
5
Skeleton Sequence Coding

As discussed in Chapter 4, surveillance videos are crucial in home-care, public safety and

security, and traffic management applications. Surveillance videos mainly contain static regions, and

the remaining active region typically consists of human action movements. The skeleton information

plays an important role in various human action recognition, event detection, surveillance feature

analysis, and health-care monitoring applications. Many emerging edge-computing applications tend

to extract skeleton information at the sensor or transmitter side and directly transmit the extracted

skeleton information together with the original video data to the receiver side. Thus, it becomes a new

but non-trivial problem to encode skeleton data efficiently. The higher accuracy demands original and

reliable skeleton information. With the significant increase in the skeletondata, the storageof skeletons

in the original form imposes space constraints. It is desired to perform lossless compression of skeleton

sequences to preserve the naturalness.

In this pursuit, we propose a novel lossless compression scheme for video skeleton sequences,

which can efficiently compress skeleton data while maintaining exactly the same skeleton quality

as the original ones at the decoder side. Intuitively, a skeleton sequence contains a considerable

amount of spatial, temporal, and coding redundancies. For example, the relative position between a

skeleton’s body joints offers spatial redundancy. A person’s skeletons between consecutive frames

offer significant similarities and result in temporal redundancy. Moreover, the prediction residuals tend

to repeat and hence possess the coding redundancy. In some caseswhere residuals do not repeat, they

mostly tend to be closer to the previously occurred residual values. If we can adequately model and

exploit these redundancies, the size of skeleton data can be reduced.

Although the traditional video coding methods also exploit redundancies in video data, the

redundancy models and algorithms in video coding cannot be directly applied to skeleton sequences

due to the large characteristic difference between the two data types. For example, in video coding,

the coding blocks are orderedwhile the context of each block has an arbitrarymanner. By contrast, the

skeletons are located at randompositions, but the body points in a skeleton have constrained structure.

Moreover, skeleton data also include some additional problems such as the movement of each body

joint in different directions, occlusion of some of the body joints, and the complex movements of

skeleton sequences. Therefore, new approaches need to be developed to model and address the

redundancy of skeleton data. In this chapter, we focus on exploiting and removing redundancies in

two parts: 1) spatial and temporal prediction models and 2) entropy coding model. Our three major

contributions in this chapter are:

• Wepropose a novel framework that can losslessly compress the skeleton sequences by exploiting

the spatial, temporal, and coding redundancies. To the best of our knowledge, this is the first

attempt to address the problem of compressing skeleton sequence data.

• Under the framework, we introduce a set of prediction modes for skeleton prediction to exploit

the spatial and temporal redundancies inherent in the skeleton sequences. Furthermore, a

multimodal method that dynamically integrates these modes is presented to achieve robust

coding performance on skeleton sequences.
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Figure 5.1 : Overview of proposed skeleton coding method.

• We also introduce a mode-based entropy coding mechanism to exploit residual coding

redundancy further. To this end, we developed two different entropy-coding methods based on

residual statistics. Lastly, we integrate both prediction modes and mode-based entropy coding

schemes for lossless compression of skeleton sequences.

It is worth mentioning that our method can be applied to any skeleton sequences as long

as we define a metric to determine the center skeleton point and the reference relation among

skeleton points. For example, our method can be applied to face key point sequences, animal skeleton

sequences, or vehicle key point sequences.

The rest of the chapter is organized as follows. Section 5.1 provides the framework of

the proposed skeleton coding scheme and skeleton representation. The detailed description of

proposed prediction modes and our entropy coding method is presented in Section 5.2 and Section

5.3, respectively. The skeleton side information coding mechanism is presented in Section 5.4. Section

5.5 presents experimental settings and performance results for the proposed study. Section 5.6

summarizes the chapter.

5.1 FRAMEWORK AND SKELETON REPRESENTATION

5.1.1 Framework of Proposed Skeleton Sequence Coding Scheme
The overview of the proposed skeleton coding method is shown in Figure 5.1, where each

individual frame of the skeleton sequence is processed sequentially. For each skeleton in a frame, it

mainly contains two types of information: 1) body joint information, which indicates the location of

each joint, and 2) skeleton side information such as ID and occlusion flag information. In our work,

we independently encode this information and concatenate them together to yield the final output

bit-stream.

Since the skeleton body joint contains the bulk of the proportion in the final bit-stream, our

work is mainly focused on the compression of this information. To this end, each body joint is first

fed into the skeleton prediction module to reduce its spatial and temporal redundancy. Specifically,

four prediction modes will be checked in this module, and the best mode will be used to perform

64



encoding. In order to avoid transmitting the bits of coding prediction modes, we further propose an

adaptive multimodal coding scheme that uses the previously encoded skeletons in the previous frames

to automatically decide the prediction mode of the body joint in the current frame. After the skeleton

predictionmodule, the residual data of the skeletonwill go through the skeleton entropy codingmodule

to further reduce the coding redundancies through the adaptive center selection and dynamic indexing

mechanisms. At the same time, the skeleton side information will also be encoded by the skeleton ID

encoding and occlusion information encodingmechanisms, yielding the final compressed bit-stream.

5.1.2 Skeleton Representation
In this section, we describe the representation of the skeleton sequences. The study on the

human skeleton sequence is generally associated with the study of movements of the fixed number of

body joints present in the skeleton.

Human skeleton. We represent the 2D human skeleton as a set of NJ joints.

J = { j1, j2, j3, ....., jNJ} (5.1)

where ji = (xi,yi) represents the horizontal and vertical coordinates of the body joint ji. In our study,

we consider total fifteen ordered body joints (NJ = 15); namely: neck, nose, head-top, left-shoulder,

left-elbow, left-wrist, right-shoulder, right-elbow, right-wrist, left-hip, left-knee, left-ankle, right-hip,

right-knee, and right-ankle. The illustration of typical skeleton body joints is shown in Figure 5.1. Note

that our method is general. Besides this skeleton structure, our method can also be applied to the

three-dimensional (3D) skeletons, bounding boxes, circular shapes, and arbitrary shapes like animal

skeletons.

Occlusion flag. It should be noted that sometimes, the skeleton might go under occlusion

resulting in reduced body joint information. The illustration of the occluded person is shown in Figure

5.1. It can be observed that in the last frame of video skeleton data, some of the body joints of the

rightmost, two skeletons are occluded. The occlusion may happen due to the movement of different

persons or objects in the video frame or when the person is moving outside or inside the camera

frame. For better analysis, the occlusion information of the body joints in the skeleton is also stored.

Traditionally, a one-bit occlusion flag is used to represent if the body joint is occluded or not. The typical

occlusion information contains (NJ = 15) bits such that:

O = {o1o2o3.....oNJ} (5.2)

where oi = 1 represents the body joint ji is occluded, whereas oi = 0 represents the body joint ji is not
occluded.

Skeleton ID. Now, the skeleton side information associated with sth skeleton in the tth video

frame can be represented as:

St
s =

{
SIDt

s,O
t
s,J

t
s
}

(5.3)

where SIDt
s is the skeleton ID of the sth skeleton in the tth frame. Ot

s and Jt
s represents the corresponding

occlusion information and body joint coordinate information, respectively. The skeleton ID is assigned

to each person based on its first appearance in the video. It should be noted that a unique skeleton ID
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Figure 5.2 : Example of skeleton representation in a frame.

is assigned to each person over the entire length of the video. That means a person reappearing after

few frames would not be assigned new ID, rather, the previous ID is retained for further processing.

