
5
Partially entangled states in Vaidman’-type games and its

application in Quantum Secret Sharing

5.1 INTRODUCTION
Most of the past work in quantum game theory demonstrates that quantum strategies

give better results in comparison to classical strategies. For instance, quantum strategies can be
efficiently utilized by a player to defeat his classical opponent in a classical penny flip game which
has direct relation to certain quantum algorithms [Meyer, 1999]. Similarly, quantum mechanics
also helps in providing a solution to avoid the Prisoners’ dilemma [Eisert et al., 1999]. The
quantum version of Prisoners’ dilemma game was further implemented experimentally using an
NMR quantum computer [Du et al., 2002]. Contrary to the dominance of quantum strategies
in characterizing a quantum game, Anand demonstrated an interesting result for a particular
penny flip game such that a player opting for a mixed strategy can still win against a player
opting for a quantum strategy where two players share an entangled state [Anand and Benjamin,
2015]. Therefore, it becomes important to understand and analyse the role of entanglement and
nonlocality in game theory. Furthermore, there is also a need to study and analyse the importance
of using different entangled quantum systems under different game settings to characterize the
benefits of such entnangled systems in various situations.

In this chapter, we analyse a game proposed by Vaidman [Vaidman, 1999] and described in
detail in subsection 1.5.4 of Chapter 1. As discussed, a team of three players always wins the game
when they share a three-qubitmaximally entangledGHZ state. On the other hand, whenplayers opt
for pure classical strategies, the teamwins the game in utmost 3/4 cases. In this chapter, we revisit
Vaidman’s game considering two different classes of three-qubit entangled states, namely, GHZ
class [Greenberger et al., 1990] andW class of states [Dür et al., 2000]. Our aim is to analyse the role
of entanglement in Vaidman’s game by establishing a relation between the winning probability of
Vaidman’s game [Vaidman, 1999] and the degree of entanglement of various three-qubit entangled
states used as a resource in the game. Our analysis demonstrates that for the GHZ class, there are
set of states for which classical strategies give better winning probability than quantum strategies.
Instead of sharing GHZ class states, if players share a special class of W states, quantum strategies
always give an upper edge over classical strategies irrespective of degree of entanglement. We
further establish a direct correspondence between Vaidman’s game and QSS [Hillery et al., 1999].

Moreover, we also propose a similar game, where one of the players sharing the three-qubit
entanglement is the facilitator and defines the rules of a game played by the other two players. A
close examination of the proposed game shows that the rule-maker benefits whenever the other
two players share a non-maximally entangled state. By sharing a non-maximally entangled state,
the rule-maker is able to modify rules such that the other two players loose the game. To analyse
further, we extend our discussion to study the proposed game in a noisy environment. For our
purpose, we again consider the examples of an amplitude damping, a depolarizing channel and
a phase flip channel [Nielsen and Chuang, 2011]. Our results show that in case of W states, the
quantumwinning probability exceeds the classical winning probability even if qubits pass through
a phase flip channel. For GHZ states, the quantum success probability is almost always more than
the classical success probability when qubits pass through a phase flip or an amplitude damping
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channel. In all other cases, quantum strategies are found to be better than classical strategies for
a fixed range of noise parameters only. Moreover, in Section 5.3, we suggest an application of
the proposed game for facilitated secret sharing between three parties, where one of the players is
a facilitator and also controls the secret sharing protocol. In later sections of this chapter, we also
demonstrate a generalization of Vaidman’s game and the proposed game formultiple players. The
fact that the quantum resources used in this work can be experimentally prepared [Bouwmeester
et al., 1999; Eibl et al., 2004; Dong et al., 2016], suggests that the results obtained here may have
strong applicability in QSS or other similar protocols.

