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Preliminaries and literature survey

Do not worry about your difficulties in Mathematics. I can assure you mine are still greater.

—Albert Einstein

Young man, in mathematics you don’t understand things. You just get used to them.

—Von Neumann

1.1 INTRODUCTION
The discussions surrounding quantum computing gained momentum with the proposal

of a quantum computer coined by Richard Feynman in 1982. Since then, the theoretical proposal
has evolved into several practical and useful quantum algorithms, secure cryptographic protocols,
and potential applications in quantum information and computation leading to a competing
research in the development of a practical quantum computer. Soon after Feynman’s proposal,
the analysis of quantum money proposed by Wiesner in 1983 merged two diverse fields of game
theory and quantum computation, which further inspired the scientific community to explore
various dimensions of quantum game theory. In fact the first instance of investigating a relation
between quantum mechanics and game theory was discussed by Blaquiere in 1980. The basis
of theory probably received inspiration from the algorithmic advantages offered by quantum
computing over classical computers. The introduction of Shor’s algorithm for efficient factorization
of prime numbers, Grover’s algorithm for faster database search as against the best classical
search algorithms, and quantum error correction paved a way for the realization of a feasible
quantum computer. In last two decades, quantum games and quantum algorithms are being
witnessed as similar concepts with varied outlook. In fact, the discovery of newer quantum games
became an easier way of visualizing and formulating novel quantum algorithms, leading to further
advancement in quantum computation.

The research domain of quantum game theory found a very strong base probably in
1999 with the seminal contribution from Eisert et al. and Meyer. The theory is an extension
of classical game theory in quantum realm aided with superposition principle, entanglement
between qubits, and superposition of strategies performed by players in a game. In general,
the theory analyses situations where quantum strategies result either in a clear win for quantum
players or studies inherent benefits to quantum players, which are otherwise not possible using
classical strategies. Apparently, the presence of entanglement and nonlocality, and availability
of superposition of strategies offered by quantum mechanics to quantum players lead to the
dominant performance of quantum players in a game in comparison to classical players. The
physical interpretation of advantages obtained using quantum theory has always been a subject of
interesting discussions and debates among physicists and a matter of weirdness to non-physicists.
Moreover, complexity being central to the basic premise of quantum theory further increases the
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degree of intricacy to analyse a protocol or situation enormously, with the increase in number of
qubits, quantum operations, and interventions in a scenario. This increased degree of complexity
with the evolution of quantum systems and strategies can be dealt efficiently with the notion
of a quantum game. Therefore, the idea of representing nonlocality, quantum cryptographic
protocols, eavesdropping, and cloning as games is gaining significant interest in the community
with an aim to effectively understand and analyse such quantum phenomena. For example, the
game-theoretic perspective of BB84 protocol- an important quantum key distribution protocol- led
to examine mixed strategy Nash equilibrium strategies and payoffs of players (sender, receiver,
eavesdropper) involved in the communication protocol. The analysis further arose intrigue to
study other communication protocols in the framework of game theory, and thus paved a way for
evaluating stable equilibrium points for these protocols. In addition, the game-theoretic analysis
also finds its application in investigating the adverse affects of decoherence during distribution of
entanglement, thereby contributing towards characterizing the efficiency of a quantum resource
for practical implementations.

One of the important dimensions of game theory is Bayesian games- gameswith incomplete
information- which have shown to possess direct correspondence with Bell-type inequalities.
Therefore, the element of incompleteness in a Bayesian game setting has a direct relation with
the local hidden variable theories. In view of the above, Bayesian games play an important
role in representation of non-local correlations in quantum systems. On similar lines, various
nonlocal games have been proposed and analysed to enhance the basic understanding and
role played by entanglement and nonlocality in quantum computing. Bayesian games can be
categorized as of two different types- ones where players possess common interests and others
where players possess conflicting interests in a game. Interestingly, both type of games showcase
the correspondence of non-local game settings with different bipartite and multi-qubit Bell-type
inequalities; and also demonstrate the usefulness of quantum strategies over their classical
counterparts.

In general, maximal entanglement, nonlocality and quantum strategies offer an edge to
quantum players over classical players. However, different classes of entangled states may or may
not offer quantum benefit as resources in different games. This may be attributed to different
parameters, rules and settings of a game. For example, the use of a quantum state may be useful
in winning a particular game; the similar analysis however may be very different for another
game set-up. Hence, studying the role of different maximally and non-maximally entangled pure
and mixed states for quantum games or quantum cryptography protocols will be a worthwhile
contribution for understanding the fundamentals of theory and designing large-scale efficient
quantum communication protocols.

1.2 BASIC TERMINOLOGIES AND CONCEPTS IN QUANTUM INFORMATION PROCESSING
In this section, we describe basic terminology and fundamental concepts to facilitate the

discussion of the results obtained in this Thesis from Chapter 2 onwards.

1.2.1 Qubits and quantum states
The fundamental unit of classical computation and information processing is a bit. In

quantum information and computation, there is an analogous concept known as a quantum bit
or qubit in short for convenience [Rieffel and Polak, 2000; Spiller et al., 2005; Nielsen and Chuang,
2011]- Qubit is the fundamental unit of all quantum information processing tasks, and inherently
very different from a bit. For example, a classical bit can be in one of the two possible states, either
0 or 1; whereas a qubit in addition to its existence in states |0⟩ and |1⟩ can also exist in an arbitrary
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linear superposition of |0⟩ and |1⟩, such that

|ψ⟩= α|0⟩+β |1⟩ (1.1)

where α and β are two complex numbers. The wave function ψ in Eq. (1.1) is a mathematical
representation of the state of a qubit and it contains all the information about the preparation of
the qubit. Due to the measurement problem and statistical nature of quantum mechanics, if one
measures the state of a qubit, the outcome is not deterministic. In fact the outcome is probabilistic,
determined by the value of coefficients α and β . Clearly, if a measurement is performed on the
qubit |ψ⟩, one can find it to be either in the state |0⟩with a probability of |α|2 or in the state |1⟩with
a probability of |β |2. Since, the sum of total probability should be 1, one requires |α|2 + |β |2 = 1 for
all qubits. The above condition further ensures that qubit is always normalized to unit length.

In the above description for the state of a qubit, “| ⟩”- following the Dirac’s notation-
represents a ket vector which is an algebraic representation of a quantum state under study
[Sakurai and Napolitano, 2017]. Precisely, a ket represents a column vector, and in its standard
form, |0⟩ and |1⟩, which are also known as computational basis states represented as a 2×1 column
vectors as

|0⟩=
[

1
0

]
|1⟩=

[
0
1

]
(1.2)

Therefore, the state of a qubit can be defined as a vector in a two-dimensional complex vector
space. Such representations facilitate a smooth transition of wave mechanics to matrix mechanics,
and the algebra can be easily done on a vector space, following similar mathematics of vector
addition and scalar multiplication that any basic vector would follow. For example, the state of
a qubit represented in Eq. (1.1) can alternatively be re-expressed as

[ α
β
]
. Similarly, an operator

can be represented by a matrix to transform one form of the vector to other. In order to represent
multiqubit systems, one requires to switch to higher dimensional vector spaces. The representation
of vectors in a high dimensional space can be obtained by mathematically performing a tensor
product of basis vectors in the lower dimensional space. For instance, two-qubit states | jk⟩ can be
represented as a tensor product of | j⟩ and |k⟩where | j⟩ and |k⟩ are single qubit states expressed in
Eq. (1.2), such that

|00⟩=
[

1
0

]
⊗
[

1
0

]
=

[ 1
0
0
0

]
|01⟩=

[
1
0

]
⊗
[

0
1

]
=

[ 0
1
0
0

]

|10⟩=
[

0
1

]
⊗
[

1
0

]
=

[ 0
0
1
0

]
|11⟩=

[
0
1

]
⊗
[

0
1

]
=

[ 0
0
0
1

] (1.3)

Similarly, one can obtain quantum states in higher dimensional vector spaces. In order to denote
any n-qubit state, it can be written as a superposition of 2n basis states

The general state for a two-qubit system can be expressed as |ψ⟩12 = α|00⟩12 + β |01⟩12 +
γ|10⟩12 + δ |11⟩12. In a similar fashion, one can evaluate the representation of all basis states
associated with higher dimensional vector spaces. An N-qubit state can be represented by a linear
superposition of all 2N basis states in N-dimensional vector space with the help of 2N coefficients
for each basis state. One of the celebrated consequences of the superposition principle is quantum
parallelism [Lanzagorta and Uhlmann, 2008]. The fundamental concept of superposition allows
one to store same amount of information that can be embedded in 2N different classical numbers or
coefficients using a single N-qibit quantum state in quantum registers, thus rendering exponential
advantage in terms of time and space [Rieffel and Polak, 2000; Spiller et al., 2005; Nielsen and
Chuang, 2011].
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As discussed above for a single qubit, the state can be defined as a linear superposition of
computational basis states |0⟩ and |1⟩, where a basis set can be defined as to comprise of linearly
independent orthogonal vectors spanning the vector space. Clearly, there can be more than one
basis usingwhich a two-level system can be defined. For instance, {|0⟩, |1⟩} and {|+⟩, |−⟩} as shown
in Eq. (1.2) and (1.4), respectively, can be two different basis sets for the representation of a single
qubit system such that

|+⟩= 1√
2
(|0⟩+ |1⟩) = 1√

2

[
1
1

]
|−⟩= 1√

2
(|0⟩− |1⟩) = 1√

2

[
1
−1

]
(1.4)

Therefore, if an arbitrary quantum state is measured in computational basis, then the qubit is
measured in the basis |0⟩ and |1⟩ with respective probabilities |α|2 and |β |2. However, if the same
quantum state is measured in the basis set represented in Eq. (1.4), then the qubit is found to exist
in |+⟩ state with probability |α+β |2

2 or in |−⟩ state with probability |α−β |2
2 .

In order to represent a system, one requires a complete set of information regarding
the initial conditions at a given instance and the forces acting on the system- such a complete
description is represented by awave function; and is possible only for observableswhose operators
have common set of eigen functions. If it is possible to represent a quantum system using
a wave function, then the state of system is termed as a pure state. However, due to the
restrictions imposed by Heisenberg Uncertainty Principle such a description of quantum systems
with maximal information is not always possible. In all such cases, it is convenient to describe the
state of a system using a statistical operator known as density operator ρ . Such statistical mixture
can be expressed in form of a density operator [Fano, 1957, 1983; Blum, 2012], as

ρ =
N

∑
i=1

pi|ψi⟩⟨ψi| (1.5)

where “⟨ |” is the Dirac notation for the transpose conjugate of a ket vector. A state enclosed in this
notation is called a bra, which by definition can be represented using a row vector. Therefore, the
representation of a density operator for a n-qubit state is nothing but a n×n square matrix. A pure
quantum state is a special case of mixed state where i = 1, thus it is simply of the form |ψ1⟩⟨ψ1|.
Algebraically, a state ρ is defined as a pure state if Tr(ρ2) = 1. On the other hand, if Tr(ρ2) < 1,
then the state is a mixed state. Here Tr(M) is the trace (sum of diagonal elements) of a matrix M.
Hence, a density operator can be visualized as an effective mathematical tool to understand the
properties and dynamics of a composite statistical ensemble. The representation further allows
one to study and characterize the properties and correlation between the individual subsystems,
which in general is not possible using a wave function approach. The density operator of a system
has the following properties,

(i) The trace of a density operator is 1;

(ii) Its diagonal elements are non-negative real numbers; and

(iii) It is a positive semi-definite hermitian operator.

For example, the density operator for a single qubit system can be represented as ρ =
1
2
[
I +−→r .−→σ

]
where−→r is the polarization vector and−→σ are the Pauli spin projection operators. Clearly, the state
is a pure state iff ∥r∥= 1. By definition, the complete density operator of a quantum system contains
all the information of its subsystems. A quantum state however may be distributed or shared
between more than one parties. In order to know the state of a subsystem (let A) in a composite
quantum system (let AB), partial trace is taken over the state of the remaining subsystem (let B).
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For instance, consider the state of composite system to be represented by a density operator ρAB,
then the reduced density operators for subsystems A can be defined as ρA =TrB(ρAB), where TrB

represents the partial trace over subsystem B. Due to its properties and physical interpretations,
the density operator formalism plays a crucial role in analysing and understanding the nuances of
quantum entanglement and information processing [Hall, 2013].

1.2.2 Quantum gates and circuits
The fundamental unit of classical computation is bits, i.e., 0 or 1. The information is

represented and processed in forms of string of bits; and then there are logic gates and digital
circuits to manipulate and transfer the information. The standard examples include NOT, AND,
OR, XOR, NAND, NOR, and Toffoli gate. Similar to classical computation, a quantum computer
works on an analogous concept where information is represented using qubits and manipulated
using quantum gates and circuit diagrams. These gates are represented using operators which
act on the state of a qubit to transform it from one form to another. Therefore, algebraically,
gates or operators corresponding to them are represented by matrices. The only restriction
quantum mechanics puts on these operators is to be unitary, i.e., if an operator is represented
by a matrix U , then it can be represented by a quantum gate iff UU† = 1. In addition, quantum
operators representing physical observables should have real eigen values, and therefore must be
Hermitian. By definition, an operator Ô is Hermitian if Ô= Ô†. Unlike the classical gateswhere one
gives two inputs to receive one output (except for NOT gate)- resulting in irreversibility of these
gates- quantum gates are reversible in nature due to the very property of being unitary. In this
sub-section, we describe some important single and multiqubit gates and discuss their properties.