Complete Skeleton Information. Hence, the complete skeleton information in a single video

frame can be represented as:

F t =
{

Nt
S,S

t
1,S

t
2,S

t
3, .....,S

t
Nt

S

}
(5.4)

where Nt
S represents the number of skeletons present in the tth frame. An illustration shown in Figure

5.2 consists of three skeletons and the corresponding skeleton side information includes number of

skeletons, skeleton ID, and occlusion flag bits information. It can be observed that all the body joints

are visible or not-occluded for the first skeleton, whereas few body joints are occluded for remaining

two skeletons. This information needs to be transmitted as occlusion flag bits. The overall skeleton

data structure is also highlighted in Figure 5.2.

It should be noted that the framework of our skeleton compression approach is general. In

practice, besides the representation in Eq. (5.4), our approach can also flexibly handle other data

formats, such as 3D skeleton sequences [Tagliasacchi et al., 2016; Wang et al., 2013; Vemulapalli et al.,

2014] or non-skeleton 3D bounding boxes [Geiger et al., 2013].
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Figure 5.3 : Illustration of spatial differential skeleton coding method. (The direction arrow indicates

the parent-child relationship)

5.2 SKELETON PREDICTIONMODES

The redundancies present in the video skeleton sequence are exploited to introduce novel

skeleton prediction modes are in this work. To exploit the spatial and temporal correlation between

skeletons, we propose four prediction modes and then provide our adaptive mode switching scheme.

5.2.1 Spatial Differential Coding
To exploit the spatial correlations between skeleton body joints, we have developed a spatial

differential coding scheme. To this end, the spatial difference between adjacent body joints is

computed. The illustration of spatial differential coding is shown in Figure 5.3. The arrow direction

in Figure 5.3 indicates parent-child relation between body joints. The spatial difference for each

parent-child relation in the skeleton is computed as:

Di f f ji = ji − jp
i (5.5)

where jp
i and ji form a parent-child relation for spatial encoding. The spatial parent-child relation for

body joint in our study is: {0- j1, j1- j2, j2- j3, j1- j4, j4- j5, j5- j6, j1- j7, j7- j8, j8- j9, j1- j10, j10- j11, j11- j12,

j10- j13, j13- j14, j14- j15}. It should be noted that body joint j1 do not have any spatial parent, hence it is

directly encoded. For better efficiency, the body joints are encoded in numeric order.
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5.2.2 MV-based Prediction Mode
The assumption that skeletons of the same person in the consecutive frames are highly

correlated. This has motivated us to exploit temporal redundancy by computing the motion vector

(MV) between skeleton in the consecutive frames. The straightforwardway to computeMV could be to

consider average motion of all body joint and transmit the obtained MV. However, this process suffers

from two problems: 1) the average MV could be non-integer value and may require more number of

bits for encoding MV, and 2) the average MV could not correctly indicate person motion since the large

motion in any of the body parts for a stationary humanwould also raisemotion flag. To counter this, we

select human neck (joint j1) as skeleton center. This would not only greatly improve the MV accuracy,

but also limit number of symbols to be encoded. With this understanding, the MV-based prediction for

sth skeleton in the tth frame is carried out by first computing MV using:

MV (St
s) = jSt

s
1 − jSt−1

s
1 =

(
xSt

s
1 − xSt−1

s
1 ,ySt

s
1 − ySt−1

s
1

)
(5.6)

where (t − 1)th frame is considered as reference frame. An illustration for typical MV-based skeleton

prediction mode is shown in Figure 5.4. Later, both the skeletons are aligned to each-other using the

obtained MV as shown in Figure 5.4 (c). The MV-based skeleton prediction (SP) is obtained as:

SPSt
s

MV−based = jSt
s

i +MV (St
s), i = 2,3, ...,NJ (5.7)

Finally, the skeleton prediction error (SPE) is computed as:

SPESt
s

MV−based = St
s −SPSt

s
MV−based (5.8)

5.2.3 Relative MV-based Prediction Mode
Although the MV-based skeleton prediction provided significant coding gain over the direct

coding method (i.e., coding each body joint with fixed length bits), we can still exploit the

spatiotemporal relation between skeletons. The anatomy of the human skeleton provides us additional

knowledge about skeleton motion. It is observed that the motion in the child body joint is proportional

to its parent body joint. It means that there are high chances that the child will move in the same

direction and sometimes by the same amount as the parent joint. To exploit these characteristics, we

present a relative motion vector (RMV)-based skeleton prediction method. The skeleton prediction

error obtained at parent body joint is used to fine-tune the skeleton prediction for the child body joint.

The RMV-based skeleton prediction is obtained as:

SPSt
s

RMV−based = SPSt
s

MV−based( ji)+SPESt
s

MV−based( jp
i ) (5.9)

where jp
i and ji form a spatial parent-child relation. An illustration of typical RMV-based skeleton

prediction mode is shown in Figure 5.6. Finally, the skeleton prediction error is computed as:

SPESt
s

RMV−based = St
s −SPSt

s
RMV−based (5.10)
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Figure 5.4 : Illustration of MV-based skeleton coding method: (a) skeletons in the (t −1)th reference frame and current (tth) frame, (b) demonstration of

MV computation, and (c) demonstration of skeleton alignment and MV-based skeleton prediction. (Best viewed in color)
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5.2.4 Trajectory-based Prediction Mode
The motion vector-based skeleton prediction methods are optimal when we only deal with

translation motions. However, the human skeleton is not rigid, and the body part can move differently.

This behavioral change demands a method to incorporate these motion changes for more accurate

skeleton prediction. To this end, we use the trajectory prediction method based on previous skeleton

frames. We consider the human skeletons with complex motions in our study, and hence we use only

two previous frames for better trajectory prediction. It means that for St
s skeleton prediction in the tth

frame, the corresponding skeletons St−1
s and St−2

s in (t −1)th and (t −2)th frame are used such that:

SPSt
s

T−based = 2×St−1
s −St−2

s (5.11)

Each body joint is predicted individually using the trajectory prediction method. An illustration of the

typical trajectory-based skeleton predictionmode is shown in Figure 5.5. Note that in this work, we only

use two previous frames to have a simple but effective trajectory prediction. In practice, we can also

use more sophisticated trajectory prediction methods [Qi et al., 2017; Quintero Mínguez et al., 2019;

Butepage et al., 2017; Liu et al., 2018] to obtain more accurate prediction results. For example, we

can apply bi-direction trajectory prediction with adaptive importance to each frame, thus can work in

synchronizationwith the state-of-the-art bi-directional video coding schemes [Park and Kim, 2019; Kong

et al., 2018; Zhao et al., 2018].

Finally the skeleton prediction error is computed as:

SPESt
s

T−based = St
s −SPSt

s
T−based (5.12)
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5.2.5 Adaptive Multimodal Coding Scheme
The proposed four prediction modes provide varying performance due to their inherent

prediction structures. The spatial difference-based method performs well for the skeletons where no

temporal correlation exists. On the other hand, the remaining three modes could exploit temporal

correlations. The MV-based method could perform well for rigid and small motion cases, whereas the

RMV-based method performs better at child body joint movements. The trajectory prediction could be

useful in cases where skeleton size is large, and different body parts are performing the different or

complex motion. Thus, the prediction model should be chosen to provide a lower prediction error for

better compression. The use of the most suitable prediction mode is desired for optimizing skeleton

coding efficiency. The simplest switching way could be to use the best mode at any given body joint for

best skeleton body joint coding efficiency. However, it should be noted that we also need to encode

the selected mode information as an overhead. This process involves an additional two-bit overhead

for encoding, and most of the time, it will hamper the coding efficiency.