5.2 CORRESPONDENCE OF VAIDMAN’S GAMEWITH QUANTUM SECRET SHARING
There is a direct correspondence between the QSS protocol [Hillery et al., 1999] described

in Chapter 1.3.4 to the Vaidman’s game [Vaidman, 1999] discussed in Section 1.5.4. The set of
random basis (XXX , XYY , Y XY , and YY X) that are accepted for formulation of a shared secret
message in the QSS protocol are the questions the three players, namely Alice, Bob, and Charlie,
are asked in Vaidman’s game. Further, the winning conditions in this game are also the same as
the measurement outcomes of the three users in QSS protocol sharing a standard GHZ state, and
measuring their qubits in an appropriate basis. As per the description of the game in Section 1.5.4,
three players can win the game if the product of their answers is 1 when all of them are asked the
X question or -1 if one of them is asked the X question and rest of them are asked the Y question.
Clearly, three players sharing a maximally entangled three-qubit GHZ state always win the game
because of the strong correlations between the three qubits of the GHZ state. For example, the three
qubits in the GHZ state are correlated as

{MX
A }{MX

B }{MX
C }= 1

{MX
A }{MY

B}{MY
C}=−1

{MY
A}{MX

B }{MY
C}=−1

{MY
A}{MY

B}{MX
C }=−1

(5.1)

where {MX
i } is the measurement outcome of the ith player measuring her/his qubit in the X basis,

and {MY
i } is the measurement outcome of the ith player measuring her/his qubit in the Y basis.

Hence, the above discussion establishes a clear correspondence between the Vaidman’s game and
the QSS protocol. In the following sections, this correspondence is used to establish a secure key
between users in a QSS protocol.

5.2.1 Use of GHZ class states
The Vaidman’s game is analysed in a more general set-up where the three players share a

general GHZ state represented in Eq. (1.12), instead of sharing a maximally entangled GHZ state as
discussed in the original game. As shown in Figure 5.1, when the players share a general GHZ state,
the success probability of winning the above defined game varies from 0.5 to 1. For simplicity, it is
assumed that the probability of players being asked the set of 4 questions (XXX , XYY , Y XY , YY X)
is equally likely. In Figure 5.1, the winning probability of the game, i.e, 1

2(1+ sin2θ) is plotted
against the entanglement measure. It can be clearly seen that the players win the game with 100%
certainty only for the maximally entangled state, i.e., when degree of entanglement τ attains its
maximum unit value (at θ = π/4). For all other values of three-tangle where 0 < τ < 1, the winning
probability is always less than one (which the players achieve by sharing a maximally entangled
GHZ state). Interestingly, only the set of states with τ > 0.25 achieve better success probability than
the classical success rate (75%) of the game. At τ = 0.25, quantum strategies have equal prospects
of enabling win to the quantum players, as the best classical strategy. Additionally, for the set of
states with τ < 0.25, classical strategies are more beneficial in comparison to quantum strategies.
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Hence, for Vaidman’s game, entanglement or quantum strategies do not guarantee a sure-shot win
as against classical strategies.
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Figure 5.1 : Success probability of winning Vaidman’s game using GHZ-type states

5.2.2 Use ofW class states
AlthoughW -type states belong to another inequivalent class of three-qubit states, they can

also be used as resources in winning Vaidman’s game with a slightly varying set of questions. For
example if W states are used as resources instead of GHZ states, the players may be asked either
“What is Z?” or “What isY?”. Similar to the GHZ case, the answers to these questions can be either
+1 or -1. Moreover, the rules are set-up in a way that either all players are asked the Z question;
or one of the players is asked the Z question and the remaining two are asked the Y question. The
players win the game if the product of their answers is -1, if all are asked the Z question; and +1,
in all other cases. If the players share the standard W state, given in Eq. (1.15), before beginning
to play the game, then they can win this game with a probability of 0.875. On similar grounds as
discussed in Section 5.2 that QSS directly commensurate with the Vaidman’s game, the standard
W state can be effectively used for probabilistic QSS [Hillery et al., 1999]. Similar to the case of GHZ
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Figure 5.2 : Success probability of winning Vaidman’s game usingW -type states

class, here, the winning probability of the Vaidman’s game is studied if the three players share a
generalW -type state as shown in Eq. (1.13). Considering the rules of the game, it is found that the
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winning probability of the team is 1
4

