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Background-Foreground Boundary aware Motion Search

Algorithm for Surveillance Videos

As discussed in Chapter 3, the motion estimation process consumes significant computations

and time in video compression. In the previous chapter, we have already developed efficient and

effective motion search algorithms for motion estimation. However, these algorithms need to be

fine-tuned for a specific type of video sequences. Surveillance video plays a vital role in today’s

security and navigation applications. The need for fine-tuned motion search algorithms to address

computational efficiency challenges in surveillance videos is need of an hour. In this pursuit, themotion

estimation scheme for surveillance videos is explored in this chapter. Traditionally, candidate blocks

in the surveillance video are classified into two classes, namely, background and foreground. The

background block belongs to the static regions in the surveillance video, whereas the foreground block

contains moving regions. Hence, class-specific search strategies are further explored for efficient and

effective motion search in surveillance videos.

The proposed work targets to address the problemsmentioned above. The detailed discussion

on problem analysis is presented in the next section. This chapter presents a novel background

foreground boundary aware block matching algorithm. Our three major contributions in this chapter

are:

• We propose a novel framework that can classify block into three categories based on the block

characteristics.

• Under the framework, we introduce new search strategies for each category. The search

strategies are specially tailored to exploit the characteristics of surveillance videos.

• Wealso introduce anovel speed-upmechanism for different categories. Our speed-upmechanism

also helps in improving block matching accuracy.

In our work, firstly, the blocks are categorized into three classes, namely, background (BG),

foreground (FG), and boundary (BD) blocks. The block classification process is based on block

distortion values, and hence it is easy to implement. Secondly, the motion search is performed by

employing different search strategies for each class. The zero-motion vector-based search is applied

for background blocks. On the other hand, to exploit fast and directional motion characteristics of the

boundary and foreground blocks, the eight rotating uni-wing diamond search patterns are proposed.

The direction oriented search patterns help in faster motion search convergence. Thirdly, the speed-up

is achieved through the novel region-based sub-sampled structure. The speed-up not only reduced the

computational complexity but also improved block matching accuracy. An illustration of the traditional

two-class block classification approach and our idea of three class block classification for surveillance

video coding is shown in Figure 4.1.

The rest of the chapter is organized as follows: Section 4.1 discusses problems in existing block

matching works for surveillance video coding applications. The proposed algorithm is described in

Section 4.2. Experimental settings, results, and performance comparisons are presented in Section 4.3.

Section 4.4 summarizes the chapter.
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Figure 4.1 : (a) Illustration of traditional block classification approach with two classes: background

and foreground, (b) proposed approach with three classes: background, foreground, and

boundary, (c) two classes example (square sequence), (d) three classes example (square

sequence). (Best viewed in color)

4.1 PROBLEM ANALYSIS

In this section, the characteristics of surveillance videos are explored, followed by problem

analysis in existing works.

4.1.1 Characteristics of Surveillance Videos
The key characteristic of surveillance video lies in the high proportion of static blocks

corresponding to the BG region. A large number of static blocks in the BG region provides a two-fold

advantage: (1) better matching accuracy, and (2) faster motion search convergence. The static nature

of BG regions has two direct implications: (1) the motion vectors (MV) for BG are concentrated near

zero, and (2) the distortion values are smaller compared to FG regions.

The experiments were carried on twelve different surveillance test sequences taken from

standard datasets [Gao et al., 2014; Lab, 2019, 2011; Seshadrinathan et al., 2010b]. The representative

frames of each sequence are shown in Figure 4.11. The details are mentioned in Table 4.1. The MV

distribution for BG and FG regions shown in Figure 4.2 (a) clearly depicts that over 95% of MVs for BG

are within unit area distance from the center due to its static nature. On the other hand, the MVs for

the FG region are dynamically distributed since FG always contain moving objects. The MV distribution

for fast motion FG region indicates that about 30% of MVs lie within a unit area from zero-MV, but the

rest of theMVs are present in all the directions. On the other hand, for the directionalmotion FG region,

the MVs are mostly situated in a particular direction. About 70% of MVs are observed to lie along one

specific distance path.

The better matching accuracy for static BG regions resulted in lower distortion values as

compared to FG regions. The MAD distribution for BG and FG regions is shown in Figure 4.2 (c). The

bi-modalMAD distribution for BG and FG regions can be further used to improve classification accuracy.
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Figure 4.2 : Statistics of MV distribution: (a) traditional BG-FG approach, (b) Our BG-FG-boundary

approach, statistics of average MAD distribution: (c) traditional BG-FG approach, (d) Our

BG-FG-boundary approach.

It is evident from MV distribution that zero-MV biased search could be employed for BG regions to

reduce the number of search points. On the other hand, the existing search methods could be used

for FG regions resulting in optimummotion estimation.

4.1.2 Problems in the Existing Works
We investigated three major problems in the existing works. First, the blocks may be wrongly

classified as BG or FG due to bi-level classification in traditional approaches [Zhao et al., 2014]. The

block classification could be correct for smaller block sizes like 4 × 4, whereas question lies for the

block sizes larger than 8 × 8. There exists a considerable proportion of blocks on object boundary,

which contains both BG and FG regions partially (called as a boundary (BD) blocks hereafter). The

block matching process for these blocks is not straightforward. Performing the BG-based search for

BD blocks could result in poor matching accuracy due to the presence of the FG region. On the other

hand, performing FG-based search could still result in poor matching accuracy due to the presence of

the BG region. Hence, there is a need to investigate newer search strategies for these boundary blocks.