To avoid this overhead, we propose an adaptive multimodal skeleton coding method to

dynamically switch the prediction modes based on the already encoded causal skeleton data. To this

end, we use the prediction mode information of the already encoded causal skeleton data in the

current and reference frames to estimate the best prediction mode of the current body joint. It should

be explicitly noted that our proposed mode estimation is highly accurate, although the estimated

prediction mode might be different from the actual prediction mode. The mode estimation for the

current body joint is computed based on prediction mode information of its spatial and temporal

parents. In this way, we can skip the bits overhead bits for prediction mode, thus enables each body

joint to choose its own prediction mode flexibly.

More specifically, we use the bit-information for already encoded spatial parent ( jp
i ) and

collocated temporal body joints of previous frames to estimate the bit-requirement for current body

joint in the selected prediction mode.

b̂t
mode( ji) = w jp

i
×bt

mode( jp
i )+

N f

∑
f=1

w f ×bt− f
mode( ji) (5.13)

where w jp
i
is weight corresponding to the ji’s parent body joint jp

i (which has already been coded

before ji), w f is the weight corresponding to the (t − f )th reference frame, and N f is the number of

temporal frames used for bit-requirement estimation. The weights are chosen based on the spatial or

temporal distance between current body joint and reference body joint. As expected, it was observed

that the effect of reference body joint on current body joint reduces, when their distance increases.

Thus, we used proportional weight selection criteria to parameterize this idea in our experiments. For

example, when the weight for spatial parent is set to 1, the weights for collocated temporal body joints

of previous frames are chosen as 1/ f . Note that the weights are further normalized to unit sum.

However, different combinations of optimal weights could be found with additional computational

complexity. The bit-requirement for body joint ji is estimated using each of the prediction modes,

resulting into three different estimates. The prediction mode with lowest estimated bits is chosen as

estimated prediction mode for current body joint ji. The mode selection is done as:

min
(

b̂t
MV−based( ji), b̂t

RMV−based( ji), b̂t
T−based( ji)

)
(5.14)
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The selected mode is used to predict the location of the current body joint. The typical

illustration of mode selection is shown in Figure 5.7. It should be noted that the mode selection uses

only the previous two reference frames for illustration purposes only, whereas, in reality, the mode

selection can use any number of reference frames.

Overall, the adaptive multimodal coding method follows the below rules:

1. The spatial differential coding method is used for the newly appeared skeleton or skeleton body

joint in the current frame. Besides, the first frame in the sequence also uses a spatial differential

coding method. For example, as shown in Figure 5.7, the left-ankle body joint j15 in the skeleton

uses spatial mode since the left-ankle body joint has appeared for the first time in the current

frame.

2. One of theMV-based and RMV-based skeleton codingmethod is chosen if skeleton in the current

(tth) frame exists in the (t −1)th frame but does not exists in the (t −2)th frame. For example, as

shown in Figure 5.7, the right-ankle body joint j12 in the skeleton uses one of the MV-based and

RMV-basedmodes since the right-ankle body joint exists only in the current and adjacent previous

frame.

3. One of the MV-based, RMV-based, and trajectory-based skeleton coding method is chosen if

skeleton in the current (tth) frame exists in the both (t − 1)th frame and (t − 2)th frame. For

example, as shown in Figure 5.7, all the body joints except the left-ankle and right-ankle can use

any one of the existing modes since all these joints exist in the current and both previous frames.

5.3 ENTROPY CODING
The adaptive prediction mode mechanism for skeleton prediction has considerably exploited

the spatiotemporal correlations existing in the skeleton sequences. However, the skeleton prediction

residuals are observed to follow some peculiar statistics. We can use these special statistics that still

present in the prediction residuals for better entropy coding. In traditional entropy coding methods,

the prediction residuals are directly encoded using variable-length encoding techniques. However,

it is empirically observed that the prediction residuals obtained after skeleton prediction still contain

notable redundancies. Consequently, our entropy coding method exploited these redundancies to

improve further compression efficiency, where the resulting residuals are encoded using specifically

designed variable-length encoding techniques. Hence, our approach is expected to provide better

performance than the traditional entropy coding methods.

To this end, we propose two methods: 1) adaptive center selection, and 2) dynamic indexing.

5.3.1 Adaptive Center Selection (ACS)
We first observe that the prediction residuals in the consecutive frames tend to be similar.

To exploit this behavior, we consider the prediction residual obtained in the reference frame as a

reference error, as shown in Figure 5.8. Then the difference vector between current prediction residual

is computed such that:

(dx,dy) = (cx,cy)− (rx,ry) (5.15)

where (cx,cy), (rx,ry), and (dx,dy) represents the current prediction residual, reference prediction

residual, and the difference vector, respectively. In cases where collocated prediction errors tend to

be similar, the difference vector will tend to be close to zero. Hence, this scheme has the ability to

encode larger error values into a very small number of bits due to reference center selection.
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Figure 5.9 : Illustration of adaptive center selection based on the length of current error vector and

difference error vector: (a) (rx,ry) is considered as adaptive center, and (b) (0,0) is

considered as adaptive center. The adaptive center is shown in yellow circle.

However, this mechanism might be counterproductive in some cases where our assumption

on the similarity between collocated residuals fails. In Figure 5.9 (b) the difference vector has a larger

magnitude than the current residual vector. This eventually will result in incorrect center selection. To

address this problem, we propose to select the encoding center among 1) traditional center (0,0), and
2) reference frame prediction residual (rx,ry). The selection is based on a number of bits required for

encoding (dx,dy) and (rx,ry). The one with a lower magnitude is considered for encoding. However,

this mechanism comes at the cost of one-bit overhead. To reduce the bits of coding the overhead, we

employ block-based encoding where all body joints for the same skeleton-part is represented by one

overhead bit. This mechanism can properly balance overhead and coding performance.
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5.3.2 Dynamic Indexing (DI)
We also observe that the prediction residuals in the consecutive frames of the typical skeleton

sequences tend to be similar. This means the prediction residuals exhibit considerable repetitiveness.

To exploit this behavior, we propose to use a frequency lookup table of causal prediction residuals.

The terms residual and symbol are interchangeably used in the further discussion. Like variable-length

encoding, the more frequently occurring symbols would be assigned a lower number of bits as

compared to the rarely occurring symbols. This idea can properly reduce the bit requirements.

To this end, we create a new frequency lookup table for each skeleton. Initially, the frequency

table is empty, and it is updated with obtained prediction residuals. The frequency lookup table can be

seen as a list of expected residuals with a different number of previous occurrences. The illustration of

lookup table creation and dynamic indexing is shown in Figure 5.10. The current prediction residuals are

matched to the symbols present in the lookup table. Then, for encoding current body joint in a particular

skeleton, we use the frequency table corresponding to the particular skeleton and check whether the

current prediction residual is present in the frequency lookup table. If all the prediction residuals of a

particular skeletonexist in the frequency lookup table, then the indexes corresponding to the respective

residuals are encoded in the bit-stream. Otherwise, the residuals are directly encoded by a variable

length coding method [Chen et al., 2006; Sugiura et al., 2018]. Similar to the Adaptive Center Selection

scheme, a flag is transmitted for each skeleton to indicate whether the Dynamic Indexing scheme is

applied or not.

The switching mechanism for this method is shown in Figure 5.11. There are four possible

switching combinations of the proposed entropy coding scheme. First, both the ACS and DI can be

skipped, and the prediction residual could be directly encoded using a variable length coding method.