As discussed above, in a striking difference to classical gates where there is only one
gate (NOT) which is reversible in nature, quantum computation comprises of many single and
multiqubit gates which are reversible in nature. A single qubit gate can be represented by a 2×2
matrix that canmap one form of the state of a qubit to another. Some standard single and two-qubit
gates are as follows,

• X Gate: X =
[

0 1
1 0

]
The X Gate is a quantum analogue of classical NOT gate, and is also

known as the bit flip operator. As the name suggests, it flips the state of a qubit from |0⟩ to
|1⟩ and from |1⟩ to |0⟩. For example, if a X Gate acts on the state of a qubit |ψ⟩ = a|0⟩+b|1⟩,
then it transforms the original state to |ψ ′⟩= a|1⟩+b|0⟩.

• Z Gate: Z =
[

1 0
0 −1

]
The Z Gate is also known as a phase flip gate as it flips the phase of

qubit |1⟩ to −|1⟩ while keeping the qubit |0⟩ invariant. For example, if a Z Gate acts on the
state of a qubit |ψ⟩= a|0⟩+b|1⟩, then it transforms the original state to |ψ ′⟩= a|0⟩−b|1⟩.

• YGate: Y =
[

0 −ι
ι 0

]
The YGate is defined by a bit phase flip operator as it is a combination

of X and Z operator i.e., if a Y Gate acts on the state of a qubit |ψ⟩ = a|0⟩+ b|1⟩, then it
transforms the original state to |ψ ′⟩=−a|1⟩+b|0⟩; neglecting the overall phase.

• Hadamard Gate: H =
1√
2

[
1 1
1 −1

]
Hadamard gate is considered as one of the most

important single qubit gates as it can be used to create superposition of basis states. Precisely,
the gate changes the qubits from computational basis to Hadamard basis as represented in
Eq. (1.4), i.e., converts |0⟩ to |+⟩ and |1⟩ to |−⟩.

Apart from single qubit gates, there are multi-qubit gates used for higher dimensional
complex quantum systems. One of the prominent examples of a two-qubit gate is the 4× 4 swap
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operator SWAP =

[ 1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

]
where the the basis states |01⟩ and |10⟩ are interchanged among

themselves once the gate is operated on a two-qubit computational basis set. Further, another
special class of two-qubit gates are the controlled gates. The controlled gates have two input bits-
control bit and target bit. On the operation of the gate, the target bit remains unchanged if control
bit is 0. On the other hand when control bit is 1, the specified unitary operator acts on the target
bit, for the defined controlled-unitary operation. Few controlled gates that are commonly used for
quantum computations are defined as follows:

• Controlled NOT Gate : CNOT =

[ 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]

• Controlled Pauli Z Gate : CZ =

[ 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

]

• Controlled Phase shift Gate : CS =

[ 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eιθ

]

Here, we will briefly explain the action of controlled-NOT gate. It acts on the state of two qubits
such that it leaves the target qubit as it is if the state of the control qubit is 0, but flips the state
of the target qubit if the state of the control qubit is 1. For example, if a C-NOT gate operates
on an arbitrary two-qubit state ψ = a|00 > +b|01 > +c|10 > +d|11 >, then the state evolves as
ψ ′ = a|00 >+b|01 >+c|11 >+d|10 >. Clearly, the operation of a C-NOT gate can be summarized
as |x,y⟩ → |x,x+ y⟩.

Similarly, a Toffoli gate which is equivalent to Controlled-Controlled NOT operation, is an
instance of a three-qubit gate. Its operation is defined as |x,y,z⟩ → |x,y,z⊕ xy⟩. Mathematically, the
gate can be represented as a 8× 8 unitary matrix. Toffoli gate along with Hadamard gate form a
universal set of gates for quantum computations, thus making their experimental realization very
crucial for implementing any quantum or classical operator [Barenco et al., 1995a; Monz et al., 2009;
Huang et al., 2017a; Cao et al., 2018].

Considering their importance in quantum computation and information, quantum gates
can be physically realized as quantum circuits operating on qubits in the same way as wired logic
gates operating on classical bits [Barenco et al., 1995a,b; Zhou et al., 2000; Hammerer et al., 2002;
Brylinski and Brylinski, 2002]. The first realization of universal quantum logic gates was based
on cavity quantum electrodynamics techniques [Sleator and Weinfurter, 1995]. Since then many
quantum circuits have been designed using optical devices for feasible quantum computations
[Milburn, 1989; Knill et al., 2001; Koashi et al., 2001; Ralph et al., 2001]. Further, efficient teleportation
method was utilized for designing various quantum gates [Gottesman and Chuang, 1999; Bartlett
andMunro, 2003;Walther and Zeilinger, 2005]. Other important issues addressedwere controlling
decoherence in quantum gates [Protopopescu et al., 2003; Zhao et al., 2017] and designing circuits
with high noise tolerance [Duan and Raussendorf, 2005]. This further led to different experimental
demonstrations of high fidelity controlled NOT, controlled phase, controlled Z, Toffoli, and swap
gates [Grigorenko and Khveshchenko, 2005; Isenhower et al., 2010; Ukai et al., 2011; Crespi et al.,
2011; Mičuda et al., 2013, 2015; Meany et al., 2016; Ferrando-Soria et al., 2016; Bataille and Luque,
2019]. Moreover, successful experiments for multi-qubit quantum gates have also been performed
[Babazadeh et al., 2017; Russ et al., 2018]. Recently, high fidelity single and two-qubit gates have
been realized using quantum dots [Devra et al., 2018], diamond defects [Huang et al., 2019], and
nanodiamonds [Chen and Yin, 2019].
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1.3 ENTANGLEMENT AND NONLOCALITY
Ever since Einstein, Podolsky and Rosen raised the issue of completeness of quantum

mechanics as a physical theory in 1935 [Einstein et al., 1935], the nuances and fundamentals of
quantummechanics in the form of entanglement and nonlocality is being discussed, debated, and
celebrated across diverse academic spaces throughout the globe. The concept of entanglement is
very fundamental to the foundations of quantummechanics, and is described as the characteristic
trait of the complexity [Schrödinger, 1935, 1936]. It describes the correlations between the
subsystem of a composite system. For example, if two or more than two qubits are entangled,
then the properties of any of the subsystems depend on the properties of all other subsystems.
Therefore, in an entangled system, the state of an individual subsystem cannot be defined with
certainty, i.e., there is always an uncertainty associated with the states of individual subsystems-
the state of individual subsystems will therefore be characterized using a mixed state density
operator. David Bohm described correlations using a two-qubit antisymmetric state which was
further characterized and used as a resource to understand many fundamental concepts in theory
and to implement many potential applications in quantum information and computation [Bohm,
1952; Bohm and Aharonov, 1957]. Based on the EPR’s arguement of locality and realism, John S.
Bell designed an inequality which must be satisfied by systems whose correlations are local such
that the properties of individual subsystems are not dependent on each other [Bell, 1964]. The
inequality however was violated by systems whose correlations are spatially extended and hence,
cannot be explained on the basis of locality and realism. The inequality was maximally violated by
the two-qubit antisymmetric state, and therefore, the state is considered as a maximally entangled
state. The violation of Bell inequality raised questions over the assumptions of elements of reality
and locality, and clearly distinguished quantum systems as against their classical counterparts.

Therefore, entanglement can be described as a phenomena where the physical properties
such as position, momentum, spin, or polarization of a particle are correlatedwith the properties of
another particle even if they are spatially separated and do not interact with each other anymore.

1.3.1 Entanglement and its witnesses
Mathematically, a quantum state |ψ⟩AB is entangled when it can be factorized as a tensor

product of lower dimensional subsystems |x⟩A and |y⟩B. For example, a system comprising two
particles can be defined as

|ψ⟩AB = ∑
xy

cxy|x⟩A ⊗|y⟩B (1.6)

where cxy are complex numbers satisfying ∑xy |cxy|2 = 1, and |x⟩A is a subsystem associated with the
Hilbert space HA and |y⟩B is a subsystem associated with the Hilbert space HB. On the other hand,
if a system can be factorized as a tensor product of individual subsystems of lower dimensions,
then the state is termed as a product or a separable state. If |ψ⟩AB cannot be factorized into the
tensor product of∑x cx|x⟩ and∑y cy|y⟩ of subsystems x and y, respectively; then it is considered as an
entangled state. Therefore, in an entangled sate, the variables of one of the subsystems depend on
the variables of the other subsystem. Due to the very fundamental distinction of entangled systems
in terms of nonlocal correlations as against classically correlated systems, such systems are used as
resources to achieve taskswhich are otherwise impossible by classical means. In last three decades,
entangled systems have been used extensively for proposing and implementing many potential
applications offered by quantum information and computation. Therefore, the classification and
quantification of entanglement andnonlocal correlations become an integral part of the theory itself
[Bennett, 1998]. Considering the technological challenges in generating and identifying different
entangled systems, it is definitely expansive. Moreover, the entanglement cannot be increased
by performing local operations and classical communication (LOCC), but it can be manipulated
[Popescu, 1995; Bennett et al., 1996b,c; Gisin, 1996; Raimond et al., 2001] so as to aid performing
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certain tasks efficiently [Bennett and Wiesner, 1992; Bennett et al., 1993; Żukowski et al., 1993;
Boström and Felbinger, 2002; Gisin et al., 2002; Gisin and Fröwis, 2018]. Furthermore, entanglement
also has its roots in the origin of important quantum cryptography protocols [Ekert, 1991], in
addition to its connectionwith classical cryptography schemes such as secret key agreement [Gisin
and Wolf, 1999; Collins and Popescu, 2002].

In general, a pure maximally entangled state possess maximum correlations between the
qubits, which gets adversely affected once the state passes through a noisy channel. Therefore,
once a quantum state is subjected to noisy environment, there is an inevitable need to protect
it from decoherence by distilling a pure state from manipulated noisy entanglement [Popescu,
1995; Bennett et al., 1996b]. The studies that evaluate mechanisms to protect correlations against
noise further led to the discovery of error correcting codes [Shor, 1995; Steane, 1996a,b]. Moreover,
a relation between entanglement distillation and quantum error correction was also established
[Bennett et al., 1996c]. Further, entanglement was also measured in terms of entanglement
distillation [Bennett et al., 1996a,b,c; Rains, 1999; Vidal et al., 2002], and entanglement cost [Bennett
et al., 1996c; Hayden et al., 2001], where entanglement cost describes number of bits that can be
obtained as a private key by LOCC operations in the presence of amischievous third party. Based on
the distillation of entanglement, entanglement can also be defined as free and bound entanglement
where free entanglement is the one which can be distilled and bound entanglement is the one that
cannot be distilled. There aremany instances in the literaturewhere bound entanglement is studied
in detail [Horodecki et al., 1997, 1998; Bennett et al., 1999b; Horodecki et al., 1999; Bruß and Peres,
2000; Werner and Wolf, 2001; Sanpera et al., 2001; Ishizaka, 2004; Yang et al., 2005; Clarisse, 2006;
Bruß and Leuchs, 2007; Horodecki et al., 2009; Kaneda et al., 2012; Vértesi and Brunner, 2014].

In order to quantify entanglement in a quantum state ρ , an acceptable measure of
entanglement E(ρ) must satisfy the following criteria [Vedral et al., 1997; Wootters, 1998; Vidal,
2000; Bennett et al., 1996c; Horodecki et al., 2009],

(1) If ρ is a product state then E(ρ) = 0 and if ρ is a maximally entangled then E(ρ) = 1, i.e.,
the measure must vary between 0 and 1, for no entanglement and maximal entanglement,
respectively.

(2) Monotonicity condition: The degree of entanglement in any state ρ should not increase under
local operations and classical communication (LOCC)

(3) Convexity: The measure of entanglement must be a convex function, i.e., E(µρ +(1−µ)ρ)≤
µE(ρ)+(1−µ)E(ρ)

(4) Additivity property: Amount of entanglement in n identical copies of the system must
contain n times the amount of entanglement in the individual quantum state, i.e., E(χ⊗n) =
nE(χ)

(5) The degree of entanglement must remain invariant of local unitary transformations, i.e.,
E(ρ) = E(UρU†)

(6) The amount of entanglement of tensor product of two states should not be greater than the
sum of entanglement of individual states, i.e., E(µ ⊗ν)≤ E(µ)+E(ν)

In addition to pure states, instances of mixed states possessing only classical correlations,
mixed states which are not entangled but violate the Bell inequality [Modi et al., 2012], and mixed
states which are entangled but do not violate Bell inequalities [Werner, 1989; Horodecki et al., 1995]
elevated the importance of distinction between mixed states and separable ones. For this, Peres
defined a criterion such that if the partial transpose of a quantum state ρAB with respect to qubit B

8



results in a positive operator having all non-negative eigenvalues, then the state ρAB is a separable
state [Peres, 1996]. This criterion was considered as a necessary and sufficient condition to test
separability in a 2⊗ 2 and 2⊗ 3 dimension quantum system [Peres, 1996; Horodecki et al., 1996].
Even though the condition was experimentally challenging, the technique of partial transpose
being a positive map is considered to be a good detector of entanglement. The experimental
creation and detection of entanglement, however, are crucial ingredients in many information
processing tasks. Therefore, one needs to consider efficient experimental ways to generate and
detect entanglement. Interestingly, there exist class of entanglement witnesses which provide
necessary and sufficient conditions to analyse entanglement present in an underlying system.
These are Hermitian operators with at least one negative eigen value. The experimental detection
of entanglement is facilitated by the fact that such witnesses can be decomposed in form of Pauli
spin operators or Gell-Mann matrices (for higher dimensions) which are in fact experimentally
realizable quantities. The concept of ”entanglement witness” to detect entanglement was first
introduced by Terhal [Terhal, 2000]. The entanglement present in a quantum state ρ can be
detected by a witness operator W iff Tr(Wρ)< 0. Terhal further demonstrated a relation between
the Bell inequality and entanglement witness; and described the Bell inequality as a non-optimal
entanglement witness detecting entanglement as well as nonlocality [Terhal, 2000]. We now
discuss some of the standard measures used for entanglement detection and characterization.

