposed method against

different block matching algorithms: (a) PSNR comparison for different algorithms without

sub-sampling, (b) Speed-up comparison for different algorithms without sub-sampling, (c)

PSNR comparison for different algorithmswith 1 : 2 sub-sampling, (d) Speed-up comparison

for different algorithms with 1 : 2 sub-sampling, (e) PSNR comparison for different

algorithms with 1 : 4 sub-sampling, (f) Speed-up comparison for different algorithms with

1 : 4 sub-sampling.

However, for directional motion sequences, the proposed method obtained better PSNR and SSIM

values. ANCPB values clearly dictate the superiority of all the variants of EDOS. However, it is unfair
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Figure 3.10 : (a) PSNR comparison for different variants of proposed method against FS, (b) Speed-up

comparison for different variants of proposed method against FS.
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Figure 3.11 : Rate-distortion performance for video sequences (a) Discussion (slow motion), (b)

Coastguard (mediummotion), (c) Soccer (fastmotion), and (d) Parkjoy (directionalmotion)

under different QP values of 22, 27, 32, and 37.
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to compare partial distortion measure incorporated search algorithm with the full distortion measure

algorithm. For this, the speed-up of sub-sampled variants of EDOS is compared against sub-sampled

versions of popular BMA. Figure 3.9 clearly depicts that all the variants of the proposed method

outperformed other fast block matching algorithms. It is observed that the benefits of the proposed

algorithm are significant at the lower-sized SR since dynamic switching between SRs at high SR

dimension could result only in a minor change in SAD minimum values. Hence, the results for p = ±8
are discussed here.

Figure 3.11 presents the RD performance of the proposed and competitive algorithms for video

sequences: Discussion (representing slowmotion), Coastguard (representing mediummotion), Soccer

(representing fast motion), and Parkjoy (representing directional motion). The RD performance is

computed under different QP values of 22, 27, 32, and 37. It is evident from Figure 3.11 that, increase

in PSNR is proportional to an increase in bit-rate. For the slow-motion video sequence, the FS algorithm

provided the best RD performance, followed by the proposed algorithm. On the other hand, the

RD performance for medium, fast, and directional motion sequences indicate the superiority of the

proposed algorithm over existing algorithms. One may observe that our algorithm outperformed

not only to state-of-the-art TZS but also to the FS algorithm. The gains for fast and directional

motion sequences are higher than those of medium motion sequences due to the adaptability of our

direction oriented search patterns. This indicates that the proposed algorithm is well suited for fast and

directional motion sequences.

3.3.5 Bit Requirement for MV in the Proposed Work
The bit requirement for MV depends on the MV distribution. An average information content

termed as entropy, is measured using probability distribution as follows:

E(MV ) =−∑
i

Pi(MV ) log(Pi(MV )) (3.11)

where Pi(MV ) is the probability distribution of MV. The MV distribution shown in Figure 3.1 and

Figure 3.2 indicates that entropy for slowmotion videos is lower than the fastmotion videos. Moreover,

boundonSADmentioned in (3.2) guarantees that entropy for proposeddynamically chosen SR is always

lower than the fixed SR since uncertainty in the MV distribution shown in Figure 3.1 and Figure 3.2

decreases by dynamically switching SRs.

In the proposed method, MV for the candidate block is represented as relative displacement of

the best-matched block from DISC rather than from the traditionally used default search center (0,0).
Since the decoder must be informed about the SR center, default, or median, one-bit information per

block will be sent as overhead. Although this overhead seems to be low (for a block size of 16× 16,
overhead is 1/256 bpp), however, at lowbandwidth requirements, reduction in this overhead is desired.

For this, one bit overhead corresponding to each candidate block is sequentially arranged in the raster

scan order, and then it is compressed by employing delta encoding [Schindler, 1970]. Delta encoding is

the process of storing data in the form of differences between sequential data. This process reduced

the overhead bit requirement from 1 bit/block to about 0.6 bits/block, depending on the correlation

between the DISCs of the adjacent blocks.

Moreover, the bit requirement for encoding each MV depends on the dimension of SR. For

improvedMV prediction accuracy, particularly for fast and directional motion sequences, it is desired to

have SR of higher dimension. However, the introduction of the dynamic switch between SR based on

DISC location helped in no requirement of higher SR dimension, for the desired accuracy. Subsequently,

the bit requirement for encoding eachMV is also reduced. Hence, the overall bit requirement is further

reduced.
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3.4 SUMMARY

In this chapter, an efficient motion search algorithm is presented. The algorithm is developed

based on the MV distribution characteristics of video sequences with varying motion content. The

MV distribution provided a strong case for our proposal of direction-oriented search patterns. These

patterns performed well for varying motion sequences as compared to the existing methods. Not only

this, our method used the dynamic switch between the search region based on the SAD minimum

location. This has helped us in a faster and more effective search convergence. Moreover, the

proposed adaptive search range selection ensured the further improved convergence of the block

matching process without compromising on performance. The computational complexity is further

improved by a partial distortion scheme. We presented a novel threshold selection mechanism for

effective partial SAD computations. The experiments were performed on a total of sixteen video

sequences containing four sequences, each belonging to slow, medium, fast, and directional motion

content. The experimental results indicate the efficacy of the proposed scheme is compared to

the state-of-the-art methods. Our scheme achieved more than two times speed-up over the fastest

state-of-the-art algorithmwithout any compromise in thematching accuracy. Not only this, ourmethod

even outperformed the FS method in terms of matching accuracy for fast and directional motion video

sequences. This improvement in matching quality over FS along with reduced computational cost

mainly comes from the proposed dynamic switch between SR based on the location of DISC, adaptive

SR dimension selection, adaptability of direction-oriented search patterns, and optimal threshold value

selection for partial SAD computations. With this method, the first objective of the Thesis, to develop

an efficient and effective motion search algorithm is achieved. The proposed EDOS algorithm is very

suitable for a wide range of applications, such as high-speed and high-quality video conferencing.

The video conferencing and surveillance videos are very important application areas. An

efficient motion search algorithms presented in this chapter need to be fine-tuned for the specific type

of video sequences such as surveillance videos. It is a well-known fact that surveillance videos contain a

significantly large proportion of static blocks. These static blocks, generally, do not carry very important

information. Hence, there is a scope to develop efficient and effective motion search mechanisms for

surveillance videos. In this pursuit, the motion estimation scheme for surveillance videos is explored in

the next chapter.

…
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