Second, only ACS is employed, third, only DI is employed, and fourth, both ACS and DI schemes are

employed in tandem to exploit the coding redundancies. We use exponential Golomb codes (EGC)

[Sugiura et al., 2018] to encode the final residual information and concatenate the obtained EGC code

in the output bit-stream.

5.4 SKELETON SIDE INFORMATION CODING

In addition to skeleton body joint data, the skeleton sequence in a frame contains three types

of side information: 1) number of skeletons in the frame (Nt
S), 2) skeleton ID information (SIDt

s), and

3) occlusion information (Ot
s) for each skeleton in the tth frame. This side information may affect

overall coding performance if not properly encoded. We address all three skeleton side information

independently for better performance.

Number of skeletons in the frame: The number of skeletons in the frame usually remains

constant. Nt
S changes only when some of the skeletons appear or disappear from the frame. Since

this value changes slowly and smoothly, we encode the difference between the values corresponding

to the consecutive frames. The difference is mostly zero and requires minimal bits for representation.

Skeleton ID: The skeleton ID’s are assigned in arithmetic sequence. This is helpful in computing

difference between two skeleton IDs. For better coding performance we always encode IDs in

ascending order. The skeleton ID difference is computed as:

di f fSIDt
s
= SIDt

s − (SIDt
s−1 +1) (5.16)

For ordered continuous skeleton ID sequence the difference is always zero, and hence need very limited

bits for skeleton ID encoding.
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index stream for current frame prediction residual symbols. A more frequent residual value is assigned with a smaller index number. (Best

viewed in color)

7
6



skeleton	joint
bitstream

Adaptive
center
selection

Dynamic
Indexing BinarizePrediction

residual

Figure 5.11 : Entropy mode switching scheme.

Table 5.1 : Test skeleton sequences used in the study.

Sequence Frame Total Skeletons Occlusion
Description Dataset

Name resolution frames per frame (Yes/No)

Indoor 1920× 1080 31 11 - 11 Y Indoor dance practice

P
o
se
tr
a
ck

[A
n
d
ri
lu
k
a
e
t
a
l.
,
2
0
18
]Ice stick 1280× 720 31 11 - 12 Y Ice stick ball

Karate 1280× 720 31 5 - 6 Y Karate training

Workers 1280× 720 31 7 - 7 Y Workers reparing road

Street 1920× 1080 31 6 - 8 Y Street view from camera

Action 1280× 720 31 5 - 6 Y Mediummotion action sequence

Basketball 1280× 720 31 10 - 10 Y Basketball match

Hurdle-race 1920× 1080 31 7 - 9 Y Persons running hurdle-race

Football 1440× 1080 31 5 - 7 Y Boys playing football

Football2 1440× 1080 31 8 - 10 Y Persons playing football (side-view)

Rugby 1280× 720 31 3 - 6 Y Persons playing rugby

Musical 1280× 720 31 8 - 9 Y Musical dance performance

Womens 1280× 720 31 4 - 4 Y Womens dancing

Ice skating 1280× 720 31 6 - 9 Y People enjoying ice skating

Volleyball 640× 480 31 7 - 10 Y Volleyball match

Hotel 1920× 1080 31 17 - 21 Y People eating at hotel

S
u
rv
e
ill
a
n
ce

Childrens 1280× 720 31 12 - 13 Y Childrens running (side-view)

Beach 1280× 720 31 5 - 6 Y Beach running

Stadium 1280× 720 31 15 - 18 Y People entering stadium

Police 654× 480 31 4 - 5 Y Police captures criminal

Baby 1920× 1080 31 12 - 13 Y Parents enjoying babysitting

Workshop 1280× 720 31 5 - 6 Y Persons working in workshop

Restaurant 1920× 1080 31 13 - 18 Y People eating in restaurant

Piano 1280× 720 31 9 - 12 Y Childrens playing piano

Footpath 1008× 672 50 8 - 10 N People walking on footpath (top-view)

Road 800× 608 46 18 - 22 N People walking on the road

Luggage 800× 608 40 18 - 19 N People walking with luggage

Square 1280× 720 40 28 - 33 N People walking on the square

Crossing 1280× 720 40 23 - 29 N People crossing the road

Night 1920× 1080 45 34 - 35 N People walking at night

Occlusion flag: The occlusion flag information for each skeleton indicates the visibility of

particular body joints in the skeleton. The occlusion can occur in two cases: 1) when a body joint in

the skeleton goes behind another skeleton or object in the field of view, and 2) when skeletons are

located at frame boundary and move outside or inside the field of view of the camera. These cases

do occur on complex motion video skeleton sequence and sparingly occur in slow motion surveillance

sequences. To this end, we perform temporal block-coding on the occlusion information belonging to

the skeleton of the same person in the consecutive frames. We represent a one-bit flag to indicate if

the occlusion information in the consecutive frames is exactly the same or not. This simple block-coding

method resulted in a reduction of fourteen (93.33%) occlusion bits when occlusion informationmatches

temporally. On the other hand, we have one (6.67%) extra bits, when occlusion information does

not match temporally. On average, the block coding has provided significant improvement in coding

performance.
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5.5 EXPERIMENTS AND ANALYSIS

In this section, we first provide a description of datasets, experimental parameter settings, and

various evaluation metrics used for comparative analysis. Then, we demonstrate the effectiveness of

the proposed approach against traditional coding approaches and finally conduct an ablation study on

different components of the proposed method.

5.5.1 Datasets
Weevaluate theproposedmethodon twodatasets: 1) Posetrack dataset [Andriluka et al., 2018],

and 2) Surveillance dataset created by ourselves. The details of the test skeleton sequences used in our

study are given in Table 5.1.

Posetrack dataset: The Posetrack dataset presented [Andriluka et al., 2018] that contains

large number of test sequences. To demonstrate the effectiveness of our method, we choose 15

challenging test skeleton sequences from the Posetrack dataset. The Posetrack sequences contain fast

and complexmotion caseswith different occlusion scenarios. The skeleton size tends to vary from large

to very large in the given frame. Some example skeleton sequences are shown in Figure 5.12 (a) and 5.12

(b).

Surveillance dataset: The surveillance sequences mostly contain a large number of skeletons in

the video sequence. To demonstrate the effectiveness of our method on these sequences, we use 15

surveillance test skeleton sequences. The surveillance sequences are collectedand labeledbyourselves.

In the surveillance sequences, the skeleton sizes tend to comparatively small compared to the frame

size. Some example skeleton sequences are shown in Figure 5.12 (c) and 5.12 (d).

5.5.2 Evaluation Metrics
Since our method performs skeleton data compression in a lossless manner, we can recover

exactly the same skeleton sequence as the original input. Therefore, we only need to evaluate the bit

rate performances while no need to evaluate the quality of the decoded skeleton sequences. Here,

we illustrate two bit-rate metrics: 1) bits required per skeleton joint, and 2) bit-savings compared with

a direct coding method. The average bits per skeleton joint is the ratio between total number of bits

required to encode all skeleton information and the total number of skeleton joints present in a frame.

It can be computed as:

bt
joint = bt

total

/
Nt

S

∑
s=1

NJ

∑
i=1

(1−Ot
s,i) (5.17)

where Ot
s,i is the occlusion flag corresponding to the ith body joint of the sth skeleton in the tth frame.