It should also be noted that the video frames are divided into non-overlapping blocks in the

existingworks. In thenon-overlapping scheme, someof the internal regionsof themovingobjects could
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Figure 4.3 : Framework of the proposed background foreground boundary aware motion search

scheme.

go undetected if the object has a size larger than the current block size, and if the change in pixel values

is relatively small. Hence, a lowdistortionFG regionmaybewrongly classifiedas a staticBG region. Thus,

there is a need to employ overlapping block classification mechanism for better classification accuracy.

Second, the existing fast block matching algorithms suffer from a high probability of becoming

trapped in the local distortion minimum [Lin et al., 2009]. The primary reasons for this are (1) lower

number of search points in the pattern, and (2) the non-sparsity in the location of search points in

selectedpatterns. Theseproblemsmake theDS [Zhu andMa, 2000] algorithm ineffective. AlthoughTZS

[JCT-VC, 2013] and BFDS [Zhao et al., 2014] overcome the challenge of being trapped in a local minimum,

they still require a considerable number of search points. Conventional MV estimation methods use

either zero (0,0) location or median location as an initial search center for block matching process [Lin

et al., 2016a]. The median value is computed using MVs of adjacent blocks located at the left, top, and

top-right position. It is observed that the median start location is more useful for FG blocks containing

highermotion content. Although this approach speeds-up thematchingprocess, thematching accuracy

is severely compromised for blocks with object boundaries. Since these blocks may follow a different

motion path than its neighboring blocks. The DS and TZS have widely adopted search algorithms in

practice, and BFDS is a variation of the TZS algorithm designed for surveillance sequences. However,

noneof themcould exploit the uniquemotion characteristics of FGblocks in the surveillance sequences.

Hence, there is a need to innovate newer direction oriented search patterns for the faster and accurate

matching process.

Third, the computational complexity involved in the search process is still high. The

sub-sampling in the spatial domain substantially speeds up the computation of distortion measures.

Since thenumber of pixels used for distortion computation is reduced [Yang et al., 2010]. In literature, 1 :
2 and 1 : 4 sub-sampled distortion measure is widely adopted. However, to achieve better classification

accuracy and improve block partitioning for boundary blocks present in the surveillance videos, a novel

region-based sub-sampling is desired.

4.2 PROPOSED BACKGROUND FOREGROUND BOUNDARY AWARE SEARCH

A background foreground boundary aware motion search method is proposed to address the

problems present in the existing works.
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4.2.1 Overview of the Proposed Background Foreground Boundary aware Search Scheme
The framework of the proposed method is shown in Figure 4.3. The proposed framework

contains three parts: (1) three class block classification, (2) class-based search strategy, and (3) block

partitioning mechanism. First, the current frame is divided into non-overlapping blocks of size M ×N.

Then, each block is classified into one of the three classes: (1) background (BG), (2) foreground (FG),

and (3) boundary (BD) based on the self-adaptive threshold. The foreground is the region with moving

objects. On the other hand, the background is the static region in nature without any moving objects.

In our work, a simple approach for the block classification, which is solely based block distortion

measure is presented. The current frame, reference frame, and the generated class map is used for

motion estimation. Second, different search strategies are employed for each class to exploit the

inherent motion characteristics in the surveillance videos. Third, the block partitioning mechanism is

incorporated for BD blocks for efficient matching. The details of each component of the proposed

scheme are provided in the next sections.

4.2.2 Block Classification
The block classification framework for our work is shown in Figure 4.4. The current frame is first

divided into non-overlapping blocks of size M ×N and partial SAD (pSAD) is computed for each block.

The partial SAD is a popularly used efficient measure of similarity between two frame-blocks: candidate

block (C) and reference block (R) and it is computed as:

pSAD(x,y,mx,my) = ∑
i∈hx

∑
j∈hy

∣∣∣∣ C(x+i,y+ j)−
R(mx+x+i,my+y+ j)

∣∣∣∣ (4.1)

In (4.1), (x,y) represents position of the candidate block and (mx,my) denotes relative

displacement from the candidate block location. On the other hand, (hx,hy) denotes position of
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highlighted pixels (in M ×N sized block) used in partial SAD computation. The traditional SAD uses

all the pixels present in the candidate block for distortion measure computation. On the other hand,

partial SAD uses a subset of pixels, which are highlighted explicitly for computational advantage. Then

based on the partial SAD value, the block is classified into two intermediate classes: (1) intermediate-BG,

and (2) intermediate-FG, which can be expressed as:

B =

{
0, pSAD < T
1, otherwise.

(4.2)

where T is the SAD threshold used for classification. It is understood that the fixed thresholds will

mostly provide judgment error in block classification. Hence, the block classification threshold needs to

be adaptive in nature. To this end, [Liu and Jia, 2013] considers average distortion value for BG blocks

belonging to the reference frame as an adaptive threshold. However, this mechanism fails to adjust the

threshold in slight initial misclassification. To avoid this scenario, we propose to use a better adaptive

threshold than used in [Liu and Jia, 2013].