Entanglement measure based on distance
This classification is based on the premise that closeness of a state to a separable state is

inversely related to the degree of entanglement. Therefore, minimum distance between the given
state from a set of separable states is considered as a measure of entanglement [Vedral et al., 1997;
Vedral and Plenio, 1998], i.e.,

ED,S(ρ) = inf
σ∈S

D(ρ,σ) (1.7)

Here, the distance D between two states can also be interpreted in terms of fidelity for calculation
of entanglement in mixed states using maximal success probability of Grover’s search algorithm
[Shapira et al., 2006].

Convex roof measures
In general, using an entanglement measure, the entanglement for a pure state is first

evaluated, and then the evaluation is extended to mixed states using the method of convex roofs
[Uhlmann, 1998].

(a) The first convex roof measure we consider here is Entanglement of Formation (EoF)
[Wootters, 2001]where themeasure is defined in terms of a limiting ratio

n
m
such thatm copies

of Bell states generate n copies of the pure state ψ [Bennett et al., 1996c]. Alternately, EoF can
also be defined as the von-Neumann entropy of any of the subsystems associated with the
two-qubit pure state. For example, if |ψ⟩AB is a two-qubit entangled state of qubits A and B
then the EoF for the state |ψ⟩AB can be given as EoF = S(ρA) = S(ρB) where ρi is the reduced
density operator for the ith qubit and S(ρi) =−Tr(ρilog2ρi) [Petz, 2001; Nielsen and Chuang,
2011]. Although the evaluation of EoF for a pure state is easy, and it can be extended for
mixed states by the method of convex roofs, the calculation for mixed states is fairly complex
[Chen et al., 2005; Gühne et al., 2007].

(b) Another important tool that distinguishes separable two-qubit states from entangled ones is
Schmidt numbers or Schmidt coefficients [Schmidt, 1907; Ekert and Knight, 1995; Bennett
et al., 1996c; Terhal and Horodecki, 2000; Sanpera et al., 2001; Sperling and Vogel, 2011a,b;
Guo and Fan, 2015]. A pure two-qubit state |ψ⟩AB in the composite Hilbert state HA ⊗HB can
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be written in the Schmidt decomposition form as

|ψ⟩AB =
min(dim(HA),dim(HB))

∑
i

√
γi|i⟩A ⊗|i⟩B (1.8)

where γi ≥ 0 such that ∑i γi = 1. These γi’s are known as the Schmidt coefficients or numbers.
For a separable state |ψ⟩AB, the Schmidt decomposition yields only one non-zero Schmidt
number, which is not true for an entangled state. Thus, the mathematical framework of
Schmidt decomposition and numbers is an efficient means to quantify the entanglement
present in quantum states.

(c) We finally consider one of the most commonly used measures of entanglement namely,
Concurrence [Hill and Wootters, 1997; Wootters, 1998, 2001]. The degree of entanglement
in a two-qubit pure state using concurrence can be defined as

C(|ψ⟩) = |⟨ψ|σy ⊗σy|ψ∗⟩| (1.9)

Here, ψ∗ denotes the complex conjugate of the wave function representing the two-qubit
entangled state. For example, the concurrence for a two-qubit state represented as |ψ⟩ =
cosθ |00⟩+ sinθ |11⟩ can be easily evaluated as sin2θ . If the state of a system is represented
by a density operator, i.e., ρ = |ψ⟩⟨ψ|, then the concurrence can be re-expressed as C(ρ) =√

2(1−Tr(ρ2
a )). Alternatively, for mixed quantum state ρ concurrence is also described as

C(ρ) = max(0,λ1 −λ2 −λ3 −λ4) (1.10)

where λi are the singular values of √ρ
√

ρ̃ with ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy); and λk >
λk+1 Concurrence can also be extended to characterize degree of entanglement in higher
dimensional systems [Audenaert et al., 2001b; Rungta et al., 2001; Badziag et al., 2002].

Various other measures of entanglement involving mixed state evaluation by convex roof means
were also studied in detail [Sinolecka et al., 2002; Fan et al., 2003; Gour, 2005].

Apart from this, several methods of quantification of entanglement have been proposed,
such as robustness measure [Vidal and Tarrach, 1999], and squashed entanglement [Tucci, 2002;
Christandl and Winter, 2004]. Optimization of entanglement witness operators [Lewenstein et al.,
2000, 2001] and their minimization [Eisert et al., 2007; Gühne et al., 2007] was studied. Later,
general numerical techniques of finding genuine multipartite entanglement were presented [Tóth
et al., 2009]. An optimal witness operator for bipartite mixed states could be further extended to
multi-qubit quantum states [Park et al., 2010].

Multipartite entanglement measures
Although few entanglement measures such as relative entropy [Vidal and Tarrach,

1999] can be generalized to multiqubit systems, classification and quantification of multipartite
entanglement is a very complex yet an interesting problem [Cereceda, 2002; Collins et al., 2002b].
The fact that the measures for two-qubit systems cannot be directly generalized to multiqubit
systems can be attributed to the very nature of increased complexity in multiqubit systems with
increasing number of qubits. For example, in a two-qubit entangled system, one needs to worry
only about the entanglement between qubits A and B. However for a three qubit system, one
not only needs to inquire regarding the entanglement between qubits A and B, but also needs
to know the entanglement shared between AB as one single entity and the qubit C. One of
the seminal contributions in this direction began with global entanglement, which is the sum
of concurrences between a qubit and all other qubits [Meyer and Wallach, 2002]. Moreover,
considering the importance ofmultiqubit systems several othermeasureswere proposed to classify
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and quantify entanglement in such systems [Barnum and Linden, 2001; Eisert and Briegel, 2001;
Wei and Goldbart, 2003; Herbut, 2004; Roscilde et al., 2004, 2005; Facchi et al., 2006; Yang et al., 2009;
Facchi et al., 2009, 2010; Chen et al., 2010;Modi et al., 2010; Eltschka et al., 2012; Eltschka and Siewert,
2012; Borsten, 2013; Wilde et al., 2014; Gerke et al., 2015; Li et al., 2015; Pezzè et al., 2017].

In this sub-section, we will consider few standard entanglement measures for three-qubit
systems. The first measure to quantify degree of entanglement in a pure three-qubit system- a
signature of genuine tripartite entanglement- is known as three-tangle (τ) or residual tangle. The
three-tangle can be defined using a two-qubit entanglement measure, concurrence, as

τ(P : Q : R) =C2
P:QR −C2

PQ −C2
PR (1.11)

where CP:QR represents the concurrence between the qubit P, with qubits Q and R taken together
as one entity [Hill and Wootters, 1997; Wootters, 1998, 2001]. Moreover, entanglement followed
another fundamental property of monogamy, which states that if two qubits P and Q share
maximum amount of entanglement, then qubits P and Q cannot be entangled at all with a third
qubit R [Coffman et al., 2000; Bennett et al., 1996c; Fanchini et al., 2013; Farooq et al., 2018; Gour and
Guo, 2018; Guo and Gour, 2019].

In order to facilitate the discussions of three-tangle, we first briefly describe the two
inequivalent classes of three-qubit entangled systems. Based on the propertied and classification,
three-qubit entangled systems can be classified in two distinct and inequivalent classes, namely
GHZ class andW class, represented as

|ψGHZ⟩= sinθ |000⟩+ cosθ |111⟩ (1.12)

and

|ψW ⟩= a|100⟩+b|010⟩+ c|001⟩, (1.13)

respectively where θ ∈ (0,π/4) and |a|2 + |b|2 + |c|2 = 1. The above two classes are termed as
inequivalent as a state belonging to one of the classes cannot be converted to a state belonging
to the other class by performing any number of local operations and classical communication
(LOCC). Clearly, the nonequivalence between these two classes is a result of different entanglement
properties of two classes. As a genuine tripartite entanglement measure, the value of three-tangle
[Coffman et al., 2000] varies between 0 for product states to 1 for states having maximum
entanglement. For example, the three-tangle for a bi-separable state represented as (a|0⟩+b|1⟩)⊗
(c|00⟩+d|11⟩) is 0 and for a standard GHZ state represented as

|GHZ⟩= 1√
2
(|000⟩+ |111⟩) (1.14)

is 1. In general, for the generalized GHZ state represented in Eq. (1.12), the three-tangle is sin22θ .
Therefore, as discussed above, for θ = 0, the state is a product state, and hence τ is 0; and for θ =

π
4
,

the state is a maximally entangled state thus τ is 1. Similar to the standard GHZ state, the standard
state inW class is represented by

|W ⟩= 1√
3
(|001⟩+ |010⟩+ |001⟩) (1.15)

Although the standard W state possesses genuine three-qubit entanglement, the entanglement
cannot be quantified using the three-tangle as an entanglement measure since for W class states
C2

A:BC = C2
AB +C2

AC resulting in the value of three-tangle being 0 for this class. Thus, in order
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to capture and quantify entanglement in W class states, one can use an alternate measure of
entanglement known as sigma [Emary and Beenakker, 2004], so that

σ(P : Q : R) = min

(
C2

P:QR +C2
Q:PR

2
−C2

PQ,
C2

Q:PR +C2
R:PQ

2
−C2

QR,
C2

P:QR +C2
R:PQ

2
−C2

PR

)
(1.16)

On similar lines, another measure of entanglement, named negativity was introduced
[Zyczkowski et al., 1998]. It is expressed as the sum of negative eigen values of partial transpose of
the two-qubit state in system AB with respect to a subsystem A or B. It is given as,

N(ρAB) =
∥ρTB∥−1

2
(1.17)

where ∥ρTB∥= Tr(
√

ρTB†ρTB) is the trace norm and ρTB is the partial transpose of the two-qubit state
ρAB with respect to subsystem B. In order to make calculations and interpretations convenient,
logarithmic negativity, which is NL(ρAB) =log 2∥ρTB∥ is used instead of standard negativity [Vidal
and Werner, 2002]. Moreover, tripartite negativity can be evaluated to distinguish between
separable, bi-separable, and genuine three-qubit entangled pure states [Sabín and García-Alcaine,
2008]. Further, the concept of negativity can also be extended to mixed states by convex roof
method [Lee et al., 2003].

In addition to the above measures, Lohmayer et al. further introduced a convex roof
measure for evaluating entanglement in a mixture of GHZ and W type states [Lohmayer et al.,
2006]. Moreover, three-tangle was also generalized via hyperdeterminants for computing
entanglement in multiparty systems [Miyake, 2003]. Miyake demonstrated that concurrence is a
hyperdeterminant of first order, and similarly three-tangle is a hyperdeterminant of second order.
Although finding hyperdeterminants of higher order is a complex procedure, this method results
in entanglement measures which obey monotonicity condition [Miyake, 2004]. Lévay further
elaborated the subject by deriving expression for hyperdeterminant entanglementmeasure for four
qubit entangled systems [Lévay, 2006]. Although, there is no general methodology to compute
degree of entanglement in an n-particle quantum states, there are several important contributions
towards classification and quantification of multiqubit entanglement [Wong and Christensen,
2001; Collins et al., 2002a,b; Cereceda, 2002; Wei and Goldbart, 2003; Pan et al., 2003; Zhao et al.,
2003; Eibl et al., 2003, 2004; Walther et al., 2005; Eisert et al., 2007; Bai et al., 2009; Gühne and Tóth,
2009; Horodecki et al., 2009; Lavoie et al., 2009; Oliveira and Ramos, 2010; Gühne and Seevinck,
2010; Hou and Qi, 2010; Huber et al., 2010; Bancal et al., 2010; Ghose et al., 2010; Ma et al., 2011; Kay,
2011; Deb, 2011; Prabhu et al., 2012; Spedalieri, 2012; Brandão andChristandl, 2012; Chen et al., 2012;
Hyllus et al., 2012; Zhao et al., 2012; Barrett et al., 2013; Sperling and Vogel, 2013; Bai et al., 2014; Zhu
and Fei, 2014, 2015; Islam et al., 2015; Laflorencie, 2016; Hauke et al., 2016; Zhao et al., 2016; Hu et al.,
2016b; Cianciaruso et al., 2016; Chen et al., 2016; Buchholz et al., 2016; Luo et al., 2017; Gerke et al.,
2018; Che et al., 2018; Deng and Deng, 2018; Haddadi and Bohloul, 2018]. In comparison to pure
states, quantification of entanglement in mixed states is evidently a much more challenging task.
However, despite the challenges due to increased complexity in this direction, a lot of significant
studies have also been reported [Vedral and Plenio, 1998; Audenaert et al., 2001a, 2002; Vidal and
Werner, 2002; Lee et al., 2003; Osborne, 2005; Mintert and Buchleitner, 2007; Zhang et al., 2008; Park
et al., 2010; Ganguly et al., 2014; Eltschka and Siewert, 2014; Deng and Deng, 2018].

1.3.2 Nonlocality
Quantum theory allows correlations between spatially separated particles that are

fundamentally different from classical correlations. As the Bell inequality [Bell, 1964] puts an
upper bound on the correlations compatible with local realistic theories, the violation of Bell
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inequality by pure two-qubit states confirms the presence of genuine nonlocal correlations between
the two qubits. Moreover, studies in last few decades have confirmed that entangled quantum
systems exhibit nonlocal correlations between qubits, which provide entangled resources an edge
over classical resources for their efficient use in information processing, communication, and
cryptography tasks. Therefore, the analysis of entanglement and nonlocality has gained significant
interest from different quarters not only from the perspective of analysing the foundational aspects
of theory, but also to design large-scale efficient quantum information and computation tasks.