The bits-savingmetric is computed by evaluating the bit reductions comparedwith a traditional

direct coding method (i.e., using fixed bit length for each body joint):

bits saving =
bProposed

joint −bDirect
joint

bDirect
joint

×100% (5.18)

5.5.3 Experimental Settings
In this work, the MV-based and RMV-based prediction modes use only one previous frame as

the reference, whereas T-based prediction mode uses the previous two frames as the reference. In the
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(a)

(b)

(c)

(d)

Figure 5.12 : Example skeleton sequences: (a) Posetrack sequence- Ice skating, (b) Posetrack sequence-

Volleyball, (c) Surveillance sequence- Night, and (d) Surveillance sequence- Footpath.

multimodal prediction mode switching scheme, the previous N f frames are used for mode selection, as

illustrated in Eq. (5.13). We have empirically found that N f = 5 provided better results. In a dynamic
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indexing entropy coding scheme, the symbols in the current frame tend to be similar to the symbols of

the nearby frames. Moreover, the dictionary size could increase dramatically with the increase in the

number of previous frames. Hence, we have empirically found that using only 5 previous frames for

dictionary generation would suffice.

5.5.4 Methods used for Comparisons
Since skeleton data compression is newly studied in this chapter, a few existing methods can

directly be applied to perform skeleton compression. Therefore, we choose to select twomost relevant

methods to comparewith our approach: the direct codingmethod and the temporal differential coding

method [Chen et al., 2014].

Direct Coding: The direct coding method aims to use a fixed bit length to code all skeleton

information [Chen et al., 2014]. In this work, we employ the direct coding method on each component

of skeleton information mentioned in Eq. (5.4). Firstly, a fixed number of bits are assigned to encode

Nt
S. The number of bits is directly dependent on the maximum number of skeletons in any given frame.

bt
Nt

S
=

⌈
log2(max

∀t
Nt

S)

⌉
(5.19)

Secondly, the skeleton ID (SIDt
s) is encoded into bt

SIDt
s
bits using (5.19). Thirdly, bt

Ot
s
= 15 bits are

used to encode the occlusion information corresponding to the sth skeleton in the tth frame. Lastly, the

body joint information is encoded based on the frame resolution of the video.

bt
ji = dlog2(H)e+ dlog2(W )e (5.20)

where H is height and W is width of the video frame. Hence, total number of bits required to encode

complete skeleton information corresponding to the tth frame is:

bt
total = bt

Nt
S
+bt

Nt
S
×
(

bt
SIDt

s
+bt

Ot
s
+NJ ×bt

ji

)
(5.21)

Temporal Differential Coding: The temporal differential coding method aims to use the direct

temporal difference between corresponding skeleton body joints for data compression [Chen et al.,

2014]. To this end, the location movement for each body joint is computed against the collocated body

joints in the reference frame. It should be noted that the body joint appearing for the first time does

not have any temporal reference, and hence it is encoded using the sameway as our approach for a fair

comparison.

5.5.5 Results for the Proposed Prediction Modes
In this section, we compare the performance of our prediction modes (i.e., the four prediction

modes of ’Spatial differential coding’, MV-based coding’, ’RMV-based coding’, ’T-based coding’ and

the combined ’Multimodal coding’ mode) against the direct coding and temporal differential coding

methods [Chen et al., 2014]. In order to exclude the effect of entropy coding and skeleton side

information, we simply use exponential Golomb codes to encode all residuals and also exclude the bits

for coding side information. The performances of average bits per skeleton joint and bit-savings against

the direct coding method are shown in Table 5.2.
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Table 5.2 : Bits per skeletonpoints andBit-savings for different predictionmodes (EGC is used toencodeall residuals and thebits for coding side information

are excluded).

Sequence Direct Temporal Spatial MV-based RMV-based T-based Multimodal

Name coding differential coding differential coding coding coding coding coding

P
o
se
tr
a
ck

[A
n
d
ri
lu
k
a
e
t
a
l.
,
2
0
18
]

Indoor 22.00 7.72 (-64.91%) 24.28 (10.36%) 8.56 (-61.10%) 8.00 (-63.65%) 6.62 (-69.92%) 6.73 (-69.39%)

Ice stick 21.00 9.15 (-56.44%) 18.75 (-10.69%) 6.88 (-67.25%) 6.62 (-68.47%) 5.76 (-72.56%) 5.74 (-72.66%)

Karate 21.00 7.41 (-64.73%) 20.68 (-1.55%) 6.75 (-67.85%) 6.73 (-67.94%) 5.86 (-72.11%) 5.87 (-72.05%)

Workers 21.00 6.21 (-70.42%) 23.13 (10.14%) 6.12 (-70.88%) 5.34 (-74.57%) 4.29 (-79.55%) 4.34 (-79.33%)

Street 22.00 11.24 (-48.93%) 22.74 (3.36%) 8.70 (-60.43%) 8.19 (-62.78%) 6.13 (-72.12%) 6.36 (-71.07%)

Action 21.00 13.15 (-37.39%) 20.96 (-0.21%) 7.30 (-65.22%) 6.81 (-67.59%) 6.30 (-69.98%) 6.15 (-70.73%)

Basketball 21.00 11.27 (-46.31%) 18.98 (-9.63%) 8.99 (-57.20%) 8.61 (-59.01%) 7.63 (-63.67%) 7.51 (-64.23%)

Hurdle-race 22.00 13.46 (-38.84%) 20.71 (-5.85%) 12.48 (-43.26%) 11.99 (-45.48%) 11.44 (-48.01%) 11.26 (-48.81%)

Football 22.00 14.41 (-34.49%) 21.25 (-3.40%) 10.97 (-50.16%) 10.70 (-51.37%) 11.59 (-47.32%) 10.06 (-54.27%)

Football2 22.00 11.69 (-46.87%) 21.16 (-3.80%) 10.75 (-51.14%) 10.13 (-53.97%) 10.37 (-52.85%) 9.65 (-56.15%)

Rugby 21.00 13.42 (-36.11%) 20.47 (-2.52%) 10.83 (-48.44%) 10.43 (-50.34%) 10.91 (-48.03%) 10.21 (-51.39%)

Musical 21.00 12.13 (-42.26%) 22.81 (8.61%) 9.74 (-53.60%) 9.76 (-53.53%) 9.24 (-56.00%) 8.88 (-57.70%)

Womens 21.00 7.26 (-65.44%) 21.02 (0.10%) 7.08 (-66.28%) 6.79 (-67.68%) 5.82 (-72.29%) 5.66 (-73.05%)

Ice scating 21.00 14.52 (-30.88%) 20.09 (-4.35%) 10.48 (-50.10%) 10.02 (-52.28%) 9.56 (-54.47%) 8.93 (-57.49%)

Volleyball 19.00 12.47 (-34.38%) 18.38 (-3.26%) 9.48 (-50.12%) 9.10 (-52.08%) 9.98 (-47.49%) 8.87 (-53.32%)

Average 21.20 11.03 (-47.96%) 21.03 (-0.82%) 9.01 (-57.51%) 8.61 (-59.37%) 8.10 (-61.79%) 7.75 (-63.45%)

S
u
rv
e
ill
a
n
ce

Hotel 22.00 12.44 (-43.45%) 24.35 (10.67%) 9.41 (-57.21%) 9.27 (-57.88%) 8.44 (-61.64%) 8.03 (-63.52%)

Childrens 21.00 8.59 (-59.11%) 20.02 (-4.68%) 7.87 (-62.51%) 7.65 (-63.56%) 6.69 (-68.15%) 6.78 (-67.72%)