T = SADp f bg = β ×
∑(x,y)∈p f bg SAD(x,y)

np f bg
(4.3)

where β is multiplying factor, p f bg is the background region in the previous frame and np f bg is the total

number of BG blocks in the previous frame. The detailed discussion on selection of β is carried out in

the experimental settings section.

The non-overlapping scheme used in traditional block classification framework has the

disadvantage that some of the internal regions of themoving objects could go undetected if the object

has a size larger than the currentblock size, and if the change inpixel values is relatively small. To address

this, we propose to use four overlapping blocks (OB) centered at the center of the current block. The

illustration of the current block and corresponding overlapping blocks is shown in Figure 4.8 (b). The

overlapping blocks are also classified based on the threshold of T .

OBi =

{
0, pSAD < T
1, otherwise.

(4.4)

The different overlapped-block classification scenarios are shown in Figure 4.5. The block is

classified into three different classes, namely: (1) BG block, (2) FG block, and (3) BD block based on

the number of overlapped blocks belong to the respective intermediate class. The current block has a

total of four possible overlapped blocks, as shown in Figure 4.5. Let us consider if the current block is

classified as BG block, and all the four overlapped blocks are also classified as BG block then the current

block is highly likely to be BG block and vice-versa. With this understanding, a current block shown in

Figure 4.5 (a) and (f) can be classified as BG and FG blocks, respectively. However, it is not necessary

that all the overlapping blocks be classified as the same class. In a situation where the current block

is located at the object boundary, some of the overlapped blocks may be classified as BG blocks, while

remaining overlapped blocks are classified as FG blocks. In this situation, we can consider the number

of overlapped blocks matching the class of the current block to update the current block classification.

To address this issue, we propose to classify the current block as boundary block if and only if at least

50% of the overlapped blocks belong to the different class than the class of the current block. The class

of the current block is unchanged for situations illustrated in Figure 4.5 (b) and (g). On the other hand,

the current block is classified as a BD block for situations illustrated in Figure 4.5 (c, d, e) and (h, i, j).
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Figure 4.5 : Different block overlap scenarios for block classification.

S =


0,

4
∑

i=1
OBi < 2 and B = 0

2,
4
∑

i=1
OBi > 2 and B = 1

1, otherwise.

(4.5)

This classification, with the inclusion of overlapping blocks, has not only resulted in better

three-level saliency detection but also reduced the chances of block misclassification. The addition of

boundary class, along with traditional background and foreground classes, provides multiple benefits.

The advantages are listed as follows: (1) improved motion vector prediction since boundary blocks

cannot be trusted for predicting possible motion direction, (2) improved matching accuracy due to

multiple classes, and (3) fast motion search convergence for each category.

4.2.3 Block-class-based Search Strategy
Different search strategies are employed for each class in the surveillance video coding

framework based on their MV distribution characteristics. The MV distribution corresponding to the

FS algorithm is used for better understanding and analysis.

4.2.3.1 Zero-biased Search for BG Blocks

TheMV distribution is shown in Figure 4.2 (b) that clearly indicates that the BG blocks are static

in nature and seldommove. Hence, no block matching is performed for these blocks, and the MV is set

to zero. It should be noted that the use of better search patterns would only increase computational

requirements without any significant improvement in matching accuracy for these blocks. The higher

chances of MV process to be trapped in local optimum makes fast search patterns ineffective for BG

blocks. The fixed zero-MV strategy for BG blocks has achieved better trade-off compared to other fast

block matching methods. The BFDS [Zhao et al., 2014] and TZS [JCT-VC, 2013] needs 1 and at least 24

points, respectively. It should be noted that although our method is searching one zero-MV point, our

computational complexity is 75% better than the traditional zero-MV approach due to the utilization of
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Figure 4.6 : Search patterns: (a) 1st step pattern: SDSP, (b) 2nd step east directional pattern, (c) 2nd step

southdirectional pattern, (d) 2nd stepwest directional pattern, (e) 2nd stepnorth directional

pattern, (f-m) 3rd step onward search patterns: (f) 0◦ directional pattern: RUWDS, (g)−45◦,
(h)−90◦, (i)−135◦, (j) 180◦, (k) 135◦, (l) 90◦, and (m) 45◦.

1 : 4 sub-samplingduring theblock classificationprocess. Theproposed sub-sampling structure is shown

in Figure 4.8 (a). Detailed discussion on the sub-sampling structure is carried in the section related to

the speed-up mechanism.

4.2.3.2 Direction-Oriented Search for FG Blocks

The MV distribution is shown in Figure 4.2 (b) for a fast motion FG region that indicates that

about 30% of MVs lie within a unit area from zero-MV, but the rest of the MVs are present in all

the directions. On the other hand, for the directional motion content FG region, the MVs are mostly

located in a particular direction. About 70% of MVs for these content lie in a particular direction.