(5
2 +bc+ab+ac

)
, if the players share a general W state. This

value is attained assuming that the team will be asked the set of 4 questions (ZZZ, ZYY , Y ZY , YY Z)
with equal probability. The plot of winning probability of Vaidman’s game versus the sum of three
residual concurrences [Hill andWootters, 1997;Wootters, 1998, 2001] is demonstrated in Figure 5.2.
The figure demonstrates that the winning probability of Vaidman’s game linearly increase with
the sum of residual concurrences for W -type states. Furthermore, the plot also indicates that the
winning probability of Vaidman’s game is always greater than the classical winning probability
for W -type states having sum of two-qubit concurrences greater than 1. Moreover, the highest
winning probability of 0.875 can be achieved for a = b = c = 1√

3
, which is for the standardW state,

given in Eq. (1.15).
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Figure 5.3 : Success probability of winning Vaidman’s game usingWn states

Although the use of non-maximally entangled states as resources, in general, leads to
probabilistic information transfer [Karlsson and Bourennane, 1998; Shi and Tomita, 2002], Pati and
Agrawal [Agrawal and Pati, 2006] have shown that there exists a special class of W -type states
which can be used for perfect teleportation and dense coding. Such states can be represented as

|Wn⟩=
1√

2(1+n)
(|100⟩+

√
neiγ |010⟩+

√
n+1eiδ |001⟩) (5.2)

where n is a positive integer and δ and γ are relative phases. The efficient applications of these
states [Agrawal and Pati, 2006] in quantum information and computation led to address the role of
non-maximally entangled states in quantum information processing [White et al., 1999;Mozes et al.,
2005;Wang et al., 2009; Liang et al., 2013]. Considering their usefulness as non-maximally entangled
three-qubit states in quantum information, here, the role ofWn states is further investigated for their
utility in Vaidman’s game as well. It is observed that the winning probability of the game while
the player share Wn states as resource is given by 1

8(n+1)(5+5n+
√

n+1+
√

n(
√

n+1+1)). Unlike
the case of general GHZ or W states where the success probability exceeds the classical limit only
after a certain threshold as measured by an entanglement measure, Figure 5.3 clearly depicts that
if the three players shareWn states, then the success probability is always greater than the classical
success probability, independent of the value of sum of residual concurrences. Interestingly, the
figure further shows the dependence of winning probability of the game on state parameter n. The
plots highlight that the highest winning probability is 0.86425, which is attained for n = 1when the
sumof three residual concurrences is 1.914. Nevertheless, thewinningprobability is always greater
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than the one obtained using classical strategies. The analysis presented here from the perspective of
Vaidman’s game adds another dimension to the importance ofWn states as resources in comparison
to other non-maximally entangledW or GHZ states.

5.2.3 A comparison of the use of GHZ andW states
The above analysis suggests that although a standard GHZ state achieves 100% success

probability in winning the Vaidman’s game which is more than the 87.5% winning probability
achieved by the standard W or 86.4% winning probability achieved by the W1 state; only the set
of GHZ-type states with a value of τ > 0.25 are useful for obtaining the success probability greater
than the one obtained using classical strategies. However, GHZ stateswith τ > 0.5625 and τ > 0.5307
give better results as compared to standard W state, and W1 state, respectively. In addition, only
limited class ofW -type states with the sum of three residual concurrences greater than one, can be
beneficial for winning the game. However, a special class of W -type states, i.e. Wn states always
result in better prospects of winning the Vaidman’s game, in comparison to any classical resource
or strategy, for all values of n and sum of three residual concurrences.