The Bell inequality was later generalized to a much simpler form known as the Clauser,
Horne, Shimony, and Holt (CHSH) inequality [Clauser et al., 1969] as shown in Eq. (1.18).

|⟨A1B1⟩+ ⟨A1B2⟩+ ⟨A2B1⟩−⟨A2B2⟩| ≤ 2 (1.18)

where A1, A2, B1, and B2 are the measurement operators, each associated to different physical
observable. Here, Ai and Bi are the measurements performed on qubits 1 and 2, respectively;
and can be defined as A1 = σ1.â, A2 = σ1.â′, B1 = σ2.b̂, and B2 = σ2.b̂′ where σi’s are spin
projection operators on respective qubits and â, â′, b̂, b̂′ are unit vectors. Clearly, the measurement
outcomes of these operators yield values +1 or −1. Further, the CHSH inequality represented
in Eq. (1.18) is an unbiased inequality, i.e., an inequality where measurement operators (A1,A2)

and (B1,B2) are chosen with equal probability of
1
2
each with respect to individual qubits. In

order to incorporate locality and realism, the inequality was designed with assumptions that the
measurement outcomes are independent of observation and the measurements performed on one
of the qubits does not affect the measurement outcomes on the other qubit. As represented in Eq.
(1.18), the expectation value of the CHSH operator under the assumptions of locality and realism
must not exceed 2, i.e. all bipartite quantum states must satisfy the inequality. Interestingly, set of
quantum states defined as

|ϕ±⟩= 1√
2
[|00⟩± |11⟩] |ψ±⟩= 1√

2
[|01⟩± |10⟩] (1.19)

violate the CHSH inequality for a certain set of measurement operations, and with 2sqrt2 as the
expectation value of the CHSH operator. Thus, Bell or CHSH inequality enables identification of
quantum states whose correlations cannot be explained by the assumption of locality and realism,
thus delimiting a boundary between classical (local) and quantum (nonlocal) correlations. For
a general two-qubit state |ψ⟩ = sinθ |00⟩+ cosθ |11⟩, the maximum violation of CHSH operator is
2sqrt1+ sin22θ [Popescu and Rohrlich, 1992]. Thus the value of CHSH operator ranges from 0 to
2sqrt2 for a product state of the form |11⟩ to a state of the form |ϕ+⟩ for θ =

π
4
as represented in

Eq. (1.19). Since the quantum states in Eq. (1.19) violate the inequality to the maximum, they
are known as maximally entangled two-qubit states; and play a central role in the advantages
offered by quantum computation over classical computation. Clearly all pure two-qubit states
violate the Bell-CHSH inequality, and all general two-qubit pure states where 0 < θ <

π
4
are termed

as non-maximally entangled states. Therefore, the violation of Bell inequality suggests that either
one or both the assumptions forming the basis of Bell inequality are wrong in the quantum realm.
The discussion further led to the discovery of other Bell-type inequalities which unveiled nonlocal
correlations in quantum systems, shedding light on the complex nature of nonlocality in quantum
realm [Leggett and Garg, 1985; Toner and Bacon, 2003; Acín et al., 2005; Gröblacher et al., 2007;
Souza et al., 2008; Barbieri, 2009; Xu et al., 2011; Knee et al., 2012; Epping et al., 2013; Brunner et al.,
2014; Zhou et al., 2015; Montina and Wolf, 2016; Chaves and Budroni, 2016; Brito et al., 2018].

In order to identify nonlocal correlations in three-qubit systems, various Bell-type
inequalities were also proposed and analysed [Mermin, 1990a; Svetlichny, 1987]. Although
Mermin’s inequality is violated by genuinely entangled three-qubit states, it is also violated by
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bi-separable entangled states making it difficult to distinguish between bi-partite and genuine
tri-partite nonlocality. On the other hand, Svetlichny designed an inequality bearing the signature
of genuine tripartite nonlocality as the inequality is only violated by genuinely entangled
three-qubit states [Svetlichny, 1987]. Like Bell states violating the Bell inequality maximally, the
Svetlichny inequality is also maximally violated by maximally entangled GHZ states. However, for
a general three-qubit GHZ class as represented in Eq. (1.12), the inequality is only violated by the

set of GHZ states with τ >
1
2
. Later, the inequality was further generalized to identify non local

correlations in multiqubit GHZ andW class of states [Seevinck and Svetlichny, 2002]. Furthermore,
the vast application of extended multiqubit quantum systems in quantum information and
computation has lead to the discovery of several significant Bell-type inequalities including n-party
generalization to identify nonlocal quantum correlations in complex multipartite systems [Collins
et al., 2002a,b; Cereceda, 2002; Zhao et al., 2003; Eibl et al., 2003, 2004; Walther et al., 2005; Lavoie
et al., 2009; Ghose et al., 2009, 2010; Bancal et al., 2010; Ajoy and Rungta, 2010; Liu et al., 2010; Pál
and Vértesi, 2011; Lu et al., 2011a,b; Bancal et al., 2011; Chen et al., 2011; Zhao et al., 2012; Vértesi
and Brunner, 2012; Reid et al., 2012; Pramanik and Majumdar, 2012; Tian et al., 2012; He and Reid,
2013; Brunner et al., 2014; Lanyon et al., 2014; Chaves et al., 2014; Sohbi et al., 2015; Caban et al., 2015;
Fonseca and Parisio, 2015; Alsina and Latorre, 2016; Jebaratnam, 2016; Tavakoli, 2016; Paul et al.,
2016; Sharma et al., 2016; Vallins et al., 2017; de Rosier et al., 2017; Zhao et al., 2018; Riccardi et al.,
2018; Barasiński, 2018].

Since the advent of EPR paradox, quantum correlations have been the subject of intensive
studies due to the general belief that they are fundamental resources for quantum information
processing and other potential applications in quantum technology. The analysis and description
of nonlocal correlations was therefore a subject of characterizing entanglement and nonlocality in
quantum systems. Initially separable systems were thought to possess only classical correlations
and hence were marked as not useful resources for quantum information and computation. This
notion, however, was surprisingly challenged with the discovery of few separable states useful
for quantum information processing. These separable systems were shown to evince quantum
correlations, thus creating the need to find appropriate ways of quantifying these correlations
[Modi et al., 2012; Adesso et al., 2016]. Quantum discord is one such measure that evaluates the
amount of quantum correlations in both entangled and separable states [Ollivier and Zurek, 2001;
Henderson and Vedral, 2001; Luo, 2008]. The importance of distinction between classical and
quantum regime; and identification on nonlocal correlations in separable states on theoretical
as well as experimental from led to study of quantum correlations beyond the paradigm of
entanglement and Bell inequality. [Dakić et al., 2010; Xi et al., 2012; Gheorghiu et al., 2015; Mahdian
and Arjmandi, 2016; Bera et al., 2017; Zhang et al., 2017a].

Due to its importance in distinguishing classical and quantum correlations of all type, here,
we briefly discuss the definition and significance of discord. A quantum state comprises of both
classical and quantum correlations, which is measured using quantummutual information where
the quantum mutual information of a bipartite quantum state ρAB is defined as

I(ρAB) = S(ρA)+S(ρB)−S(ρAB) (1.20)

where S(σ) =−Tr(σ log2σ) is the von-Neumann entropy, ρA and ρB are reduced density operators
for the subsystems A and B, respectively. On the other hand, classical correlations can be defined
using measurement based mutual information as

JA(ρAB) = S(ρB)−S(ρB|ρA) (1.21)

where S(ρB|ρA) is the conditional von-Neumann entropy. Quantum mutual information and
amount of classical correlations in a system enables one to determine the amount of quantum
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correlations in a quantum system using the definition of discord as depicted in Eq. (1.22).

DA(ρAB) = I(ρAB)−max
{πA

j }
J{πA

j }(ρ
AB) (1.22)

Moreover, quantum discord has the following essential properties,

(a) Quantum discord is not symmetric i.e., DA(ρ) ̸= DB(ρ);

(b) Quantum discord always takes non-negative value;

(c) Quantum discord of any state is invariant under local unitary operations i.e., D(ρ) = D((UA⊗
UB)ρ(U†

A ⊗U†
B)); and

(d) The value of quantum discord is zero for any state that has only classical correlations.

Although quantum discord has been proved to be essential for describing nonlocal
correlations in quantum states, the optimization procedure involved in the determination of
quantum discordmakes its evaluation difficult in different classes of bipartite states [Girolami and
Adesso, 2011; Luo, 2008]. In view of the above, another measure known as ”geometric discord”
was introduced that quantifies nonlocal correlations using minimum distance from classical states
[Dakić et al., 2010; Luo and Fu, 2010; Qiang et al., 2016; Roga et al., 2016]; and can be defined as

DG =
1
4
[∥x∥2 +∥T∥2 −K] (1.23)

whereK is themaximumeigenvalue of xxT +T T T ; x is a 3×1 vectorwith elements xi = ⟨σi ⊗ I⟩; T is a
3×3 correlationmatrixwith elements Ti j = ⟨σi ⊗σ j⟩; and σ1, σ2, and σ3 are the Pauli spin operators.
In order to calculate quantum correlations in higher dimensional multi-qubit quantum states, the
formulation of discord is also studied for multi-dimensional multipartite systems [Liu et al., 2015;
Chanda et al., 2015; Beggi et al., 2015; Jakóbczyk et al., 2016; Cheng and Hall, 2017; Jebaratnam
et al., 2018]. Due to its importance, quantum discord finds many applications in diverse domains
[Vedral, 2003; Oppenheim et al., 2003; Badziag et al., 2003; Koashi andWinter, 2004; Yang et al., 2005;
Piani et al., 2008; Maziero et al., 2009; Mazzola et al., 2010; Luo and Sun, 2010; Madhok and Datta,
2011; Cavalcanti et al., 2011; Streltsov et al., 2011; Cornelio et al., 2011; Piani et al., 2011; Adhikari and
Banerjee, 2012; Seshadreesan et al., 2015; Zou and Fang, 2016; Lee and Li, 2017; Yuan et al., 2018]

1.3.3 Applications of entanglement
Apart from being central to several debates and discussions to investigate the foundations

of quantum mechanics, entanglement and nonlocality have been used as key resources to
design and characterize several potential applications in quantum information and computation.
Quantum correlations, being the primary reason for out-performance of several tasks in
quantum realm over their classical counterparts, have been used efficiently in various domains
of information processing, computing, security, and games. For example, the users in a
communication protocol share an entangled state for establishing a quantum channel for
information transfer. Using this channel, the properties of an entangled quantum system are
efficiently employed for secure quantum communication. In the following subsections, we discuss
some of themajor applications of entangled resources for efficiently sharing classical and quantum
information.

• Teleportation : Quantum teleportation is a quantum mechanical process to transport the
state of a system from one location to another arbitrary location, without sending the
quantum system through any medium, or without measuring the state of the system on
either side of the transport. The teleportation of the quantum state is facilitated by a shared
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entangled resource between the parties in the protocol. Since no medium is used to teleport
the information, the protocol cannot be used to teleport the particle or qubit but rather its
physical state. However, considering that the state of a system contains all information
regarding the system, the recreation of original state at an arbitrary location suffices. The
very reason that the information is not sent through a medium, prevents an eavesdropper
to intervene and eavesdrop, once a secure quantum channel is established. The original
protocol was proposed for teleporting a single qubit arbitrary state by sharing two-qubit
anti-symmetric singlet state [Bennett et al., 1993]. Alice, in possession of the unknown
information, can neither perform a measurement to identify the unknown state due to the
problem of measurement in quantummechanics, nor send the qubit through anymedium as
it may adversely affect the necessary quantum coherence in the state. Therefore, in order to
teleport a single qubit arbitrary state |χ⟩1 = [α|0⟩+β |1⟩]1 to Bob, Alice establishes a quantum
channel in the form of a shared two-qubit Bell state |ϕ+⟩23 as shown in Eq. (1.19). The shared
state is distributed between the two in a way such that qubit 2 is with Alice and qubit 3
is with Bob. Alice then performs a Bell state measurement to identify the joint state of her
qubits 1 and 2. Algebraically, the joint state of three-qubit system just before the Bell state
measurement can be represented as

|χ⟩1|ϕ+⟩23 = |ϕ+⟩12(α|0⟩+β |1⟩)3 + |ϕ−⟩12(α|0⟩−β |1⟩)3

+ |ψ+⟩12(α|1⟩+β |0⟩)3 + |ψ−⟩12(α|1⟩−β |0⟩)3
(1.24)

If Alice’s outcome is |ϕ+⟩12, then the state of Bob’s qubit gets instantaneously projected
onto the original unknown state teleported by Alice i.e., α|0⟩+ β |1⟩. However, for all
other measurement outcomes of Alice, Bob will have to perform a single qubit unitary
transformation to get the desired state. For example, if Alice’s measurement outcomes are
|ϕ−⟩12, |ψ+⟩12, or |ψ−⟩12, then Bob needs to perform σz, σx, or σzσx operations respectively.
For Bob to know which unitary transformation has to be performed on his qubits to retrieve
the original state, Alicemust communicate hermeasurement outcome via a classical channel,
thus restricting faster than light communication through teleportation. Moreover, the
teleported state is not a copy or clone of the original state because the original state gets
destroyed during the Bell state measurement at Alice’s end.