More appropriate points are included in traditional search patterns to avoid the problem of being

trapped in a local minimum. Further, to exploit the directional motion characteristics of FG blocks,

this work introduces novel directional search patterns shown in Figure 4.6. For efficient directional

motion tracking, the novel search patterns are created by adding uni-wing to the small diamond search

pattern (SDSP) [Zhu and Ma, 2000] in respective rotating directions. These patterns are termed as

rotating uni-wing diamond search pattern (RUWDS). Eight possible combinations of uni-wing patterns:

0◦,±45◦,±90◦,±135◦,180◦ are shown in Figure 4.6 (f-m). These patterns can track horizontal, vertical
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Figure 4.7 : (a) Illustration of coordinate location (∆xi,∆yi). One of the eight direction-oriented search

patterns is chosen based on (∆xi,∆yi), (b) Typical search path example. The corresponding

step number is marked in all the traversed search points.

as well as diagonal movements very effectively. These patterns can provide faster convergence due to

the inclusion of extra points in the direction of motion.

The MV obtained during intermediate steps of search process is referred as intermediate-MV

(IMV), whereas the final MV obtained after completion of the search process is referred as final-MV

(FMV). The search process is described in following steps:

Step 1: The search process starts from search center: either default zero-MV or median-MV and uses

the SDSP shown in Figure 4.6 (a). The block distortion values for the five points of SDSP (highlighted in

black color) are obtained andminimumdistortion location is treated as IMV of the first step. The search

process is terminated if the minimum distortion location lies at the search center.

Step 2: One of the three-point search patterns shown in Figure 4.6 (b-e) is chosen such that IMV

obtained during the first step, is the new search center. The minimum distortion location is treated

as IMV of the second step.

Step 3: The new search pattern selection for the ith step is based on the coordinate difference of the

IMVs obtained in previous two search steps: (i−1)th IMV and (i−2)th IMV. Let coordinates of IMV point

at the ith search step be (xi,yi). Let coordinate difference of IMVs of the (i− 1)th and (i− 2)th search

steps be denoted as (∆xi,∆yi), such that:

(∆xi,∆yi) = (xi−1 − xi−2,yi−1 − yi−2) (4.6)

The search pattern for the subsequent steps are chosen based on the current direction of

motion identified by (∆xi,∆yi). The illustration of coordinate (∆xi,∆yi) mapping is shown in Figure 4.7

(a). This mapping helps in understanding the pattern to be used during next search step. The search

process is terminated if (∆xi,∆yi)= (0,0). Otherwise, theprocess is continuedwith Step3 till thepattern

touches search region boundary.

The path traversed by each search step for the blockmatching is referred to as the search path.

The typical search path example is shown in Figure 4.7 (b). The search process uses SDSP in 1st step,
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two vertex point north-directional search pattern in 2nd step, 135◦ RUWDS pattern in 3rd and 4th steps,

followed by 180◦ RUWDSpattern in the last two steps, before the search is terminated since the pattern

touched the search region boundary. It should be noted that our patterns can jump two-pixel locations

at once in horizontal and vertical directions. Hence, these patterns converge faster without increasing

the number of points searched.

4.2.3.3 BD Block Partitioning and Center-biased Direction-Oriented Search for BD Blocks

The MV distribution is shown in Figure 4.2 (b) for boundary blocks that indicate that more

than 70% of MVs lie within a unit area from zero-MV, but the rest of the MVs are present in all the

directions. Although BD blocks have static nature similar to BG blocks, they also tend to have MVs

located at all the directions. This is mainly because of the fact that these blocks contain both BG and FG

regions simultaneously. Thismeans that thepartial regionbelonging toBGwouldhave zero-MV, and the

remaining region would have object motion based larger MV. This has resulted in matching ambiguity

in the motion search process. The zero-biased search strategy could result in more mediocre matching

accuracy, whereas a direction-oriented search strategy could also provide sub-optimal performancedue

to the presence of the BG region.

To address this problem, we partitioned the BD blocks into five non-overlapping sub-regions, as

shown in Figure 4.8 (a). The sub-regions are intentionally spaced apart for a better understanding of BG

and FG portions. The BD partitioning process is illustrated in Figure 4.9. The sub-regions: R0, R1, R2, R3,

and R4 are classified into two categories based on the distortion values. TheMAD distribution is shown

in Figure 4.2 (d), that indicates that theMADs for BG is quite lower and concentrated near zero, whereas

MADs for FG is uniformly distributed and large in general. Based on this understanding, the MADs for

the five sub-regions are computed, and the lowest distortion sub-region is assumed to belong to the BG

area. In contrast, the highest distortion sub-region is assumed to belong to the FG area. The remaining
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49



three sub-regions are classified based on the linear threshold. Different BD partitioned scenarios are

illustrated in Figure 4.10. The five sub-regions could result in a total of 32 different partitioned scenarios.

However, our assumption of at least one sub-region belongs to FG and BG each, results in the following

two cases to be non-existent: (1) all sub-regions are BG, and (2) all sub-regions are FG.

Once the sub-regions are classified, we propose to use only FG sub-regions for the block

matching process. This mechanism not only improves the matching accuracy but also increases the

search speed due to the exclusion of BG regions from the current BD block. Although FG sub-regions

in the BD block are considered for block matching process, it should be noted that remaining BG

sub-regions in the BD block are considered to be static in nature, and more specifically, they are

treated as zero-MV sub-regions. Hence, region segmentation for the BD block provided not only better

matching accuracy for FG sub-regions but also for BG sub-regions. In a nutshell, if the BG region is the

main part of the BD block, the matching accuracy will not be compromised. The matching accuracy

could only be further improved as compared to the traditional block matching approaches.