5.3 A TWO-PLAYER GAMEWHERE THE FACILITATOR IS ENTANGLEDWITH BOTH THE PLAYERS
The basic premise of Vaidman’s game can be efficiently utilized in another interesting

game set-up, where the rule-maker itself is entangled with the players playing a two-player
Vaidman-type game. In our proposed game, Alice, Bob, and Charlie share a three-qubit entangled
state. Charlie prepares the state and distributes one particle each to Alice (A) and Bob (B), keeping
one (C) particle with himself. Charlie strikes a deal with Alice and Bob, and agrees to help them if
theywin the game as per the rules defined by him. For this, Charlie measures his qubit in a general
basis given by

|b0⟩= sinλ |0⟩− cosλ |1⟩; |b1⟩= cosλ |0⟩+ sinλ |1⟩ (5.3)

Charlie, after completing his measurement, asks one of the questions “What is X?” or “What is Z?”
to the team. In the proposed game, Alice and Bob are not allowed to discuss their answers to the
questions asked, and have to announce their individual answers. Since the answers correspond
to measurement outcomes, their answers can be either +1 or −1. If the team is asked the X (Z)
question, both Alice and Bob measure their qubits in X (Z) basis and announce their measurement
outcomes as answers to the asked questions. Charlie decides the rules of the game based on his
measurement outcomes, i.e.,

|b0⟩C : {MX
A }{MX

B }= 1 {MZ
A}{MZ

B}=−1 (5.4)

|b1⟩C : {MX
A }{MX

B }=−1 {MZ
A}{MZ

B}= 1 (5.5)

If Charlie’s measurement outcome is |b0⟩, he declares the winning condition to be the one listed in
Eq. (5.4), and if his measurement outcome is |b1⟩, he declares the winning condition to be the one
listed in Eq. (5.5). Here, {MX

i } represents the measurement outcome when the ith player measures
her/his qubit in the X basis, and {MZ

i } represents the measurement outcome when the ith player
measures her/his qubit in the Z basis.

In order to study the use of different quantum resources in this game, firstly it is considered
that Charlie prepares a three-qubitW state as shown in Eq. (1.15). Clearly, the success probability
of the team to win this game depends on the parameter λ - governing the basis in which Charlie
performs a measurement. The winning probability is evaluated to be 0.916667− 0.833334cos2λ .
Figure 5.4 shows a plot of winning probability with respect to the parameter λ . The maximum
winning probability that a team of two players can achieve is 0.9167 for λ =

π
2
, i.e., when Charlie
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Figure 5.4 : Success probability of winning the proposed game where the rule-maker is entangled with
the players using a standardW state

measures his qubit in computational basis (|b0⟩= |0⟩ and |b1⟩= |1⟩). On the other hand, if Charlie
measures his qubit in the basis represented as |b0⟩ = |1⟩ and |b1⟩ = |0⟩, i.e. when λ = 0◦, then
the winning probability is only 0.0833, i.e. it is highly probable that the team looses the game
as opposed to classical winning probability of 0.5. Thus, if Charlie wants to make an easy deal
for the team, and eventually help them, he prefers to prepare a standard W state and performs
measurement in the computational basis (|b0⟩ = |0⟩ and |b1⟩ = |1⟩) so that the team can win the
game with a success rate of 91.667%. In this situation, the use of quantum strategy suggested by
Charlie is always preferred over classical strategies for the team of Alice and Bob.

For further analysis, it is considered that Charlie prepares a three-qubit GHZ state as shown
in Eq. (1.14) and shares the respective qubits with Alice and Bob. In this case, the team has only
50% winning probability irrespective of the measurement basis used by Charlie, which is in fact
equivalent to the players opting for any classical strategy, i.e. where the team does not measure
its qubits, but randomly announce answers as +1 or −1. However, Charlie can change the set of
questions as X andY , instead of X and Z andmay ask Alice and Bob to performmeasurements in X
and Y basis, respectively. Therefore, in such a game set-up, the measurement outcome dependent
rules of the game would also be altered to

|b0⟩C : {MX
A }{MX

B }=−1 {MY
A}{MY

B}=+1 (5.6)

|b1⟩C : {MX
A }{MX

B }=+1 {MY
A}{MY

B}=−1 (5.7)

Hence, if Charlie obtains |b0⟩ as his measurement outcome, then Alice’s and Bob’s outcomes must
satisfy Eq. (5.6). On the contrary, if Charlie obtain |b1⟩ as his measurement outcome, then the
outcomes of the team should satisfy Eq. (5.7). The success probability of a teamwinning this game
is 0.5(1+sin2λ ), and themaximumwinning probability of 1 is attained for λ =