The original protocol was also generalized to teleport an arbitrary qudit using a maximally
entangled state in d ⊗ d dimensional Hilbert space [Bennett et al., 1993]. Bennett et al.
showed the faithful teleportation of an unknown state even when the Bell state is shared
via a noisy channel [Bennett et al., 1996b]. Similar to the shared two-qubit state, tripartite
entangled resource was also considered as an efficient resource for teleprtation [Karlsson
and Bourennane, 1998]. In general, when the shared resource is a non-maximally entangled
state, then the teleportation of the unknown state was found to be probabilistic [Hillery
et al., 1999; Karlsson et al., 1999; Shi et al., 2000; Shi and Tomita, 2002; Agrawal and Pati,
2002; Fang et al., 2003; Xiao et al., 2004; yin Wang et al., 2007; Wang et al., 2018]. However,
Agrawal and Pati have proposed an efficient three-qubit partially entangled resource for
perfect teleportation [Agrawal and Pati, 2006]. In order to teleport an arbitrary two qubit
state across distant locations, Rigolin used direct product of two Bell states as resources for
deterministic teleportation [Rigolin, 2005]. The first instance of experimental teleportation
of a single qubit came across in 1997 using photons [Bouwmeester et al., 1997]. This was
immediately followed by another successful teleportation along with identification of the
four Bell states [Boschi et al., 1998]. From the perspective of Nuclear Magnetic Resonance
(NMR), teleportation protocol was first implemented over the space between atoms using
solution state NMR [Nielsen et al., 1998]. Moreover, implementation of teleportation protocol
was also reported in ion-trap atomic systems [Barrett et al., 2004]. Furthermore, different
variants of the protocolwere proposed, which showed teleportation between light andmatter
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[Sherson et al., 2006], and deterministic quantum teleportation using a hybrid technique
[Takeda et al., 2013]. In the multiqubit regime, open-destination protocol was carried out
using four-photon entanglement [Zhao et al., 2004]. In addition, a six-photon interferometer
was also employed for teleportation of a two-qubit quantum system [Zhang et al., 2006]. The
teleportation protocol was further accomplished over a distance of 600 meters using linear
optics [Ursin et al., 2004], then in free-space over 16 km [Jin et al., 2010], and later over 143
km [Ma et al., 2012]. Furthermore, teleportation across 102 km optical fiber was performed
using superconducting nanowire detectors [Takesue et al., 2015]. Latest reports show that
satellite-based teleportation of six input states in unbiased bases has been accomplished over
1400 km [Ren et al., 2017].

• Entanglement Swapping : Entanglement swapping, as the name suggests, is the mutual
interchange of entanglement from a pair of qubits to another, thus entangling two qubits
that have neither interacted nor generated from a common source in the past [Bennett et al.,
1993; Żukowski et al., 1993]. Here, we consider a simple example of a swapping protocol
using two Bell pairs. For this, we further consider that Alice and Bob share two Bell pairs
|ϕ+⟩12 and |ϕ+⟩34 where qubits 1 and 4 are with Alice and qubits 2 and 3 are with Bob. It is
assumed that once the entanglement is established or distributed, both Alice and Bob take
their respective qubits to distant locations. Alice performs a Bell state measurement on her
qubits 1 and 4. The measurement destroys the entanglement between qubits 1 and 2 and
between qubits 3 and 4. In fact, two qubits which had never interacted, i.e., qubits 2 and 3
get entangled. Algebraically, this can be represented as

|ϕ+⟩12|ϕ+⟩34 =
1
2

[
|ϕ+⟩14|ϕ+⟩23 + |ϕ−⟩14|ϕ−⟩23 + |ψ+⟩14|ψ+⟩23 + |ψ−⟩14|ψ−⟩23

]
(1.25)

Thus, the entanglement between qubits 1 and 2 and qubits 3 and 4 gets swapped so as to
entangle qubit 1 with 4 and qubit 2 with 3. The basic settings of this protocol are used in
designing quantum repeaters [Briegel et al., 1998], and preparation of GHZ states [Zeilinger
et al., 1997; Bose et al., 1998]. In addition, entanglement swapping holds application in
quantum secret sharing [Hillery et al., 1999; Karimipour et al., 2002; Zhang and Man, 2005],
and various other quantum secure communication schemes [Man et al., 2005; Zhou et al.,
2005; Man et al., 2006; Dong et al., 2008]. The first experimental realization of entanglement
swapping protocol was performed using two EPR pairs [Pan et al., 1998]. This was followed
by realizations using nuclear magnetic resonance [Boulant et al., 2003], trapped ions [Riebe
et al., 2008], and photons with specific wavelength [Jin et al., 2015].

• Superdense coding : Dense coding is a simple communication protocol to send 2 bits of
classical message by locally manipulating a single qubit. It is probably the most elementary
protocol by far to understand and analyse the importance of entangled systems over classical
resources. For example, using a classical bit, a sender can send only one bit of information to
a distant receiver. Whereas if the sender shares an entangled state with the receiver, then the
sender can send two bits of information using her single qubit. In that sense, superdense
coding protocol is a good example to demonstrate the use of quantum entanglement in
enhancing the communication channel capacity. In the original protocol for dense coding

[Bennett andWiesner, 1992], Alice and Bob shared a two-qubit Bell state |ψ−⟩AB =
1√
2
[|01⟩−

|10⟩]AB, where qubit A is with Alice and qubit B is with Bob. For encoding two bit classical
information (00, 01, 10, or 11) Alice performs single qubit unitary operations on her qubit
locally. For example, in order to send 00, 01, 10, or 11, Alice performs IA, σA

x , σA
y , or σA

z ,
respectively. Alice’s operations either leaves originally shared Bell state |ψ−⟩AB unchanged or
map it to other Bell states |ϕ−⟩AB, |ϕ+⟩AB, or |ψ+⟩AB, respectively. After encoding her message
by locally manipulating her qubit, Alice sends the qubit containing the encoded information
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to Bob, who then performs a Bell measurement to identify the joint state of two qubits. In
principle, since the four Bell states are orthogonal to each other, Bob is able to distinguish
between the four Bell states; hence decoding the required message. In general, a sender
sharing a maximally entangled state in d ⊗ d dimensional Hilbert space with the receiver,
can send 2log2d bits of classical information to him/her with the help of superdense coding
protocol.

On the experimental front, the first realization of the dense coding protocol was proposed by
Mattle et al. using entangled photon pairs in 1996 [Mattle et al., 1996]. This was followed by
implementations of dense coding using the technique of nuclear magnetic resonance [Fang
et al., 2000]. Moreover, use of non-maximally entangled states and mixed states as resources
for sending classical information was demonstrated in theory and experiments [Bose et al.,
2000]. Formulti-qubit systems, GHZ states can be efficiently used to transfer three-bit classical
information by performing local unitary operations on two qubits of the shared entangled
states [Lee et al., 2002; Wójcik and Grudka, 2003]. Experimentally, the techniques of NMR has
been used to demonstrate the principles of dense coding including three users [Wei et al.,
2004]. Apart from this, an interesting theoretical scheme known as controlled dense coding
was also proposed, in which a controller can control the amount of information between
a sender and a receiver [Hao et al., 2001]. Furthermore for making quantification simple,
an analytical expression for evaluation of dense coding capacity of an entangled state was
derived [Barenco and Ekert, 1995; Hausladen et al., 1996; Bowen, 2001]. In addition, various
experimental efforts were made to design dense coding protocol with non-integer channel
capacities as well [Schaetz et al., 2004; Williams et al., 2017].

1.3.4 Quantum cryptography
Cryptography is the art of transforming a useful message into garbage/ cipher text (i.e.

encryption), and later retrieving it back (i.e. decryption) in order to securely communicate private
information between two parties in presence of adversaries. There are two types of encryption
schemes: private-key cryptography and public-key cryptography [Stallings, 2003; Forouzan and
Mukhopadhyay, 2011]. In private-key or symmetric cryptography, the same key is used to encrypt
and decrypt the secret message. On the other hand, public-key cryptography protocols make use
of different keys, a public key for encryption, and a private key for decryption. The basic premise
of any cryptography technique depends on the secure sharing of key between the sender and the
receiver, so that desired private information remains concealed from the third party. Considering
the increased key domain and complexity, public-key cryptography is known to be more secure in
comparison to private-key cryptography [Diffie and Hellman, 1976; Rivest et al., 1978]. Quantum
mechanics further assists the theory of cryptography for safe transmission of the key in several
ways as described further.

• Quantum Key Distribution (QKD): The discussions surrounding quantum-mechanical
means of secure key transmission probably took a flight with the noble proposal of BB84
protocol where the security relied on the problem of distinguishability of non-orthogonal
basis states [Bennett and Brassard, 1984, 2014]. Another seminal contribution in formulating
a secure method for safe transmission of key was proposed by Ekert using Bell’s theorem
and nonlocal properties of two-qubit entangled states [Ekert, 1991]. Since then, various
protocols have been discussed for secure QKD [Bruß, 1998; Gisin et al., 2002; Bennett, 1992;
Bennett et al., 1992; Beige et al., 2002; Long and Liu, 2002; Deng et al., 2003; Scarani et al.,
2009; Noh, 2009; Branciard et al., 2012; Braunstein and Pirandola, 2012; Lo et al., 2014; Chau,
2015]. Experimentally, quantum cryptography based on BB84 protocol was implemented
over 10 km optical fiber [Bethune and Risk, 2000]. In addition to this, several other noticeable
attempts have been made for practical and secure key transfer over longer distances [Muller
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et al., 1996; Buttler et al., 1998; Lemelle et al., 2006; Brida et al., 2012; Takesue et al., 2015;
Diamanti et al., 2016; Collins et al., 2016].

• Quantum Secure Direct Communication (QSDC): The fundamental laws of quantum
mechanics also enable secure direct transmission of message without sharing any secret key
in advance [Long and Liu, 2002; Boström and Felbinger, 2002; Deng et al., 2003; Deng and
Long, 2004b; Lucamarini and Mancini, 2005]. The first QSDC protocol was based on block
transmission of the four encoded EPR states to send two bits of classical information [Long
and Liu, 2002]. A two-way QSDC was also proposed using the similar concept of sharing
encoded EPR pairs to communicate the message [Deng et al., 2003]. These two schemes have
recently been applied for long-distance transmission of secret message [Zhang et al., 2017b;
Zhu et al., 2017]. Further, an interesting two-way asymptotically secure key distribution and
quasi-secure direct communication protocol, named Ping-Pong Protocol (PPP) was proposed
[Boström and Felbinger, 2002]. The prototype implementation of PPP using polarised
entangled photonswas demonstrated byOstermeyer andWalenta [Ostermeyer andWalenta,
2008], followed by an experimental demonstration of a loss-tolerant QKD protocol based on
a modified PPP [H. Chen et al., 2016]. Deng and Long showed the protocol to be secure by
encoding two-bit information using two unitary operations [Deng and Long, 2004b], which
was experimentally implementedusing single-photon frequency coding [Hu et al., 2016a] and
was also tested for communication at a distance of 1.5 kilometers [Qi et al., 2019]. Another
two-waydeterministic communication protocolwas proposed, as a special case of the scheme
proposed by Deng and Long as it did not use entanglement for encoding the message
[Lucamarini and Mancini, 2005]. This protocol has also been practically implemented using
faint laser pulses containing not more than two single photons [Deng and Long, 2004a].
Lately, the advent of measurement device-independent QSDC protocols using EPR pairs and
single photons have shown hopes for even more secure quantum communication [Niu et al.,
2018; Zhou et al., 2018].

• Quantum Secret Sharing (QSS): Secret sharing is the mechanism of dividing or splitting
a secret message into parts, such that none of the parts are sufficient enough to know the
entire original message [Hillery et al., 1999]. The motivation of QSS protocol is to split the
information between the two receivers, one of whichmay be dishonest. The protocol is based
on the assumption that the honest recipient will not let the dishonest recipient to cheat or
break the protocol, hence splitting parts of message between the two. Only when the two
recipients cooperate with each other, they recover the original message.

Classically, Alice can produce a cipher text by adding the original message to a random
bit string bitwise and modulo 2. She then communicates the cipher text to one of
the recipient and a copy of the random bit string to the another recipient. Clearly
the individual communications to the recipients are of no use for them unless they
cooperate with each other to retrieve the original message. The protocol, however, may be
compromised if an Eavesdropper or the dishonest recipient somehow gains access to both
the communications. Such an adverse situation can be dealt with encrypting the original
message using fundamentals of quantum information and computation. For example, the
quantum mechanical version of this protocol, i.e. QSS, can be implemented using the
maximally entangled three-qubit GHZ state. In order to initiate the protocol, Alice, Bob, and
Charlie share a three-qubit maximally entangled GHZ state (1.14). Alice, being the sender,
splits the original message between Bob and Charlie in a way that the complete message
cannot be retrieved unless they get together and cooperate efficiently with each other to
recover the original message. For sharing a common key all the participants in the protocol
measure their qubits either in X or Y direction at random where the eigen states in X and Y
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basis are defined as

|±x⟩= 1√
2
(|0⟩± |1⟩), |±y⟩= 1√

2
(|0⟩± i|1⟩) (1.26)

Alice can use the joint key sharedwith Bob andCharlie later to communicate securemessages

Table 1.1 : The e ects of Bob’s and Charlie’s measurements on Alice’s state in a QSS protocol

PPPPPPPPPBob
Charlie |+x⟩ |−x⟩ |+y⟩ |−y⟩

|+x⟩ |+x⟩ |−x⟩ |−y⟩ |+y⟩
|−x⟩ |−x⟩ |+x⟩ |+y⟩ |−y⟩
|+y⟩ |−y⟩ |+y⟩ |−x⟩ |+x⟩
|−y⟩ |+y⟩ |−y⟩ |+x⟩ |−x⟩

to them. The effects of Bob’s and Charlie’s measurement outcomes on the state of Alice’s
qubit are shown in Table 1.1. After performing their measurements at random, Bob and
Charlie announce their respective choices of measurement bases to Alice. The measurement
outcomes however are still not disclosed and kept safely with the two receivers. The protocol
proceeds further by Alice also announcing her choices of measurement basis to Bob and
Charlie, without disclosing her measurement outcomes. Only the bases XXX , XYY , Y XY ,
and YY X (for Alice, Bob, and Charlie, respectively) are accepted, for sharing the secret key.
The results from the remaining random choices of bases are discarded for not containing
any useful information. Clearly, neither Charlie nor Bob can identify the measurement
outcomes of Alice without receiving the communication regarding the measurement choices
of each other. Therefore, Bob and Charlie must get together to share their measurement
outcomes so as to cumulatively find out the measurement outcomes of Alice. For instance, if
both Bob and Charlie measure in X basis and their measurement outcomes are +1(−1) and
+1(−1) respectively, then the corresponding outcome of Alice will be +1 when measured in
X basis. On the other hand, if the measurement outcomes of Bob and Charlie are +1 and −1
respectively or vice-versa, then the corresponding outcome ofAlicewill be−1whenmeasured
in X basis. Therefore, the QSS protocol provides an efficient way to split the information
between recipients to keep the original message secure. Several practical versions of QSS
that are based on entangled photon pairs [Karlsson et al., 1999; Tittel et al., 2001; Chen and Lo,
2007; Grice et al., 2018; Williams et al., 2019], or single photons [Schmid et al., 2005; Bogdanski
et al., 2008; Han et al., 2008; Hai-Qiang et al., 2013] have been proposed for experimental
implementation.