It should also be noted that traditionally considered median-MV as an initial search center

approach would be counter-productive for these blocks since the motion characteristics at object

boundaries are quite different and challenging to predict. Hence we propose to use a zero-biased

direction oriented search for BD blocks. The search patterns proposed for FG blocks are utilized on

partitioned BD sub-regions for better matching accuracy.

4.2.4 Block Partitioning Mechanism for Speed-up
The sub-sampling in the spatial domain for distortionmeasure computation provides additional

speed-up. Since the number of pixels used for distortion computation is reduced [Yang et al., 2010].

In literature, 1 : 2 and 1 : 4 sub-sampled distortion measure is widely adopted. It resulted in 50%
and 75% savings in the number of pixels used for each distortion measure computation, respectively.

However, to achieve better classification accuracy and improve block partitioning for boundary blocks

present in the surveillance videos, region-based sub-sampling is desired. To address this, we present

region-based 1 : 4 sub-sampling. The illustration of 16× 16 block (pixel grid) with 1 : 4 sub-sampling

is shown in Figure 4.8 (a). The sub-sampled grid contains a total of five sub-regions. One central

sub-region referred to as R0 and four corner sub-regions, namely north-east region, south-east region,

south-west region, andnorth-west region referred to asR1, R2, R3, andR4, respectively. Theadvantages

of our region-basedpartial distortionmeasure as three-fold: (1) it providesdesired computational saving

without compromise inmatching accuracy, (2) it would be used to improve block classification accuracy

further, and (3) the region-based sub-sampling is symmetric, and hence it is easily scalable for different

block sizes.

4.3 EXPERIMENTS AND ANALYSIS

4.3.1 Datasets
Experimentswere carriedondifferent surveillance test sequences listed in Table 4.1. Twelve test

sequences with varying foreground motion content, different background proportion, and of different

spatial frame sizes are chosen from benchmark databases [Gao et al., 2014; Lab, 2019; Seshadrinathan

et al., 2010b; Lab, 2011]. Among them, eight sequences are taken from PKU-SVD-A dataset [Gao et al.,

2014], two sequences are taken from standard CIF sequences [Lab, 2019], and a sequence is taken from

each LIVE dataset [Seshadrinathan et al., 2010b] and IVPL dataset [Lab, 2011]. The background is mostly

static throughout the length of the test sequence. The sequences are categorized into four different

types: {A, B, C, and D}, based on motion content and proportion of motion area. The description of

each sequence is as follows: Campus- Students and car moving in the campus, Classover- Students

walking and cycling after class is over, Hall monitor- Person moving and picking briefcase, Ice- Crowd

scene: people doing ice skating, Office- Office working scene with a person entering, Square- Students
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Table 4.1 : Surveillance test sequences used in the study.

Sr. Sequence Spatial Total Frame Frame
Dataset

Motion Motion Sequence

No. name resolution frames rate starts type area type

1 Campus 720×576 3001 30 2701 PKU

Slow Small A2 Classover 720×576 3001 30 351 PKU

3 Hall monitor 352×288 300 30 21 NCTU

4 Ice 352×288 240 30 21 NCTU

Slow Large B5 Office 720×576 3001 30 1351 PKU

6 Square 1920×1088 250 25 11 IVPL

7 Bank 720×576 3001 30 201 PKU
Fast Small C

8 Crossroad 720×576 3001 30 1501 PKU

9 Intersection 1600×1200 1001 30 101 PKU

Fast Large D
10 Mainroad 1600×1200 1001 30 501 PKU

11 Overbridge 720×576 3001 30 1001 PKU

12 Pedestrian area 768×432 250 25 81 LIVE

(a) Campus (b) Classover (c) Hall monitor (d) Ice

(e) Office (f) Square (h) Crossroad(g) Bank

(i) Intersection (j) Mainroad (k) Overbridge (l) Pedestrian area

Figure 4.11 : Representative frames of surveillance sequences used in the analysis.

moving in front of the building, Bank- Vehicles moving in the perpendicular direction, Crossroad- Buses

movingat a crossroad, Intersection- Vehiclesmoving in speedat the intersection,Mainroad- Fastmoving

cars seen from closer top-view, Overbridge- Moving vehicles and people walking over the bridge,

and Pedestrian area- Passerby encountering on an open square. All test sequences are in YUV 4:2:0
(uncompressed) color format, and only the luminance (Y) component of each test sequence with the
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8-bit resolution is used for block matching experiments. Total 100 frames of each sequence starting

from the frame start mentioned in Table 4.1 are considered for experiments.

4.3.2 Evaluation Metrics
The peak signal-to-noise ratio (PSNR) is a widely adopted objective quality metric to evaluate

the performance of block matching methods. Although bit-rate provides a better understanding of

compression efficiency, the standard block matching algorithms only focus on matching accuracy.

Better matching accuracy could lead to better compression performance. Moreover, our analysis is

focused only on the motion estimation component of the surveillance coding engine. Hence, in this

chapter, bit-rate, PSNR, and search complexity are considered during the experimental evaluation.

Prediction quality: The traditional PSNR inherently provides equal weight to each pixel during

mean-squared-error (MSE) computation. It lacks to provide different importance to different areas in

the sequence basedon their relevance. However, for surveillance sequences, it is highly desired that the

foreground area is givenmore weight based on its higher relevance over background areas. Evaluation

metricWeighted PSNR (WPSNR) based onWeightedMSE (WMSE) is used in [Zhang et al., 2012]. WPSNR

provided a better understanding of the surveillance sequence coding performance. Hence, WPSNR is

considered for objective performance evaluation.