π
4
, i.e., whenCharlie

performs a measurement in diagonal basis (|−⟩, |+⟩). In general, Figure 5.5 describes the winning
probability of the team for different values of themeasurement parameter λ , when the team shares
a standard GHZ state as a resource. Interestingly, for this game set-up, the standard GHZ state leads
to a winning probability which is always better that the best classical strategy irrespective of the
measurement basis used by Charlie. However, the same is not true if one uses the W state as a
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Figure 5.5 : Success probability of winning the proposed game where the rule-maker is entangled with
the players using a standard GHZ state

resource in this set-up as the winning probability shows better results only for a certain range of
the measurement parameter λ .

Table 5.1 : Winning probability of the three-qubit proposed game in a noisy environment

Quantum State Noise Winning probability of the game

W state

Amplitude damping 0.75−0.1667D1 −0.1667D2

+0.1667
√
(1−D1)(1−D2)

Depolarizing channel 0.91667−0.45833D1 −0.45833D2

+0.229167D1D2

Phase flip channel 0.91667−0.333D1 −0.333D2

+0.667D1D2

GHZ state
Amplitude damping 0.5+0.5

√
(1−D1)(1−D2)

Depolarizing channel 1−0.75D1 −0.75D2 +0.75D1D2

Phase flip channel 1−D1 −D2 +2D1D2

5.3.1 Analysis of the proposed game in presence of noise
In this subsection, the proposed game discussed above is analysed in a noisy environment

to study the nature and robustness of these states under real conditions. This analysis also enables
one to study the effect of decoherence on the success rate of the proposed game. It is considered that
Charlie prepares a three-qubit state and sends two qubits to Alice and Bob for the game to proceed.
These qubits pass through a noisy channel, degrading the correlation between qubits of the state,
and thus the success probability of the team (Alice and Bob) may also get affected. The quantum
state ρ after passing through a noisy channel changes to ε(ρ) such that ε(ρ) = ∑i EiρE†

i where
Eis are the operation elements of noise. For our purpose, phase flip, depolarizing, and amplitude
damping noisy channels (Section 1.3.5) are considered to study the effect of decoherence on the
success probability. In order to compare the effect of three noisy channels on the game using
standard W state as a resource, firstly the winning probability of the players is evaluated under
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Figure 5.6 : Success probability of winning the game with respect to noise parameter (D1 = D2) using
the standard W state

Figure 5.7 : Success probability of winning the game with respect to both the noise parameters (D1 ̸=
D2) using the standard W state

noisy conditions in the game. The success probability in such cases is/are listed in Table 5.1.
Figure 5.6 demonstrates the success probability of the game with respect to noise parameter D1
(associated with the noisy channel through which qubit is sent to Alice), assuming that the noise
parameters on Alice’s (D1) and Bob’s (D2) qubits are equal. Further, a 3-D plot is shown in Figure
5.7 displaying variance between thewinning probability of the gamewith the twonoise parameters
D1 and D2. Figure 5.6 and 5.7 clearly demonstrate that the winning probability of the game under
phase flip noise is more than the winning probability of the game under amplitude damping noise
for a large range of noise parameters, and more than the winning probability of the game under
depolarizing noise for all noise parameters. Further, the success rate of the game under the phase
flip noise is always more than the classical winning probability (0.5). Moreover, our results show
thatwhen the players share aW state, thewinning probability ismore robust towards an amplitude
damping channel in comparison to a depolarizing channel. In both the cases however, the success
probability falls below the classical winning probability, for higher values of noise parameters. In
addition, the winning probability of the game is discussed when a GHZ state is shared in a noisy
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Figure 5.8 : Success probability of winning the gamewith respect to noise parameter (D1 = D2) using a
maximally entangled GHZ state