1.3.5 Quantum Noise
In ideal situations, the qubits or entangled systemsmust be isolated from the surroundings

so that the system does not interact with the environment and the necessary quantum coherence
between qubits remains intact. In reality however, environmental interactions with quantum
systems are inevitable, leading to the study of open quantum systems and noise in case of practical
quantum computations. Such interactions result in destruction of coherence between entangled
qubits evolving the initially prepared pure state into a statistical mixture. Clearly, noise in general
is an undesirable phenomenon, which in turn adversely affects the efficiency of prepared entangled
resource in quantum information and computation [Situ and Huang, 2016; Huang et al., 2017b;
Gawron, 2010; Gawron et al., 2008; Dajka et al., 2015]. For example, if an entangled state is shared
throughnoisy channel(s), it decreases the degree of entanglement or degrades nonlocal correlations
present in the initial prepared state, thereby hindering the efficiency of such systems. Therefore, it
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is imperative to analyse the effects of noisy channels on entangled systems and device amechanism
to protect nonlocal correlations against the decoherence [Nielsen and Chuang, 2011].

The evolution of a quantum state ρ under noise is given by the operator-sum representation
ε(ρ) such that

ε(ρ) = ∑
i

NiρN†
i (1.27)

where Nis are operational elements of the noise under consideration. In the following, we briefly
describe few standard noisy channels to understand the operational elements associated with
them.

(i) Bit flip channel: The bit-flip channel locally acts on a qubit to flip the state of a qubit with
a probability of (1− p), and leaves the state of the qubit unchanged with the probability p.
Therefore, the operational elements of a bit flip channel are, N0 =

√
pI =

√
p
[

1 0
0 1

]
and

N1 =
√

1− pX =
√

1− p
[

0 1
1 0

]
.

(ii) Phase flip channel: The phase flip channel flips the phase of a qubit (|0⟩ to |0⟩ and |1⟩ to
−|1⟩) with probability 1− p, and leaves the state of the qubit unchanged with the probability
p. Therefore, the operational elements of a phase flip channel are, N0 =

√
pI =

√
p
[

1 0
0 1

]
and N1 =

√
1− pZ =

√
1− p

[
1 0
0 −1

]
.

(iii) Bit phase flip channel: The bit phase flip channel flips both the bit as well as the phase of
a qubit (|0⟩ to |1⟩ and |1⟩ to −|0⟩) with probability 1− p, and leaves the state of the qubit
unchanged with the probability p. Therefore, the operational elements of a bit phase flip
channel are, N0 =

√
pI =

√
p
[

1 0
0 1

]
and N1 =

√
1− pY =

√
1− p

[
0 −i
i 0

]
.

(iv) Depolarizing channel: In comparison to above noisy channels, the depolarizing channel
is much more destructive as when a qubit passes through a depolarizing channel, it gets
depolarized to a completely mixed state I/2 with probability p. Thus, the state of quantum

system ρ after passing through the depolarizing channel can be represented as ε(ρ) = p
I
2
+

(1− p)ρ . The operational elements for this channel, therefore, are, N0 =

√
1−3p

4
I, N1 =

√
p

2
X ,

N2 =

√
p

2
Y , and N3 =

√
p

2
Z.

(v) Amplitude damping: The operational elements of an amplitude damping channel are N0 =[
1 0
0

√
1− γ

]
and N1 =

[
0

√γ
0 0

]
. The amplitude damping noise signifies loss of energy

due to environmental interaction or a decay process. The process can be summarized by
assuming the decay of the excited state to the ground state for a two-level system with a
probability p with emission of a photon which further results in the environment going from
the ground state to the excited state.

(vi) Phase damping: The phase damping channel is the quantum mechanical channel that
demonstrates loss in quantum information without loss in energy of the system. Rather the
relative phase between qubits in a quantum system is lost. The operational elements of this
channel are, N0 =

[
1 0
0

√
1−λ

]
and N1 =

[
0 0
0

√
λ

]
. N0 reduces the amplitude of quantum

state |1⟩, while maintaining the amplitude of |0⟩ state; whereas N1 reduces the amplitude of
quantum state |1⟩ and destroys |0⟩ state. The effect of phase damping noise is equivalent to
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that of phase flip channel.

In order to protect nonlocal correlations from adverse effects of noise, various mechanisms
such as entanglement distillation [Bennett et al., 1996b,a; Pan et al., 2003], quantum error correcting
codes [Shor, 1995; Calderbank and Shor, 1996; Knill and Laflamme, 1997; Steane, 1996b; Lidar and
Brun, 2013; Terhal, 2015], decoherence free subspace [Kwiat et al., 2000; Lidar et al., 1998], quantum
zeno effect [Facchi et al., 2004; Maniscalco et al., 2008], dynamic decoupling [Viola and Lloyd, 1998;
Viola et al., 1999; Viola and Knill, 2003; Khodjasteh and Lidar, 2005; West et al., 2010], application of
weak measurement and its reversal operations [Korotkov and Keane, 2010; Korotkov and Jordan,
2006; Kim et al., 2009; Xiao and Li, 2013; Cheong and Lee, 2012; Sun et al., 2009; Suter and Álvarez,
2016] have been analysed and studied in detail.

1.4 BASIC TERMINOLOGIES AND CONCEPTS IN GAME THEORY
A game is a competitive activity among more than one rational players which consists of

a set of rules, conditions of win and loss, and payoffs. The rules define the constraints of moves
a player can opt for in a game. Payoffs are quantified rewards each player gets on performing
a certain move or on achieving a fixed goal. While playing a game, each player attempts at
performing the best move to attain maximum reward or payoff. The final payoff or reward of
each player depends on the actions of all players or stakeholders involved in the game.

Therefore, game theory is a mathematical model of strategic decision making in a game.
The theory was developed by John von Neumann, a mathematician and Oskar Morgenstern, an
economist with the aim of solving problems related to economics [Neumann and Morgenstern,
1944]. The discovery of game theory initiatedwith a realization that the dynamics in economics has
a correspondence with game-playing. In general, any situation where the moves of players affect
each other’s outcomes, thus involving strategic decision making can be modeled mathematically
using game theory. For instance, the study of demand and supply of a product in market as a
game can assist in evaluating its optimum cost in a competitive market [Shubik, 1981]. Likewise,
the phenomenon of public choice for voting can be visualized as a game [Downs, 1957]. Another
example of the theory lies in evolutionary biology where survival of the fittest being is modeled as
survival games [Smith, 1974].

1.4.1 Di erent types of games
In this sub-section, we summarize basic terminologies used for different types of games in

game theory.

(i) Cooperative and Non-Cooperative Games : Cooperative games are the ones where players
negotiate and agree with each other on adopting strategies while playing [Myerson,
1991]. The players are in a coalition, and thus these games are studied separately under
cooperative game theory. The traditional games however, are non-cooperative in nature.
In non-cooperative games, players do not play as a team; they rather individually opt for
the strategy that gives them the maximum reward [Myerson, 1991]. Prisoners’ dilemma
[Poundstone, 1992] is the best example of a non-cooperative game.

(ii) Symmetric andAsymmetricGames : If all strategies adopted by one player in a game is same
as the strategies adopted by all other players; and the payoff achieved by players also remains
the same even when the same strategy set is performed by interchanging players, then such
a game is termed as a symmetric game [Nash, 1951]. Mostly, two-player games such as
prisoners’ dilemma [Poundstone, 1992] and chicken’s game [Sugden, 2005] are symmetric.
On the other hand, asymmetric games are those where the players have a different strategy
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space to opt from, and/or the payoff that a player attains on performing a particular strategy
may not be the same as the payoff attained by the other player on performing the same
strategy. An instance of asymmetric game is the ultimatum game [Güth et al., 1982].

(iii) Zero-sum and Non-zero-sum Games : Zero-sum games are specific cases of constant sum
games, where the sumof total payoffs of players should be exactly zero [Owen, 2013]. In such
cases, the wining condition for a player becomes the losing situation for the other player-
chess, tic-tac-toe, and many such games are examples of zero-sum games. Contrary to this,
non-zero sum games are the ones where the sum of total payoff of all players is non-zero
[Owen, 2013]. In general, cooperative games are examples of non-zero sum games because
the coalition (of players) either wins or looses the game collectively.

(iv) Normal and Extensive form Games : In normal form games, the game is structurally
represented in a tabular format, where the strategies and the corresponding payoffs of the
players arewritten in a table. Whereas in an extensive formgame, the description of a game is
decorated on a decision-tree [Fudenberg and Tirole, 1991; Leyton-Brown and Shoham, 2008].
Nodes at different levels in a tree represent different players, edges represent the moves
adopted by different players, and leaves of the tree define the payoffs of players on adopting
respective strategies.

(v) Simultaneous and Sequential move Games : In simultaneous games, the players do not
know about strategies adopted by other players, since all players take simultaneous moves.
On the other hand in sequential games, a player adopts a strategy followed by another player.
This way the players have knowledge about previous strategies adopted by other players. In
general, simultaneous games are represented by normal form games, and sequential games
are represented by extensive form games [Brocas et al., 2018].

(vi) Perfect, Imperfect, Complete, and Incomplete Information Games : If every player has
knowledge regarding strategies adopted by all other players, then the game is a perfect
information game. For instance, tic-tac-toe and chess are perfect information games
[Mycielski, 1992]. On the other hand, imperfect information games like poker, are the ones
in which players do not completely know about the prior moves of other players in the
game [Osborne and Rubinstei, 1994]. Simultaneous move games in general, are imperfect
information games. Perfect information games are different from complete information
games. The players in a complete information game also know about the strategies, payoffs
and types of players in the game but they do not necessarily know about all the prior moves
of the players. As opposed to the complete information game, players do not have all the
information in case of incomplete information games. Bayesian games [Harsanyi, 1967a,b,c]
are examples of incomplete information games, where atleast one player is unaware of the
type of other players in the game. Nature is introduced as an additional player which assigns
a type to each player depending on the ”probability distribution or prior assumption” of
available types [Leyton-Brown and Shoham, 2008]. This method further enables conversion
of incomplete information games to imperfect information games.

(vii) Common andConflicting InterestGames : Conflicting interest games [Osborne, 2003; Smith
and Price, 1973; Smith, 1974] are those in which both the players have different preferences,
like in the case of Battle of Sexes game. On the other hand, common interest games are the
ones where players do not prefer one strategy over the other, but have similar interests in
terms of opting for a particular strategy [Osborne and Rubinstei, 1994].
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1.4.2 The Nash equilibrium
For a static game with finite set of strategies for players, John F. Nash [Nash, 1950, 1951]

described a stable point known as the Nash Equilibrium (NE). It comprises of those strategy sets
that optimize the payoffs of both players in the game, and in which no player gets an incentive
by unilaterally changing her/his strategy. Further, a strategy set of a game is known as Pareto
efficient (or Pareto-optimal) if there is no other strategy set that enables at least one player better
off without making any other player worse off. The concept behind NE lies in the fact that multiple
players contest in a game, and each player’s payoff depends on the other players’ choice of strategy
or decision. Thus, NE is very useful in analysing decision making in situations of war or dilemma.