Beach 21.00 10.63 (-49.40%) 21.80 (3.81%) 8.71 (-58.50%) 8.54 (-59.32%) 7.60 (-63.81%) 7.50 (-64.30%)

Stadium 21.00 8.42 (-59.90%) 24.02 (14.38%) 8.44 (-59.80%) 8.21 (-60.89%) 7.30 (-65.25%) 7.20 (-65.71%)

Police 19.00 11.31 (-40.47%) 23.04 (21.28%) 9.34 (-50.86%) 9.06 (-52.29%) 7.84 (-58.74%) 7.87 (-58.58%)

Baby 22.00 11.60 (-47.28%) 24.99 (13.60%) 9.07 (-58.76%) 9.22 (-58.10%) 7.82 (-64.44%) 7.85 (-64.33%)

Workshop 21.00 11.49 (-45.29%) 24.57 (17.00%) 10.15 (-51.68%) 9.76 (-53.51%) 7.48 (-64.40%) 7.62 (-63.70%)

Restaurant 22.00 15.53 (-29.39%) 27.07 (23.07%) 10.09 (-54.12%) 10.12 (-54.02%) 7.66 (-65.20%) 7.90 (-64.11%)

Piano 21.00 9.17 (-56.33%) 24.50 (16.68%) 9.03 (-57.00%) 8.54 (-59.35%) 6.71 (-68.04%) 6.72 (-67.98%)

Footpath 20.00 11.95 (-40.26%) 17.16 (-14.18%) 6.64 (-66.82%) 6.43 (-67.84%) 11.41 (-42.95%) 6.41 (-67.96%)

Road 20.00 8.47 (-57.65%) 15.09 (-24.57%) 4.87 (-75.65%) 4.76 (-76.22%) 8.95 (-55.25%) 4.78 (-76.10%)

Luggage 20.00 8.93 (-55.36%) 15.62 (-21.90%) 4.70 (-76.52%) 4.68 (-76.59%) 9.58 (-52.11%) 4.69 (-76.53%)

Square 21.00 7.89 (-62.42%) 15.40 (-26.68%) 3.61 (-82.79%) 3.57 (-83.00%) 8.86 (-57.80%) 3.62 (-82.78%)

Crossing 21.00 8.09 (-61.47%) 15.71 (-25.19%) 3.37 (-83.96%) 3.36 (-84.00%) 8.95 (-57.36%) 3.39 (-83.88%)

Night 22.00 4.04 (-81.63%) 17.42 (-20.81%) 1.77 (-91.95%) 1.78 (-91.92%) 4.49 (-79.61%) 1.91 (-91.31%)

Average 20.93 9.90 (-52.69%) 20.72 (-1.03%) 7.14 (-65.90%) 7.00 (-66.58%) 7.98 (-61.86%) 6.15 (-70.62%)
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From Table 5.2 we can have the following observations:

1. The spatial differential coding method has overall similar performances to the direct coding

method. If taking a more detailed look at its performance, we can see that it performs obviously

better than the direct coding method for some sequences (e.g., Ice stick and Square), but also

performs worse for some other sequences (e.g., Indoor and Restaurant). This suggests that

spatial differential coding is mainly helpful in cases where skeleton size is small, i.e., when the

residual between adjacent body joints are smaller than the cost of direct coding. This also

indicates the importance of our combined multimodal scheme, which can adaptively decide the

proper time of selecting the spatial differential coding mode.

2. The MV-based coding method, RMV-based method, and the temporal differential coding method

are all aimed at reducing the temporal redundancy of skeleton data. However, our proposed

MV-based coding andRMV-basedmethods obviously outperform the temporal differential coding

method. This indicates that our proposed temporal predictionmethods canmodel and reduce the

temporal redundancy more appropriately.

3. The trajectory-basedmethod (T-based coding in Table 5.2 can also achieve obvious bit reductions.

Comparatively, it performs extremelywell on sequenceswith a large number of easily predictable

skeleton motions (e.g., workers and piano). At the same time, its improvements will be

comparatively smaller on sequences with less predictable motions. More importantly, the

improvements from the trajectory-based method are complementary to the MV-based coding

and RMV-based methods (i.e., the trajectory-based method often has good performance when

the MV-based coding and RMV-based methods do not). This allows us to combine them to have

a better compression approach.

4. Our multimodal-based method, which adaptively combines the four prediction modes, obtains

the best overall performance by properly combine the advantages of all prediction modes.

Even when the multimodal-based method does not achieve the best performance for some

sequences (e.g., piano) due to the imperfect selection of the best modes (cf. Eqs. 5.13-5.14),

its performance is still very close to the best-performed mode. This also demonstrates that

our adaptive multimodal coding scheme can reliably select proper modes to guarantee the

performance of the combined result.

5.5.6 Results for Proposed Entropy Coding Schemes
In this section, we evaluate the performance improvement provided by our mode-based

entropy coding schemes. We consider, four different cases for better analysis: 1) Do not use our

proposed entropy coding schemes and only use exponential Golomb codes to encode the prediction

residuals (‘EGC’ in Tables 5.3 and 5.4); 2) Use our adaptive center selection (ACS) scheme together with

EGC to encode prediction residuals (‘EGC+ACS’ in Tables 5.3 and 5.4); 3) Use our dynamic indexing (DI)

scheme together with EGC (‘EGC+DI’ in Tables 5.3 and 5.4); 4) Use both ACS and DI schemes together

with EGC to do entropy encoding (‘EGC+ACS+DI’ in Tables 5.3 and 5.4).

Table 5.3 shows the performance of different entropy coding methods when using the

multimodal prediction method to create prediction residuals. Table 5.4 further shows the average

performances of the entropy coding methods under different prediction modes. Tables 5.3 and 5.4

provide following observations:

1. In Table 5.3, both the EGC+ACS and EGC+DI methods can obtain improved performance over the

EGC method. This indicates the usefulness of our proposed ACS and DI strategy. Moreover, the

EGC+ACS+DI method can obtain further improved results by properly combine the strategies of

ACS and DI.
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Table 5.3 : Statistics of bits per body joint and bit-savings for different entropy coding schemes (the

adaptive multimodal prediction method is used as the prediction mode).

Seq. Name EGC EGC+ACS EGC+DI EGC+ACS+DI

P
o
se
tr
a
ck

[A
n
d
ri
lu
k
a
e
t
a
l.
,
2
0
18
]

Indoor 6.73 (-69.39%) 6.08 (-72.38%) 6.58 (-70.10%) 6.04 (-72.54%)

Ice stick 5.74 (-72.66%) 5.21 (-75.21%) 5.64 (-73.15%) 5.15 (-75.45%)

Karate 5.87 (-72.05%) 5.40 (-74.27%) 5.76 (-72.57%) 5.34 (-74.55%)

Workers 4.34 (-79.33%) 4.36 (-79.25%) 4.33 (-79.40 %) 4.29 (-79.59%)

Street 6.36 (-71.07%) 6.06 (-72.46%) 6.12 (-72.16%) 5.89 (-73.25%)

Action 6.15 (-70.73%) 5.54 (-73.61%) 6.11 (-70.88%) 5.48 (-73.88%)

Basketball 7.51 (-64.23%) 6.87 (-67.28%) 7.47 (-64.45%) 6.83 (-67.46%)

Hurdle-race 11.26 (-48.81%) 10.25 (-53.41%) 11.05 (-49.76%) 10.20 (-53.63%)

Football 10.06 (-54.27%) 9.34 (-57.54%) 9.86 (-55.20%) 9.27 (-57.88%)