Figure 5.9 : Success probability of winning the game with respect to both the noise parameters (D1 ̸=
D2) using a maximally entangled GHZ state

environment. The results are depicted in Figures 5.8 and 5.9. Figure 5.8 shows the relation between
winningprobability of the game and the noise parameterD1 assuming thatD1 =D2. Further, Figure
5.9 describes the effect of both the parameters on the success probability of the game. These plots
indicate that when both the noise parameters are equal, the game is resistant to phase flip as well
as amplitude damping channel, because the thenwinning probability of the game is almost always
greater than the classical winning probability (0.5). However, in case of depolarizing channel, for
high value of the noise parameter, winning probability falls below the classical case. Moreover, for
D1 ̸= D2, only the success probability in case of an amplitude damping noise exceeds the classical
winning probability. In other noisy environments, the winning probability may fall below the
classical success probability depending on the ranges of D1 and D2.

5.3.2 Applications in quantum cryptography
Since the winning conditions of Vaidman’s game are nothing but the premise of QSS

protocol, a relation is proposed with applications in secret sharing. The set-up is such that two
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players, Alice and Bob are kept in two different cells, and are partially disallowed to communicate.
Here, partial communication means a type of controlled communication where the players can
communicate only under the presence of a facilitator or a controller (Charlie in our case). The
facilitator listens the message and has the authority to permit or not permit any communication
between the two. In order to accomplish this task, it is preferred to exploit the properties of a
standard W state over the use of a W1 state. The reason for such a preference lies in the success
rate of winning Vaidman’s game which is 87.5% when a standard W state is shared, as opposed
to 86.425% when a W1 state is shared among the team members. Moreover, it is considered that
Charlie performs his measurement in the basis as shown in Eq. (5.3) at λ =

π
2
.

Table 5.2 : The control mode of facilitated information sharing

Charlie’s measurement outcome |1⟩ |1⟩ |1⟩ |1⟩ |1⟩ |1⟩

Alice’s basis Z Z X X X X
Bob’s basis Z X Z X X X

Is the choice of basis accepted? yes no no yes yes yes
Alice’s measurement outcome +1 - - +1 −1 +1
Bob’s measurement outcome +1 - - +1 +1 −1

Correlation as expected? X - - × X X
Alice and Bob are asked to announce their outcome and it is checked if

their results comply with (12) in more than or equal to 75% cases

Table 5.3 : The message mode of facilitated information sharing

Charlie’s measurement outcome |0⟩ |0⟩ |0⟩ |0⟩ |0⟩ |0⟩

Alice’s basis choice X X X Z Z Z
Bob’s basis choice X X Z X Z Z

Basis choice accepted? yes yes no no yes yes
Alice’s measurement outcome |+⟩ |−⟩ - - |0⟩ |1⟩
Bob’s measurement outcome |+⟩ |−⟩ - - |1⟩ |0⟩

|0⟩ and |+⟩ correspond to secret bit: 0
|1⟩ and |−⟩ correspond to secret bit: 1

Let Charlie announce that Bob should flip his outcome whenever he
chooses Z basis for measurement