Table 1.2 : A payo matrix for the Prisoners’ dilemma game

`````````````̀Prisoner 1
Prisoner 2 Cooperate Defect

Cooperate −1,−1 −3,0

Defect 0,−3 −2,−2

Table 1.2 shows the payoff matrix table for a Prisoners’ dilemma game [Poundstone, 1992].
The game represents a scenario where two prisoners are suspected of committing a crime and are
being interrogated in two separate cells. They can either cooperate by accepting their crime or
defect by denying their crime. When both accept their crime they get an equal payoff of −1 each.
When both deny their crime, they get an equal payoff of −2 each. Further, if one prisoner accepts
his crime and the other denies, then the one who denies gets 0 payoff and the one who accepts gets
a lower payoff of −3. In the payoff matrix, the rows represent the strategies of Prisoner 1, and the
columns represent the strategies of Prisoner 2. The numbers in each rectangle represent payoffs of
prisoners depending on the strategies opted. For example, (−3,0) shows that Prisoner 1 receives a
payoff of −3 and Prisoner 2 receives a payoff of 0 for opting for strategy set cooperate and defect,
respectively. Analysing the payoff matrix, it can be observed that each player is at a better position
by denying his crime, independent of what the other player or prisoner chooses to do. Therefore,
both prisoners denying their crime collectively forms the NE of the dilemma game. However, the
common welfare/ pareto-optimal move for the prisoners would be cooperation from both players
so that they get higher payoff each (−1) as compared to the defection move from both players
(−2). Cooperation from both players is pareto-optimal whereas the obtained NE (defection from
both players) is not. This contrasting situation is the dilemma in the game, henceforth justifying
the role of finding NE in game theory.

Table 1.3 : A payo matrix for the Battle of sexes game

XXXXXXXXXXXMan
Woman Football Movie

Football 3,2 1,1

Movie 0,0 2,3

There can be two types of NE- a pure strategy Nash equilibrium or a mixed strategy Nash
equilibrium. [Neumann and Morgenstern, 1944]. An example of pure strategy NE is the one
discussed above in case of prisoners’ dilemma game [Poundstone, 1992]. In mixed strategies,
players choose a probability distribution over the set of actions or strategies [Harsanyi, 1973;
Neumann and Morgenstern, 1944]. In order to exemplify, payoffs in battle of the sexes game
[Osborne and Rubinstei, 1994] are depicted in Table 1.3. The game represents a situation where
a couple prefers to spend an evening together, but there choices to the type of evening are very
different. For example, the male partner may prefer to go for a football match, whereas the female
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partner prefers to opt for a movie together. The payoff matrix in Table 1.3 suggests that there are
two pure strategy NEs in the game- (Football, Football) and (Movie, Movie). For mixed strategies,
let us assume that the woman prefers a football match with probability “p” and a movie with
probability “1− p”. Similarly, let us further assume that the man prefers a football match with
probability “q” and amoviewith probability “1−q”. Therefore, the payoff when themanwatches a
football match or a movie can be evaluated as 3p+1(1− p) or 0p+2(1− p), respectively. Likewise,
the woman’s payoff on watching a football match or a movie is summarized as 2q+ 0(1− q) or
1q+3(1−q), respectively. Evidently, the man is invariant in choosing between the two activities if

3p+1(1− p) = 0p+2(1− p) i.e., p =
1
4
. Similarly, the woman will have no preferences and will be

equally rewarded by opting for either of the two activities if 2q+0(1−q) = 1q+3(1−q) i.e., q =
3
4
.

Therefore to sum up, the mixed strategy NEwill correspond to the man going for a football match

with
3
4
probability (and movie with

1
4
probability); and woman going for a football match with

1
4

probability (and movie with
3
4
probability)

Table 1.4 : A payo matrix for the Stag hunt game

XXXXXXXXXXXPlayer 1
Player 2 Stag Rabbit

Stag 3,3 0,2

Rabbit 2,0 1,1

In addition, there can be games with multiple pure strategy NEs [Osborne and Rubinstei,
1994]. If the equilibria comprise of same or corresponding strategies opted by players, then
the game belongs to the category of coordination games. For instance, stag hunt game
(common interest coordination game) represented in Table 1.4 and battle of the sexes game
(conflicting interest coordination game) [Osborne and Rubinstei, 1994] represented in Table 1.3
are examples of coordination games. On the other hand, when the equilibria comprise of
different or anti-corresponding strategies, the game is an anti-coordination game. An example
of anti-coordination game is the hawk-dove game or chicken game [Sugden, 2005] as described in
Table 6.2.

1.4.3 Applications of game theory
Game theory is an interesting and burgeoning field of study, which encompasses the

analysis and resolution of various situations of conflict and dilemma [Neumann andMorgenstern,
1944]. The theory initiaited with the need of analysing marketing games in the economic realm
[Shubik, 1981; Kreps, 1990; Friedman, 1991; Erica, 2003; Fudenberg, 2006; Tesfatsion, 2006], but
its applicability spread across diverse academic spaces such as, political science [Hardin, 1995;
Moulin, 1994; Brams, 1994; Fearon, 1995; Levy and Razin, 2004], biology [Smith, 1974, 1982;
Hammerstein, 2003; Harper andMaynard Smith, 2003], computer science [Nisan and Ronen, 1999;
Shoham, 2008; Greenwald and Littman, 2007; Bellucci et al., 2004; Gubko, 2004; Knauss et al., 2008;
Tambe and An, 2012], and physics [Hauert and Szabó, 2005].

1.5 INTRODUCTION TO QUANTUM GAME THEORY
With the advent of quantum information and computation, curiosity to analyse classical

game theory in quantum mechanical regime resulted in quantum game theory. The analysis in
this realm began with the discovery of concept of quantum money in 1983 [Wiesner, 1983]. Later,
the year 1999 witnessed various games where quantum strategies were employed in a classical
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game setting to help quantum players win a game with increased probability in comparison to
players opting for classical strategies or in resolving situations of conflict. For example, Meyer
demonstrated that a quantum player can always win a classical penny flip game against his
classical opponent; and further depicted a relation between penny flip game setting and efficient
quantum algorithms [Meyer, 1999]. Later, a slightly different scenario of the penny flip game
was analysed, where a classical player opting for a mixed strategy wins against the quantum
player performing unitary transformations [Anand and Benjamin, 2015]. The analysis presented
by Anand and Benjamin was very significant in a sense that for certain settings and strategy sets,
even a classical player can win against a quantum player. In addition, Eisert et al. demonstrated
the role of quantum strategies in avoiding the dilemma present in classical prisoners’ dilemma
game [Eisert et al., 1999]. Moreover, a three player game where the team always wins the game if
they share a three qubit maximally entangled state was illustrated [Vaidman, 1999]. Furthermore,
quantumgame theorywas also utilized to introduce fairness in remote gambling [Goldenberg et al.,
1999]. Later another gambling protocol was introduced for fairness without a third party, which
can also be adapted in casino, and lottery system [Zhang et al., 2014].

Parrondo’s paradox consists of games which when played individually have higher
probability of losing than winning, but if played alternately or in a specific random order, become
winning games. The study of this paradox using quantumwalks plays a significant role in building
better algorithms and in understanding important physical process like Brownian ratchets. Flitney
and Abbott examined the quantum version of parrondo’s game, which led to the identification of
innovative quantum algorithms [Flitney andAbbott, 2003]. Moreover, eavesdropping [Ekert, 1991;
Gisin and Huttner, 1997] and optimal cloning [Werner, 1998] was also studied in the framework
of games between players. Considering that lesser bits are used to implement quantum game
theory than other applications of quantum mechanics, it becomes much easier to verify quantum
games on an experimental front [Patel, 2007]. The idea of representing quantum communication
protocols and algorithms in terms of games between quantum and classical players was further
analysed by Iqbal [Iqbal, 2005]. On the similar lines, the BB84 protocol proposed by Bennett and
Brassard [Bennett and Brassard, 1984], used for secure quantum key distribution was envisaged
as a game and the mixed strategy NE of the game could hence, be evaluated [Houshmand et al.,
2010]. Similarly, various numerical schemes were formulated to find NE in terms of best response
functions, when the strategy space was characterized by continuous variables [Avishai, 2012].
Furthermore, aQuantumKeydistribution protocolwas proposed using the concept of three-player
quantum game, and using the maximally entangled GHZ triplet state [Kafatos, 1989; Bouwmeester
et al., 1999; Toyota, 2010]. Besides this, Toyota also highlighted the crucial role of entanglement of
the initial state used in the protocol [Toyota, 2010].

Not surprisingly, since then many games have been formulated to study quantum
information processing in detail. For example, quantum correlation games were designed using
a two-qubit entangled singlet state as input, where the payoffs were defined as functions of
correlations in an EPR-type experimental setting [Iqbal and Weigert, 2004]. Further, classically
defined games were studied where a quantum team is shown to have an advantage over any
classical team [Aharon and Vaidman, 2008]. Moreover, quantum games were also constructed
from a system of Bell-type inequalities, and the example of prisoners’ dilemma and Matching
Pennies was considered to study the approach [Iqbal and Abbott, 2010]. Similarly, a new class of
non-local games- generalized form of CHSH games- was studied to demonstrate that entanglement
plays an important role for information processing tasks [Lawson et al., 2010]. A review on
quantum game theory was also done to analyse and discuss games such as prisoners’ dilemma
and parrondo’s game [Lui et al., 2010]. Besides, a new two-player quantum game based on the
CHSH game was illustrated in 2013 [Bojic, 2013]. Furthermore, Werner-like states [Werner, 1989]
were analysed for prisoner’s dilemma and chicken game, to obtain values of quantum discord
of the initial state; at which the dilemma in both the games could be resolved [Nawaz and
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Toor, 2010]. Interestingly, game theory was also used, as a part of Quantum Decision Theory
to formulate a scheme of how brains make decisions [Yukalov and Sornette, 2014]. Furthermore,
quantum computer games such as the Schrödinger’s cat and hounds game [Gordon and Gordon,
2012] have also been designed to demonstrate the fundamental concepts of quantum mechanics
like superposition, constructive and destructive interference, measurements and entanglement,
in a fun way. Substantial contributions made in the field of quantum game theory have been
discussed in the following subsections, for comprehensive study. Apart from this, recently several
game-theoretic models have been proposed in quantum realm, which display the latest trend of
research in quantum game theory [Giannakis et al., 2015; Balthazar et al., 2015; Deng et al., 2016;
Auletta et al., 2016; Melo-Luna et al., 2017; Bao and Yunger Halpern, 2017; Rai and Pal, 2017;
Frąckiewicz, 2018; Solmeyer et al., 2018a,b; Samadi et al., 2018; Khan et al., 2018; Khan and Humble,
2019; Sarkar and Benjamin, 2019; Vijayakrishnan and Balakrishnan, 2019; Kolokoltsov, 2019].

1.5.1 The quantum advantage of superposition in penny ip game
With the aim of studying quantum algorithms, Meyer came-up with one of the early

contributions in the area of quantum game theory [Meyer, 1999]. He efficiently demonstrated
advantages of quantum strategies over classical ones in a penny flip game. The game comprises
of two players- player P and player Q. The game starts with a penny being placed in ”heads-up”
position in a black box. The settings of the game allows player P and player Q to make moves once
and twice, respectively where each player can use the strategy set to either flip the coin or leave
it unchanged. To start the game, player Q either flips or not flips the penny without looking at
its state. This is followed by player P’s turn, as discussed has the same set of strategies to either
flip or not flip the coin. Finally, the game ends with player Q’s turn. At the end of the game, if the
penny is still ”heads-up”, playerQwins the game else player Pwins the game. Classically, the game
can be won by either players with equal probability. However, if player Q is a quantum player,
he/she performs a quantum strategy (in particular, the Hadamard gate as discussed in subsection
1.2.2) during his/her turn and wins the game deterministically. Meyer, further demonstrated that
the game holds structural similarities to Simon’s problem [Simon, 1994] and Grover’s algorithm
[Grover, 1996].

1.5.2 Resolution of dilemma using entanglement
Soon after Meyer proposed the notion of quantum games, Eisert et al. discussed the

prisoners’ dilemma game in quantum realm [Eisert et al., 1999] where the objective was to quantize
and describe non-zero sum games. Eisert et al. demonstrated that the dilemma in the game can
be avoided when both players initiate quantum strategies. A simple prisoners’ dilemma game is
demonstrated in Table 1.2, where theNE {Defect, Defect} strategy is not the pareto-optimal strategy
giving rise to the said dilemma in the game. In the quantum regime, classical strategies, cooperate
(C) and defect (D) are defined in the Hilbert space as |C⟩ and |D⟩, respectively. The players
or prisoners (here, Alice and Bob) share the initial state |ψ0⟩ = Ĵ|CC⟩, where Ĵ is an entangling
unitary operator known to both players, say Alice and Bob. Once the entanglement is shared,
players perform their respective strategies ÛA and ÛB, respectively on their qubits, followed by
the operation of a reversible disentangling gate Ĵ† on the evolved quantum state. After these
operations, the final state |ψ f ⟩ is measured using a pair of Stern-Gerlach type detectors, where

|ψ f ⟩= Ĵ†
(
ÛA ⊗ÛB

)
Ĵ|CC⟩ (1.28)

The payoffs of players in this game depend on the detector’s outcome. Considering the statistical
nature of quantum theory, payoffs are expressed as the expectation values according to the matrix
entries in Table 1.2 such that

$A =−PCC −2PDD −3PCD

$B =−PCC −2PDD −3PDC
(1.29)
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where Pmn = |⟨mn|ψ f ⟩|2 is the probability associated with the measurement outcome |mn⟩. The
cooperation strategy is assumed to be Ĉ =

[
1 0
0 1

]
and the defect strategy is considered to be a

spin-phase flip operation denoted mathematically as D̂ =
[

0 1
−1 0

]
. In order to ensure the game

theoretic model to be fair, the entangling unitary operator is considered as,

Ĵ = exp
(

iγ
D̂⊗ D̂

2

)
(1.30)

The separable game (γ = 0) is the same as classical prisoners’ dilemma game represented in section
1.4.2. However, the maximally entangled game (γ = π

2 ) resolves the dilemma as the new quantum
strategy Q̂ =

[
i 0
0 −i

]
performed by both players comprises the pareto-optimal NE for the game.

The quantum version of prisoners’ dilemma game was also realized using NMR [Du et al., 2002].

1.5.3 The Clauser-Horne-Shimony-Holt game
Clauser, Horne, Shimony, and Holt described the CHSH inequality [Clauser et al., 1969]

under the assumption of local realism. This inequality can be used to ascertain the presence or
absence of quantum correlations in an underlying quantum system [Bell, 1964]. Alternately, to
analyse nonlocal correlations in a simpler way, the inequality is formulated in terms of a game,
termed as the CHSH game. The CHSH game is usually played between two cooperating players;
Alice and Bob. In the settings of a game, a referee always generates two independent random
bits: ‘x’ and ‘y’, and sends them to Alice and Bob, respectively. These random bits act as inputs
to the players. On receiving the input bits, Alice and Bob output their answer bits as ‘a’ and ‘b’,
respectively. Both players win the game if the addition modulo 2 (or XOR) of their outputs is
equal to the logical AND of their inputs, i.e., a⊕b = x ·y. Alice and Bob both aim at increasing their
chances of win, and hence can discuss a priory the strategy to be used during the game. However,