WPSNR = 10log10

(
V 2

max

WMSE

)
(4.7)

WMSE =
S−1

∑
s=0

ωs

|Cs| ∑
(m,n)∈Cs

MSE(m,n) (4.8)

whereVmax is the maximum pixel intensity for the given bit resolution, S is the number of classes, ωs is

the weight of class s,Cs is the set of blocks belonging to the class s, |Cs| is the number blocks belonging

to the class s, and MSE(m,n) is the mean-squared-error of (m,n)th block.

Search complexity: The search complexity in the motion search algorithm not only depends on

the total number of search points traversed in the search path but also on the number of computations

performed at each search point. Hence the parameter is proposed to include both: (1) average number

of search points and (2) proportionof pixels used for partial distortionmeasure. To this end, the average

number of checked pixels per candidate block (ANCPB) is computed as:

ANCPBα = α ×Average number of search points (4.9)

where α represents the proportion of pixels used in the sub-sampled SAD computation.

4.3.3 Experimental Settings
Search parameters: Our framework is general and scalable. Hence, it can be easily extended

to different block sizes. However, we consider widely adopted search parameters in our experiments.

The block size as 16×16 and search range as p =±8 is considered.

The effect of variation in thresholds for block classification is shown in Figure 4.12. As expected,

fixed-threshold value resulted in judgment error. An increase in the fixed-threshold value from 256 to

2048 resulted in an increase in the proportion of blocks classified as BG. The adaptive-threshold selected
with β = 1 resulted in sudden decay in the proportion of BG blocks. For addressing this, the β > 1 is

considered in our experiments. We have empirically found thatmultiplying factor β = 2 in (4.3) has two
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Figure 4.12 : The effect of variation in fixed and adaptive thresholds with different multiplying factor β

for block classification. Column 1-4 considers the initial-threshold value as 256, 512, 1024,

2048, respectively.

advantages: (1) the adaptive-threshold value is independent of initial-threshold value, it is self-adaptive

innature andvaries smoothly, and (2) asdesired, theproportionofBGblocksdoesnot changedrastically

for consecutive frames.

For BD block partitioning, different sub-sampling structures were explored. The criteria for the

selection of a particular structure lies in three main reasons. The reasons are listed as follows: (1) the

sub-regions must have considerably enough pixels in it, (2) the pixels must be close-enough or intact

in particular sub-region, and (3) different sub-regions must be spaced apart. It is found that sub-region

with a circle radius r = 3 provided the best performance. The structure is shown in 4.8 (a) that closely

resembles the criteria mentioned above and hence chosen in our method.

Test setup for rate-distortion comparison: The test sequences listed in Table 4.1, are also used

for rate-distortion (RD) comparisons between different block matching algorithms. In this pursuit, all

the block matching algorithms, including the proposed algorithm, are integrated into simple video

encoder and simulated under QP values of 22, 27, 32, and 37. For comparing the average difference

between RD curves, the Bjontegaard’s method created [Bjontegaard, 2001] is used to calculate the

average Bit-rate and PSNR.

4.3.4 Results for Different Components of the Proposed Method
Several experiments were carried out to validate the efficacy of the proposed method. We

explore the effect of different components of the proposedmethod and demonstrate the performance

improvement of the proposed algorithm over other existing methods. In this section, we compare

the effect of various components of the proposed approach. The proposed framework contains three

components: (1) 3-class block classification (BC), (2) class-based search strategy (SS), and (3) block

partitioning (BP) mechanism for speed-up. To study the effect of an individual component, we keep

the remaining two components in the proposed framework unchanged. The experimental results for

different combinations of three components are shown in Table 4.2.
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First, we evaluate the effect of our 3-class block classification framework against the traditional

2-class block classification approach. To this end, we only change component BC and keep components

SS and BP unchanged. Our 3-class approach in BC+SS+BP yielded, on average, better PSNR results

than the traditionally used 2-class method in SS+BP. The inclusion of additional boundary class to the

existing BG and FG classes provided a better classification for surveillance videos. The improvedmotion

search strategy for boundary class provided better matching accuracy. It is evident from Table 4.2, that

improvement up to 0.25 dB in PSNR is achieved mainly because of the better classification accuracy.

However, the motion search complexity for the 3-class approach is about 15% higher than the 2-class

method. The subjective evaluation for the traditional 2-class approach and our 3-class approach are

shown in Figure 4.13. It is evident from the results that the proposed approach can extract important

characteristics in the surveillance sequences. The blocks at the object boundaries are either classified

as BG or FG in the traditional approach. But these blocks contain both BG and FG partially, and hence

our approachwith additional boundary class addresses this problem. In turn, the blockmisclassification

is significantly reduced.