Shared secret bit 0 1 - - 0 1

To share a secret key, Charlie begins by randomly opting for either of the two different
modes, namely control mode or message mode. The control mode corresponds to Charlie’s
measurement outcome |1⟩, and is used to check the authenticity of Alice and Bob, as shown in
Table 5.2. Similarly, the message mode corresponds to Charlie’s measurement outcome |0⟩, and
is used to share a secret key with Alice and Bob, as depicted in Table 5.3. Thus, Charlie prepares
“m” standard W states as shown in Eq. (1.15) and distributes the first and second qubit of each
state to Alice and Bob, respectively keeping the third qubit with himself. Charlie, then performs a
single qubit measurement on his qubit in the computational (|0⟩, |1⟩) basis. Further, Alice and Bob
randomly choose their bases of measurement (either X or Z) and announce their respective choices
to Charlie. If they choose two different bases, then their choices are discarded. An alternative to
thismethod is that Charlie randomly chooses a basis ofmeasurement (eitherX or Z) and announces
his choice to Alice and Bob. This will ensure that both Alice and Bob performmeasurements in the
same basis that Charlie announced. This step is repeated for “m” qubits, wherein Alice and Bob
note down the measurement outcomes at each repetition.
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If Charlie gets |0⟩ as his measurement outcome, then the measurement results of Alice and
Bob will be related as in Eq. (5.4) with certainty. As discussed above, this will be the message
mode of the proposed secret sharing scheme, wherein Alice’s and Bob’s measurement outcomes
will either be same or different. The relation between their measurement outcomes is only known
to Charlie, which he announces at the end of the protocol. On the other hand, if Charlie gets |1⟩
as his measurement outcome, then the measurement results of Alice and Bob will be related as in
Eq. (5.5) in 75% cases. Since this is a control mode, Charlie secretly asks both Alice and Bob to
tell their individual measurement outcomes to him, which he verifies to check if anyone (Alice or
Bob) is cheating. If the results announced by Alice and Bob comply with the results in Eq. (5.5)
less than 75% times, then cheating is suspected. Moreover, as Alice and Bob are not allowed to
discuss, they cannot distinguish between the message mode and the control mode unless Charlie
announces. If both, Alice and Bob are asked to announce their measurement outcomes, then the
control mode of secret sharing is taking place. While, if none of them is asked to announce her/his
results, then the message mode of secret sharing occurs. If Charlie suspects cheating in the control
mode, he aborts the communication and does not announce the relation between outcomes of Alice
and Bob for message runs. However, if Charlie does not find anything suspicious, he announces in
the end, which results correspond to message and control mode, and also the relation between the
Alice’s and Bob’s measurement outcomes in the message mode. This protocol, therefore, enables
the controller to check a pair of agents for their honesty, and simultaneously allows the sharing of
a secret key between them, if both are proved honest.

Instead of sharing aW state, if players in the game share a GHZ state, then Charlie performs
his measurement in the diagonal basis as shown in Eq. (5.3) at λ =

π
4
. Here, the control

mode corresponds to the measurement outcome |−⟩ and the message mode corresponds to the
measurement outcome |+⟩. The protocol remains the same, i.e., the control mode verifies if Alice
and Bob are honest or not, and themessagemode leads to sharing of a common secret key between
Alice and Bob. In message mode, Alice and Bob randomly choose their bases of measurement
(either X orY ) and announce their choice of bases to Charlie. As earlier, if they choose two different
bases, then their choices are discarded. If Charlie gets |+⟩ as his measurement outcome, then he
knows that the measurement results of Alice and Bob are related as in Eq. (5.7) with certainty. This
will be the message mode and the relation between outcomes of Alice and Bob is only known to
Charlie, which he announces at the end of the protocol. On the other hand, if Charlie gets |−⟩ as the
measurement outcome, then the measurement results of Alice and Bob are related as in Eq. (5.6)
in all cases. Similar to the previous protocol, Charlie secretly asks both Alice and Bob to announce
their measurement outcomes. If the outcomes announced by Alice and Bob do not always comply
with the results in Eq. (5.6), then dishonesty is suspected and the protocol is aborted. Otherwise
the players proceeds further so that the three players share a secret key, as in the case described
above for theW state.

5.4 AN EXTENSION OF VAIDMAN’S GAME FORMULTIQUBIT SYSTEMS
For a three qubit system, Vaidman’s game has four set of questions, XXX , XYY , Y XY , and

YY X , with answers +1, −1, −1, and −1 respectively. On similar grounds, while sharing four, five,
and six qubit systems, 7, 15, and 30 different types of questions, can be asked to the players in the
game. For instance, if a four qubit quantum state is shared between four players, then they can be
asked the following eight questions: XXXX , XXYY , XY XY , XYY X , Y XXY , Y XY X , YY XX , YYYY , i.e.
all X questions, all Y questions, or two X and two Y questions. Depending on the different set of
questions that can be asked in a game, various different games can be formulated. For example, in
case of four players, one can formulate a single game. On the other hand, for a five and six players
scheme, one can design two and three distinct games respectively.
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In addition, for more than three-player games, it was found that sharing aW state between
the players was not beneficial as it leads to lesser winning chances as compared to the one achieved
classically. Therefore, with the increase in system’s complexity and the number of players,W states
are not of much use for this type of game. The GHZ states however are still useful and can be used
as shared resources among the players, with a success probability of 100%. Table 5.4 describes the
rules of different four, five, and six player games and their winning conditions when the following
defined four, five, and six qubit GHZ states are shared between players, respectively.