Football2 9.65 (-56.15%) 8.96 (-59.25%) 9.49 (-56.84%) 8.90 (-59.54%)

Rugby 10.21 (-51.39%) 9.45 (-55.02%) 10.01 (-52.32%) 9.40 (-55.25%)

Musical 8.88 (-57.70%) 8.31 (-60.44%) 8.73 (-58.45%) 8.24 (-60.75%)

Womens 5.66 (-73.05%) 5.27 (-74.89%) 5.58 (-73.42%) 5.20 (-75.26%)

Ice skating 8.93 (-57.49%) 8.31 (-60.43%) 8.90 (-57.62%) 8.25 (-60.75%)

Volleyball 8.87 (-53.32%) 8.25 (-56.59%) 8.64 (-54.52%) 8.14 (-57.14%)

Average 7.75 (-63.45%) 7.18 (-66.14%) 7.62 (-64.07%) 7.11 (-66.47%)

S
u
rv
e
ill
a
n
ce

Hotel 8.03 (-63.52%) 7.23 (-67.16%) 7.99 (-63.69%) 7.18 (-67.36%)

Childrens 6.78 (-67.72%) 6.04 (-71.24%) 6.63 (-68.45%) 6.00 (-71.42%)

Beach 7.50 (-64.30%) 6.85 (-67.38%) 7.45 (-64.55%) 6.79 (-67.66%)

Stadium 7.20 (-65.71%) 6.53 (-68.92%) 7.08 (-66.29%) 6.47 (-69.21%)

Police 7.87 (-58.58%) 7.27 (-61.73%) 7.61 (-59.92%) 7.13 (-62.49%)

Baby 7.85 (-64.33%) 7.09 (-67.79%) 7.73 (-64.84%) 7.05 (-67.96%)

Workshop 7.62 (-63.70%) 7.24 (-65.53%) 7.45 (-64.53%) 7.12 (-66.11%)

Restaurant 7.90 (-64.11%) 7.33 (-66.68%) 7.65 (-65.22%) 7.19 (-67.31%)

Piano 6.72 (-67.98%) 6.13 (-70.81%) 6.58 (-68.69%) 6.07 (-71.11%)

Footpath 6.41 (-67.96%) 6.12 (-69.41%) 6.32 (-68.38%) 6.09 (-69.56%)

Road 4.78 (-76.10%) 4.75 (-76.23%) 4.74 (-76.32%) 4.72 (-76.39%)

Luggage 4.69 (-76.53%) 4.68 (-76.62%) 4.64 (-76.82%) 4.64 (-76.79%)

Square 3.62 (-82.78%) 3.75 (-82.13%) 3.59 (-82.88%) 3.72 (-82.28%)

Crossing 3.39 (-83.88%) 3.61 (-82.79%) 3.38 (-83.91%) 3.58 (-82.94%)

Night 1.91 (-91.31%) 2.11 (-90.42%) 1.91 (-91.33%) 2.09 (-90.52%)

Average 6.15 (-70.62%) 5.78 (-72.38%) 6.05 (-71.10%) 5.72 (-72.66%)

Table 5.4 : Bits per skeleton points and Bit-savings for different prediction modes and different entropy

coding schemes. (The bits for coding side information are excluded)

Entropy coding Dataset MV-based coding RMV-based coding T-based coding Multimodal coding

EGC
Posetrack 9.01 (-57.51%) 8.61 (-59.37%) 8.10 (-61.79%) 7.75 (-63.45%)

Surveillance 7.14 (-65.90%) 7.00 (-66.58%) 7.98 (-61.86%) 6.15 (-70.62%)

EGC+ACS
Posetrack 8.56 (-59.62%) 8.33 (-60.69%) 8.32 (-60.78%) 7.18 (-66.14%)

Surveillance 6.86 (-67.21%) 6.95 (-66.80%) 7.83 (-62.61%) 5.78 (-72.38%)

EGC+DI
Posetrack 8.98 (-57.64%) 8.59 (-59.47%) 8.07 (-61.94%) 7.62 (-64.07%)

Surveillance 7.07 (-66.21%) 6.94 (-66.86%) 7.95 (-62.02%) 6.05 (-71.10%)

EGC+ACS+DI
Posetrack 8.53 (-59.78%) 8.29 (-60.92%) 8.26 (-61.04%) 7.11 (-66.47%)

Surveillance 6.80 (-67.53%) 6.85 (-67.29%) 7.78 (-62.86%) 5.72 (-72.66%)

2. The improvements from the entropy coding method in Tables 5.3 and 5.4 are smaller than the

prediction methods in Table 5.2. This is mainly because of the fact that most of the redundancy

has already been reduced by our prediction modes. From this point of view, it is still valuable for

our proposed entropy coding schemes to obtain further improvedperformances from the already

highly compressed residual.

3. According to Table 5.4, our ACS and DI entropy coding schemes provide improvements on all the

predictionmodes. Evenwhen our entropy coding scheme is applied to themultimodal prediction

method, it outperforms individual prediction modes since it can intelligently switch between
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Table 5.5 : Skeleton side information coding performance comparison for differentmethods (in bits per

skeleton joint and bit savings).

Method Direct Coding Proposed Coding

Dataset Nt
S SIDt

s Ot
s Total Nt

S SIDt
s Ot

s Total

Posetrack 0.055 0.285 1.178 1.518 0.014 0.128 0.264 0.406 (73.26%)

Surveillance 0.047 0.449 1.516 2.012 0.013 0.146 0.283 0.442 (78.03%)

prediction modes.

5.5.7 Results for Skeleton Side Information Coding & Overall Performance
We also show the results for skeleton side information coding. The skeleton side information

consists of three parameters: the number of skeletons in the frame denoted by Nt
S, skeleton ID

information for each skeleton denoted by SIDt
s, and occlusion information for each skeleton denoted by

Ot
s. The comparison for direct and proposed codingmethod is illustrated in Table 5.5. Our skeleton side

information coding method achieves 73.26% and 78.03% bit-savings on an average over direct coding

method for Posetrack, and surveillance test sequences, respectively. Moreover, Figure 5.13 further

shows the overall performances of our approach, which combines all the prediction, entropy coding,

and side information coding schemes. According to Figure 5.13, our approach can obtain an average

of 66% and 44% bit savings from the existing direct coding and temporal differential coding methods on

Posetrack dataset, and an average of 73% and 48% bit savings on Surveillance dataset. This shows the

obvious advantage of our approach on both the datasets.

5.5.8 Results for the Proposed Method under Different Scenarios
Finally, to further evaluate the capability of our approach in handling different scenarios, we

perform experiments in the following three situations:

• Results on different frame rates. To investigate the response of the proposed method under

different frame rates or motion degrees, we down-sample the original skeleton sequences at

different rates with frameskip = {0, 1, 2}. The results for different frame skip sizes are illustrated in

Table 5.6. From Table 5.6, the coding efficiency of most methods decreases when the frameskip

sizes increase. This is mainly because the residual between consecutive frames become enlarged

under larger skip sizes. However, even at a large skip size (e.g., frameskip = 2, meaning the video

is downsampled to 1/3 of the original size), our approach can still reduce about 50% of the skeleton
data.

• Results on real-time estimated skeleton data. Wealso evaluate the performance of our proposed

method by creating a set of ‘wild’ skeleton sequences. Note that these ‘wild’ skeleton sequences

are obtained from the same video sequences like the ones in Table 5.1. However, different from

the ground-truth labeled sequences in Table 5.1, these wild skeleton sequences are extracted

using a state-of-the-art real-time skeleton estimation and tracking algorithm [Xiu et al., 2018].