Second, we evaluate the effect of our direction-oriented search patterns against traditional TZS

patterns. To this end, we only change component SS and keep components BC and BP unchanged in

our framework. For fair comparisons, the motion estimation process for background blocks in both

BC+SS+BP and BC+BP is unchanged. The direction oriented search patterns with an adaptive search

center is utilized for FG and boundary blocks in BC+SS+BP, whereas TZS patterns are being used in

BC+BP. Our block classification based adaptive search strategy clearly outperformed the traditional

search strategy. The improvement up to 3.19 dB in PSNR for Mainroad sequence and gain of about

0.28 dB in PSNR on an average is achievedmainly because of our direction oriented search patterns and

adaptive search center selection. Not only this, but themotion search complexity for our search pattern

is also about five times better than the traditional search pattern. Hence, we have been able to achieve

both improvements in matching accuracy and a significant reduction in search complexity at the same

time.

Third, we evaluate the effect of our speed-up approach against the proposed method without

BP. To this end, we only change component BP and keep components BC and SS unchanged in our

framework. Our partial distortion mechanism in BC+SS+BP yielded about 0.02 dB improvement in

PSNR on an average over BC+SS. Moreover, our partial distortion approach also provided about 10%
improvement in search complexity over BC+SS on average, mainly because of the utilization of a lower

number of pixels for each distortion computation.

Overall, the proposed approach with all three components BC+SS+BP provided the best PSNR

results on an average mainly due to the inclusion of direction oriented search patterns. On the other

hand, SS+BP provided the least search complexity due to a 2-class classification approach and partial

distortion measure. The trade-off for matching accuracy and motion search complexity is obtained by

BC+SS+BP combination. Next, we compare the effect of proposed BC+SS+BP against other existing

methods.

4.3.5 Comparative analysis for the Proposed and the Existing Methods
The performance of the proposed method is compared against five traditional block matching

algorithms: FS, DS [Zhu and Ma, 2000], TZS [JCT-VC, 2013], modified hexagon grid search (MHGS)

[Singh and Ahamed, 2018], and fast adaptive motion estimation (FAME) [Mukherjee et al., 2018]. The

performance is also compared against a surveillance-based block matching method BFDS [Zhao et al.,

2014], which uses the TZS pattern for FG blocks. There are very few block matching methods designed

specifically for surveillance sequences. For better performance evaluation, we create twonewmethods

by incorporating the latest MHGS and FAME methods in the place of TZS in the BFDS framework. The

block classification in these two methods is kept the same as BFDS. Hence, in total, we compare the

proposed method against five traditional and three surveillance-based block matching algorithms.
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                     (a)                                                  (b)                                                (c)

                     (d)                                                  (e)                                                (f)

                     (g)                                                  (h)                                                (i)

Figure 4.13 : Results of the proposed block classification method. (a) Original frame, Campus (46th

frame), (d) Original frame, Crossroad (6th frame), (g) Original frame, Square (50th frame),

(b), (e), and (h) 2-Class classification, (c), (f), and (i) Our 3-Class classification.

The PSNR and motion search complexity results for different block matching algorithms are

shown in Table 4.3. As expected, the block matching accuracy is the best for FS algorithm among

existing algorithms due to its exhaustive search nature. The PSNR results indicate that the DS performs

worst among compared algorithms. This is because DS has a typical structure that gets trapped in a

local optimum. However, TZS and BFDS performed better than the DS due to the inherent capability

of the TZS pattern and its variants. MHGS achieves more than 18% computational saving than TZS

but comes with slightly poorer matching accuracy. The FAME algorithm outperforms DS in both

matching accuracies and the search complexity due to an advanced search mechanism. The PSNR and

WPSNR values for the proposed algorithm clearly outperformed existing methods on an average. It

should be noted that our algorithm not only outperformed all fast block matching methods but also

the FS algorithm. For the Mainroad sequence, the proposed algorithm achieved more than 3.5 dB

improvement in WPSNR over FS.
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The block-wise PSNR comparisons shown in Figure 4.15 indicates that the proposed algorithm

outperforms existing methods for BD and FG blocks. Our approach provided better results for BD

blocks due to the effective utilization block partitioning mechanism. Hence, the proposed method is

observed to be superior for these foreground motion contents. It is achieved mainly because of the

four reasons mentioned as follows: (1) the search starts from either zero-MV or median-MV, (2) the

new search window with new search-center is chosen, (3) only FG portion in BD blocks in chosen for

block matching, and (4) due to the capability of our proposed direction oriented search patterns to

capture directional motion search characteristics of the moving objects.

FS is the computationally demanding method and requires (2p+1)2 search points for the single

MV search operation. On the other hand, the DS algorithm requires 9+ 5× (nSteps) + 4 number of

search points. The ANCPB results shown in Table 4.3 indicates that the computational complexity is in

the order FS> TZS>MHGS>DS>BFDS>BFDS+MHGS> FAME> Proposed>BFDS+FAME. Although

TZS and MHGS provided better PSNR results, it still comes at a high computational expense. The BFDS

algorithm used only a single search point for BG blocks as expected and cleverly outperformed TZS,

which uses at least 24 search points without any notable degradation in matching performance.

On the other hand, our method used a sub-sampling pattern for BG blocks and achieved a

further improvement of 75% in computations for those blocks. Not only this, but the block-wise ANCPB

comparisons shown in Figure 4.16 indicates that our algorithm significantly outperformed existing

methods (except BFDS+FAME) for BD and FG blocks as well. Our method is four times computationally

better than the next-best method for BG blocks. On the other hand, the proposed method is at least

two times computationally better for BD and FG blocks. This is achieved mainly because of the three

reasons: (1) the search could directly start from the highly probable vicinity of true MV, (2) the new

direction-oriented search patterns are chosenbasedon themotion characteristics, and (3) region-based

partial distortion measure.