they cannot communicate after the commencement of the game, and do not have prior information
about each other’s input or output. The only information they have is about their individual inputs
(‘x’ is known to Alice and ‘y’ is known to Bob), based on which they produce their outputs ‘a’ and
‘b’, respectively. Here, for simplicity, it is assumed that the probability of an input to take value 0
or 1 is equiprobable. Classically, the game can be won with utmost 75% probability.

On the other hand, in quantum realm Alice and Bob share a two-qubit entangled state, i.e.,

|ψ⟩AB =
1√
2

[
|0⟩A|0⟩B + |1⟩A|1⟩B

]
(1.31)

Once the entanglement is distributed, Alice and Bob perform spin-projection measurements on
their respective qubits based on the inputs received, and preserve the correspondingmeasurement
outcomes as outputs. For example, let us assume that Alice and Bob perform measurements in a
general basis vi(θ) expressed as

|v0(θ)⟩= cosθ |0⟩+ sinθ |1⟩
|v1(θ)⟩=−sinθ |0⟩+ cosθ |1⟩

(1.32)

where Alice uses θA0 ( θA1) when input ‘x’ is 0 (1), and Bob use θB0 ( θB1) when input ‘y’ is 0 (1).
As per the rules of the game defined above, when product of inputs is 0, then the game will lead
to success if and only if the outputs also have the same value. Considering the rules and strategy
set opted by Alice and Bob, the winning probability of the game at different values of ‘x’ and ‘y’ is

summarized in Table 1.5. Clearly, the total winning probability of the game is
1
4

[
cos2(θA0 −θB0)+

cos2(θA0 −θB1)+ cos2(θA1 −θB0)+ sin2(θA1 −θB1)
]
. For optimizing the success probability, if Alice

and Bob choose θA0 = 0, θA1 =
π
4 , θB0 =

π
8 , and θB1 =−π

8 , then the winning probability of the game is
cos2(π

8 )≈ 0.8535. Therefore, in the CHSH game, quantum strategy gives better winning probability
(above 85%) than the classical winning probability (75%).
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Table 1.5 : The dependence of winning prospects on inputs received by players in a CHSH game

x y Winning probability of CHSH game

0 0 cos2(θA0 −θB0)
0 1 cos2(θA0 −θB1)
1 0 cos2(θA1 −θB0)
1 1 sin2(θA1 −θB1)

1.5.4 A three player quantum game using the GHZ state
Similar to the CHSH game, there are various multi-party quantum games that exploit the

nonlocal features of an entangled state for the benefit of players [Clauser et al., 1969; Vaidman,
1999; Aravind, 2002]. One such game was proposed by Vaidman in 1999 [Vaidman, 1999]. The
game consists of a team three players, say Alice, Bob and Charlie. The players in the game are
well aware of the settings and rules of the game; they are also allowed to discuss their strategies
before the start of the game. However, after the commencement of game, they are not allowed to
communicate with each other. In the game, each player is asked one of the two possible questions,
i.e., either the question is ’What is X?’ or the question is ’What is Y ’? Once a question is asked to
a player, the player must respond with his/her answer- and the possible choices are either +1 or
−1. The settings of the game are such that either each player is asked the X question or one of them
is asked the X question and rest of them are asked the Y question. The team of three players wins
the game if the product of their answers is +1 when all players are asked the X question; and -1
when one of the players is asked the X question and rest of them are asked the Y question. Clearly,
if the players adopt classical strategies then at best they can win the game 75% of times. On the
other hand, if the team of three players share a three-qubit maximally entangled GHZ state, then
they always win the game by using a simple quantum strategy, i.e., whenever a player is asked the
X(Y ) question, she/he measures her/his qubit in the X(Y ) basis and announces the corresponding
measurement outcome as her/his answer. Hence, quantum strategies clearly win over classical
strategies under the settings of three-party Vaidman game.

1.5.5 Visualisation of the BB84 protocol as a classical game
A static game model was used to study the well-known QKD protocol- the BB84 protocol-

in the framework of a game [Houshmand et al., 2010]. The sender (Alice), the receiver(Bob), and
an eavesdropper (Eve) were considered as players in the game. For encoding, Alice’s strategy
set comprises of selecting encoding operations at random between z or x eigen bases; where z
represents computational basis set and x represents Hadamard (|+⟩, |−⟩) basis set. Similarly for
decoding and eavesdropping, Bob and Eve’s strategy set also comprises of selection between z
and x eigen bases for their respective measurements. Considering the intervention of Eve, the
aim of Alice and Bob is to detect Eve’s presence with maximum probability. On the other hand,
the objective of Eve is to gain maximum information during intervention, while simultaneously
minimizing her chances of detection. The NE analysis of the game demonstrated the existence of a
mixed strategy NEwith each player selecting z and x eigen bases with equal probability.

1.5.6 Correspondence of the Bell inequality with Bayesian games
In order to efficiently analyse the benefits of nonlocality in computational tasks, a special

class of games known as Bayesian games [Harsanyi, 1967a,b,c] serves as the best tool to represent
quantum correlations as they contain the required element of incompleteness in terms of partial
information about other players. In fact, the type of atleast one player in the game is a random
variable. The first link between Bayesian games and nonlocality was proposed to demonstrate the
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relation between the game’s payoffs and Cereceda inequalities [Cheon and Iqbal, 2008; Cereceda,
2001]. Later, Brunner and Linden showed a direct correspondence between the Bell inequality and
payoffs of a general two player Bayesian game [Brunner and Linden, 2013]. In the analysis, the
structure of the CHSH game is utilized in settings of a Bayesian game, where players are considered
to be of different types (‘xA’ and ‘xB’) depending on inputs (‘x’ and ‘y’) they receive from the referee.
For instance, input x = 0 corresponds to type 0 of Alice, i.e., xA = 0; input x = 1 corresponds to
type 1 of Alice, i.e., xA = 1; input y = 0 corresponds to type 0 of Bob, i.e., xB = 0; and input y = 1
corresponds to type 1 of Bob, i.e., xB = 1. Moreover, outputs (‘a’ and ‘b’) define the strategies (‘yA’
and ‘yB’) that the players opt for. Thus, in order to maintain the structure of a Bayesian game
similar to the winning conditions of a CHSH game, when xA = xB = 0, or xA ̸= xB, Alice and Bob get a
non-zero payoff on choosing strategies (yA and yB) such that yA⊕2 yB = 0. Similarly, to obey the CHSH
settings, when xA = xB = 1, the players get a non-zero payoff on choosing strategies yA(yB) = 0(1)
or yA(yB) = 1(0). Hence, the overall condition of win in a CHSH game (xA · xB = yA ⊕2 yB) enables
quantumplayers to exploit nonlocal correlations existing in the shared quantum system to increase
the winning probability in comparison to classical strategies. Table 1.6 shows payoffs attained by
different types of Alice and Bob in a game with the above defined settings. In each cell, the first
number represents the payoff of Player 1, i.e., Alice, and the second number represents the payoff
of Player 2, i.e., Bob.

Table 1.6 : Payo s of Alice and Bob in a general game setting where dependence of payo s on type of
players commensurate with the input-output relation in a CHSH game (Here, uA

1 , uB
1 , uA

2 , uB
2 ,

uA
3 , uB

3 , uA
4 , and uB

4 are non-zero)

PPPPPPPPPAlice
Bob

yB = 0 yB = 1

yA = 0 uA
1 ,u

B
1 0,0

yA = 1 0,0 uA
2 ,u

B
2

PPPPPPPPPAlice
Bob

yB = 0 yB = 1

yA = 0 0,0 uA
3 ,u

B
3

yA = 1 uA
4 ,u

B
4 0,0

(a) xA · xB = 0 (b) xA · xB = 1

1.6 SCOPE OF THE THESIS
The advantages of quantum entanglement and nonlocality have shifted the focus of

computation to quantum paradigm instead of the conventional classical computation. In the last
three decades, the scientific community has not only taken a giant step towards understanding
the fundamentals of quantum information and computation, but also has worked towards
practical realization of a quantum computer. However, considering the technological difficulties
in scaling up quantum resources, a fault tolerant quantum computer seems to be a rather
distant dream, therefore the discussions regardingNoisy Intermediate Scale Quantum technology,
where quantum computers comprising 50-100 qubits may be available, are gathering momentum.
Nevertheless, there are stillmany interesting questions in foundations of quantum information and
computation that requires amuch better physical interpretation. For example, role of entanglement
and nonlocal correlations exhibited by partially entangled pure states or mixed states is an area
worth exploring for new avenues in quantum information and computation. The intricacy of
problem increases even further if one considers the effects of decoherence on these correlations.
Interestingly, the diverse academic domains of game theory and quantum computation were
merged together as soon as the advantages of foundations of quantum mechanics were realized
for computation. This marked the advent of quantum game theory, and since then various
studies have been performed in the area. The analysis of foundations of quantum information
and computation, and communication protocols using game theory generated significant interest
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among researchers after the seminal contributions from Eisert et al. and Meyer.

In the present Thesis, we represent quantum cryptographic protocols as games (chapter-2
and 3), and vice-versa (chapter-5). Moreover, the effect of noise is portrayed as a game for
efficiently analysing the role of nonlocal correlations in real conditions (chapter-4). In addition,
Bayesian game representation of Bell-CHSH inequality is studied for different maximally and
non-maximally entangled pure states and mixed states (chapter-6). This Thesis is organized in
7 chapters and the content of each chapter is described briefly as follows.

In chapter-1, basic concepts and terminologies used in quantum information processing
and game theory are described. Precisely, the chapter presents a brief review of literature
addressing problems in quantum game theory, which lays foundation for the research described
in further chapters of the Thesis.

In chapter-2, Ping-Pong protocol is analysed from the point of view of a game. The analysis
results in understanding the different strategies of a sender and an eavesdropper to gain the
maximumpayoff in the game. The study presented in this chapter characterizes strategies that lead
to different NE. Further, the conditions for Pareto-optimality depending on the parameters used in
the game are also discussed. Moreover, the chapter contains brief analysis of LM05 protocol and
its comparison with Ping-Pong protocol from the perspective of a generic two-way quantum key
distribution game, with or without entanglement. The results provide an efficient understanding
of general two-way quantum key distribution protocols in terms of the security and payoffs of
different stakeholders in the protocol.

Further, the Ping-Pong protocol is analysed using different sets of non-maximally
entangled three-qubit states in chapter-3. Interestingly, our results show that the non-maximally
entangled non-orthogonal three-qubit states are more useful as resources in comparison to
three-qubit maximally entangled GHZ states. The properties of orthogonal set of non-maximally
entangled states as resources for the protocol, however, are similar to that of maximally entangled
GHZ states – both the states are not preferable due to the vulnerability towards eavesdropping.
On the other hand, non-maximally entangled non-orthogonal basis set holds importance for
transferring two-bit information, one each from a sender, to a single receiver. The protocol is
further analysed for various eavesdropping attacks, and the results are compared with the use
of two shared Bell pairs for two-bit information transfer. Surprisingly, the use of non-maximally
entangled non-orthogonal set of states is found to offer better qubit efficiency and increased
security, as against the use of two separate maximally entangled Bell states with orthogonal basis.
In addition, a mixed-state sharing protocol is also proposed so as to further enhance the security
of the protocol. Finally, we extend the analysis presented in the chapter in the framework of a
quantum game.

Nonlocal correlations in a quantum mechanical system hold an indispensable place in
understanding the foundational aspects of theory; and for exploring efficient theoretical and
experimental proposals in the regime of quantum computation and information which are
otherwise not possible using classical resources. One of the possible ways to understand the
nuances of nonlocal correlations is to put it in the framework of game theory. For this purpose,
chapter-4 addresses the issue of decoherence and protection of nonlocal correlations from local
noise from the perspective of a game, considering the two players as noise andweakmeasurement
reversal operations, respectively. In order to effectively understand the moves of players,
maximum payoff and NE strategies are studied for different noisy channels. The results compare
two different situations where payoffs of players are defined using the Bell inequality and discord,
respectively. The analysis shows a contrasting description of payoffs and strategies in two
different cases. The results obtained here shed light on the intricacies involved in the process
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of entanglement distribution through noisy channels, evaluating optimal parameters to obtain
maximum payoff in the designed game, and NE strategies of players to win the desired game.

In chapter-5, the role of degree of entanglement is analysed for Vaidman’s game in a setting
where the players share a set of non-maximally entangled three-qubit states. The results show that
the entangled states combined with quantum strategies may not be always helpful in winning
a game as opposed to the classical strategies. Moreover, it is shown that a special class of W
states can always be used to win the game using quantum strategies irrespective of the degree of
entanglement between the three qubits. This analysis also helps in comparing the Vaidman’s game
with the secret sharing protocol. Furthermore, a new Vaidman-type game is proposed where the
rulemaker itself is entangledwith the other two players and acts as a facilitator to share a secret key
with the two players. For practical purposes, the analysis is extended to study the proposed game
under noisy conditions. In addition, the results obtained here are also generalized for designing
multi-qubit games.

Chapter-6 demonstrates the analysis of different Bayesian games where payoffs of players
depend on the types of players involved in a two-player game. The dependence is assumed to
commensurate with the CHSH game setting. For this, two different types of each player (Alice and
Bob) are considered in the game, thus resulting in four different games clubbed together as one
Bayesian game. Considering different combinations of common interest, and conflicting interest
coordination and anti-coordination games, it is found that quantum strategies are always preferred
over classical strategies if the shared resource is a pure non-maximally entangled state. However,
when the shared resource is a class of mixed state, then quantum strategies are useful only for a
given range of the state parameter. Surprisingly, when all conflicting interest games (Battle of the
Sexes game and Chicken game) are merged into the Bayesian game picture, then the best strategy
for Alice and Bob is to share a set of non-maximally entangled pure states. It is shown that this
set not only gives higher payoff than any classical strategy, but also outperforms a maximally
entangled pure Bell state, mixed Werner states, and Horodecki states. In the second half of the
chapter, a general framework of a special class of Bell inequality- tilted Bell inequality, is proposed.
The game is then studied as a common aswell as conflicting interest Bayesian game. Thereafter, the
effect of sharing an arbitrary two-qubit pure state and a class of mixed state as quantum resource is
studied in those games; thus verifying that non-maximally entangled states with high randomness
help attain maximum quantum benefit.

Chapter-7 provides a summary of contributions made through the dissertation, along with
possible future directions. This is followed by the bibliography information.

…
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