Due to the complex nature of the videos we selected, the wild skeleton sequences include a

large number of estimation biases and tracking errors, which leads to a decreased redundancy

space for the wild data (cf. Figure 5.14). The compression results for the wild skeleton

sequences are shown in Table 5.7. According to Table 5.7, our proposed approach can still obtain

about 50% compression ratio even when the available redundancy space shrinks for the wild

skeleton sequences. Moreover, since the wild skeleton sequences become less predictable, the

effectiveness of the trajectory-based method (T-based coding) decreases more obviously as we

only use a straightforward method for trajectory prediction (cf. Eq. 5.11). This makes it less able

to complement with the other predictionmethods (MV-based and RMV-based) for improving the
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Figure 5.13 : Comparison between the overall version of our approach and the direct coding & temporal

differential coding methods. Our approach includes all of the prediction, entropy coding,

and side information coding schemes proposed in this chapter. The direct coding method

use direct coding to code side information. The temporal differential coding method

use EGC to encode prediction residuals and temporal differential coding to encode side

information.

(a) (b)

Figure 5.14 : Example wild skeleton sequences: (a) Ice skating, (b) Volleyball.

combined multimodal coding method. In practice, we can utilize more sophisticated trajectory

predictionmethods [Li et al., 2015; Lin et al., 2016b; Qi et al., 2017; QuinteroMínguez et al., 2019] to

implement our trajectory-basedmethod, to obtain a further improved compression performance

for wild skeleton data.

• Gaussian noise. Similar to the previous experiment, we also introduce zero-mean Gaussian noise

with variance σ={0.2, 0.5} on the ground truth skeleton sequences to analyze the capability of

our approach when the input skeleton sequences are interfered or become less predictable.

According to the results in Table 5.8, the performances ofmost comparedmethods are decreased

due to the shrunk redundancy space in the noisy skeleton sequences. However, our approach can

still effectively compressmore than half of the skeleton data sizes. This further demonstrates the

effectiveness of our approach.
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Table 5.6 : Statistics of bits per joint & bit-savings for different frame skip scenarios on Posetrack & Surveillance datasets.

Dataset Frame Direct Temporal Spatial MV-based RMV-based T-based Multimodal

skip coding differential coding differential coding coding coding coding coding

Posetrack

0 22.72 12.55 (-44.76%) 22.55 (-0.75%) 8.94 (-60.65%) 8.70 (-61.71%) 8.67 (-61.84%) 7.52 (-66.90%)

1 22.72 15.64 (-31.16%) 22.55 (-0.75%) 11.30 (-50.26%) 11.05 (-51.36%) 11.96 (-47.36%) 10.08 (-55.63%)

2 22.72 17.47 (-23.11%) 22.54 (-0.79%) 12.96 (-42.96%) 12.58 (-44.63%) 14.27 (-37.19%) 11.73 (-48.37%)

Surveillance

0 22.94 11.91 (-48.08%) 22.73 (-0.92%) 7.24 (-68.44%) 7.29 (-68.22%) 8.22 (-64.17%) 6.16 (-73.15%)

1 22.94 14.88 (-35.14%) 22.72 (-0.96%) 9.49 (-58.63%) 9.52 (-58.50%) 11.02 (-51.96%) 8.48 (-63.03%)

2 22.94 16.82 (-26.68%) 22.73 (-0.92%) 11.04 (-51.87%) 11.01 (-52.01%) 12.87 (-43.90%) 10.10 (-55.97%)

Table 5.7 : Statistics of bits per joint & bit-savings for skeletons estimated [Xiu et al., 2018] on Posetrack & Surveillance datasets.

Dataset Skeleton Direct Temporal Spatial MV-based RMV-based T-based Multimodal

source coding differential coding differential coding coding coding coding coding

Posetrack
GT 22.72 12.55 (-44.76%) 22.55 (-0.75%) 8.94 (-60.65%) 8.70 (-61.71%) 8.67 (-61.84%) 7.52 (-66.90%)

ES [Xiu et al., 2018] 22.72 13.80 (-39.26%) 20.22 (-11.00%) 11.18 (-50.79%) 11.15 (-50.92%) 12.22 (-46.21%) 10.08 (-55.63%)

Surveillance
GT 22.94 11.91 (-48.08%) 22.73 (-0.92%) 7.24 (-68.44%) 7.29 (-68.22%) 8.22 (-64.17%) 6.16 (-73.15%)

ES [Xiu et al., 2018] 22.94 13.55 (-40.93%) 21.70 (-5.41%) 9.73 (-57.59%) 10.07 (-56.10%) 11.42 (-50.22%) 9.04 (-60.59%)

Table 5.8 : Statistics of bits per joint & bit-savings for different Gaussian noise levels on Posetrack & Surveillance datasets.

Dataset Noise Direct Temporal Spatial MV-based RMV-based T-based Multimodal

level (σ ) coding differential coding differential coding coding coding coding coding

Posetrack

0 22.72 12.55 (-44.76%) 22.55 (-0.75%) 8.94 (-60.65%) 8.70 (-61.71%) 8.67 (-61.84%) 7.52 (-66.90%)

0.2 22.72 12.56 (-44.72%) 22.55 (-0.75%) 8.99 (-60.43%) 8.77 (-61.40%) 8.74 (-61.53%) 7.58 (-66.64%)

0.5 22.72 12.86 (-43.40%) 22.55 (-0.75%) 9.90 (-56.43%) 9.86 (-56.60%) 9.74 (-57.13%) 8.55 (-62.37%)

Surveillance

0 22.94 11.91 (-48.08%) 22.73 (-0.92%) 7.24 (-68.44%) 7.29 (-68.22%) 8.22 (-64.17%) 6.16 (-73.15%)

0.2 22.94 11.93 (-47.99%) 22.73 (-0.92%) 7.40 (-67.74%) 7.47 (-67.44%) 8.34 (-63.64%) 6.30 (-72.54%)

0.5 22.94 12.36 (-46.12%) 22.76 (-0.78%) 9.02 (-60.68%) 9.10 (-60.33%) 9.43 (-58.89%) 7.80 (-66.00%)
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5.6 SUMMARY

In this chapter, a novel lossless compression scheme for encoding skeleton sequences is

presented. Our method primarily emphasized on exploiting two redundancies, namely: prediction

redundancy and coding redundancy. To this end, we introduced a multimodal prediction scheme that

switches between a set of prediction modes to effectively exploit spatial and temporal correlations

present in the skeleton sequences. In total, four prediction modes were introduced, namely: spatial

differential prediction, MV-based prediction, RMV-based prediction, and trajectory-based prediction.

Then, the residual obtained after removing prediction redundancy were employed to our entropy

coding schemes to remove coding redundancy further. For this, we presented two entropy coding

mechanisms, namely: adaptive center selection and dynamic indexing. Lastly, we also introduced

a simple approach for skeleton side information coding. Our skeleton encoding scheme is lossless

in nature, and both encoder and decoder work symmetrically. The experiments were performed on

two datasets containing challenging skeleton sequences. Experimental results show that our adaptive

method significantly outperforms the direct coding scheme. With this scheme, the third objective

of the Thesis, to develop an effective and efficient storage mechanism for Spatio-temporal skeleton

sequences, is achieved.

Till now, all the three objectives set at the start of the Thesis are achieved. The conclusions

drawn from the methods presented in the previous chapters will be explained in brief in the next

chapter.

…
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