Figure 4.14 presents the RD performance of the proposed and competitive algorithms for video

sequences: Ice, Square, Bank, and Pedestrian area. The RD performance is computed under different

QP values of 22, 27, 32, and 37. It is evident from Figure 4.14 that, increase in PSNR is proportional to an

increase in bit-rate. For the Bank video sequence, the FS algorithm provided the best RD performance.

All the remaining algorithms also performed at par with FS, in this case, considering the small motion

area in theBankvideo sequence. On theother hand, theRDperformance for remaining video sequences

indicates the superiority of the proposed algorithm over existing algorithms. Onemay observe that our

algorithmoutperformed not only to state-of-the-art TZS and BFDS algorithms but also the FS algorithm.

The gains for large motion area sequences are higher than that of small motion area sequences due to

the adaptability of our direction oriented search patterns.
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Figure 4.14 : Rate-distortion performance for video sequences (a) Ice, (b) Square, (c) Bank, and (d) Pedestrian area under different QP values of 22, 27, 32,

and 37.
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Figure 4.15 : Block-class-wise PSNR (in dB) comparison for different algorithms against FS. Row 1-4 corresponds to different sequences: Hall monitor

(type-A), Square (type-B), Bank (type-C), and Mainroad (type-D), respectively. (Best viewed in color)

5
9



0 20 40 60 80 100

S
p
ee

d
-u

p

0

500

1000

BG blocks (Type-A)

0 20 40 60 80 100
0

100

200

BD blocks (Type-A)

0 20 40 60 80 100
0

50

100

FG blocks (Type-A)

0 20 40 60 80 100
0

200

400

All blocks (Type-A)

0 20 40 60 80 100

S
p
ee

d
-u

p

0

500

1000

BG blocks (Type-B)

0 20 40 60 80 100
0

100

200

BD blocks (Type-B)

0 20 40 60 80 100
0

20

40

60

80

FG blocks (Type-B)

0 20 40 60 80 100
0

50

100

150

All blocks (Type-B)

0 20 40 60 80 100

S
p
ee

d
-u

p

0

500

1000

BG blocks (Type-C)

0 20 40 60 80 100
0

100

200

BD blocks (Type-C)

0 20 40 60 80 100
0

100

200
FG blocks (Type-C)

0 20 40 60 80 100
0

200

400

All blocks (Type-C)

0 20 40 60 80 100

S
p
ee

d
-u

p

0

500

1000

BG blocks (Type-D)

0 20 40 60 80 100
0

100

200

BD blocks (Type-D)

0 20 40 60 80 100
0

50

100

FG blocks (Type-D)

0 20 40 60 80 100
0

100

200

300

All blocks (Type-D)

FS DS TZS MHGS FAME BFDS 2-Class BFDS+MHGS 2-Class BFDS+FAME Proposed

Figure 4.16 : Block-class-wise Speed-up (in times) comparison for different algorithms against FS. Row 1-4 corresponds to different sequences: Hallmonitor

(type-A), Square (type-B), Bank (type-C), and Mainroad (type-D), respectively. (Best viewed in color)
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4.4 SUMMARY

In this chapter, a fast background-foreground-boundary aware motion search algorithm is

presented for surveillance videos. The characteristics of surveillance videos are studied with primary

emphasis on the MV distribution. The experiments on twelve surveillance video sequences indicated

that two-level block classification is insufficient to handleMV characteristics. This created the necessary

background for our proposal of using a three-level block classification scheme. We proposed to use

an additional class called boundary in addition to background and foreground classes. We presented

an adaptive threshold selection scheme for block classification. Then, for each class, separate search

strategies were investigated to increase the efficacy of the motion search algorithms for surveillance

videos. In addition, we also presented direction-oriented search patterns to handle the motion

characteristics of the boundary and foreground blocks. The block matching accuracy is further

improved by our boundary block region partitioning scheme. A total of five sub-regions were chosen

for BD blocks, and the sub-regions belonging to the FG region are only used for the block matching

process. This process has significantly improved the efficacy of the proposed scheme for BD blocks. The

proposed approach provided better matching quality as compared to other existing algorithms. At the

same time, it has also been able to provide four times speed-up for BG blocks and more than two times

speed-up for BD and FG blocks as compared to the BFDS method. Experimental results indicate that

the proposed schemeoutperformednot only existingmethods in PSNRbut also reduced computational

complexity. With this scheme, the second objective of the thesis, to develop a computationally efficient

motion search algorithm to exploit special characteristics of the surveillance videos, is achieved.

Surveillance videos are essential for security purposes, not only because of video content but

also due to human action movement information. The human action movement information can play a

crucial role in security applications, where accurate analysis is of utmost importance. Hence, the human

skeleton information extracted from surveillance videos needs to be stored in addition to original

video data. Thus, it becomes a non-trivial problem to encode skeleton information efficiently. The

higher accuracy in critical security applications demands original and reliable skeleton information. The

presence of a large number of human skeletons in the surveillance video scenario imposes additional

space constraints. Hence, the next chapter is dedicated to addressing the storage challenges that arise

due to skeleton sequences.

…
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