|GHZ4⟩=
1√
2
(|0000⟩− |1111⟩) (5.8)

|GHZ5⟩=
1√
2
(|00000⟩− |11111⟩) (5.9)

|GHZ6⟩=
1√
2
(|000000⟩− |111111⟩) (5.10)

For example, in a four-player game, either all players are asked the X question or two are asked
X and two are asked Y question. The game is won if the product of player’s answers is −1 when
all are asked X question, and if the product of the player’s answers is +1 when two are asked the
X question and remaining two are asked the Y question. Classically the success probability of the
game can not exceed 0.8517. However, a four qubit GHZ state with τ4 ≥ 0.51 always gives better
winning probability than the classically achieved probability. Moreover, the players always win
the game, when a maximally entangled GHZ state is shared.

Similarly in a five-player game, there are two possibilities of questionnaires. In the first one,
either all players are askedX question, or twoplayers are askedY question, and the remaining three
are asked X question. In order to win the game, the team’s answers must product to −1 in case of
all X questions, and+1 in case of two Y and three X questions. The maximumwinning probability
of the game by all classical means is 0.909. However, by sharing a five qubit GHZ class state with
τ5 ≥ 0.67, the players achieve higher winning probability for the game, than by classical methods.
In another five-player game set-up, either two players are asked Y question and remaining three
players are asked X question, or all except one player (who is asked X question) are asked Y
question. Whenever two players are asked Y question, then product of their answers should be
+1, and whenever four players are asked Y question, then product of their answers should be −1.
Although, classically this game can be won with a success probability 0.6667, sharing a five-qubit
GHZ state with τ5 ≥ 0.11, always leads to better winning prospects than the classical success rate.
Moreover, sharing a maximally entangled five-qubit GHZ state results in a 100% win for the team.
Table 5.4 further lists the outcomes of different six player games with the GHZ states as resources.

5.5 A THREE-PLAYER GAMEWHERE THE FACILITATOR IS ENTANGLEDWITH THE THREE PLAYERS
The following game is an extension of the game proposed in Section 5.3. In this game,

Alice, Bob, Charlie, and Dave share a four-qubit GHZ state defined in Eq. (5.8). Dave prepares a
four-qubit state and gives one qubit each to Alice (A), Bob (B), and Charlie (C), keeping one (D)
qubit with himself. Here, Dave is the rule-maker and thus, he decides the winning conditions for
the team (Alice, Bob, and Charlie). For this, Dave measures his qubit in a general basis as shown
in Eq. (5.3), and then asks questions “What is X?” or “What is Y?” to the team. Alice, Bob, and
Charlie can individually give answer as+1 or−1 and are not allowed to discuss before answering.
A player who is asked the X (Y ) question, measures her/his qubits in X (Y ) basis and gives her/his
measurement result as the answer.

{MX
A }{MX

B }{MX
B }=+1 {MX

A }{MY
B}{MY

C} =−1

{MY
A}{MX

B }{MY
C}=−1 {MY

A}{MY
B}{MX

C } =−1
(5.11)
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Table 5.4 : Generalization of Vaidman’s Game for Multi-qubit Systems

Number Winning conditions for the game Classical Range of n-tangle
of winning τn of GHZ states

players probability for which quantum
strategies outperform
classical strategy

4 XXXX =−1 0.8517 0.51 ≤ τ4 ≤ 1

Game 1 XXYY = XY XY = XYY X = Y XXY

= Y XY X = YY XX =+1

5 XXXXX =−1 0.909 0.67 ≤ τ5 ≤ 1

Game 1 YY XXX = Y XY XX = Y XXY X = Y XXXY

= XYY XX = XY XY X = XY XXY = XXYY X

= XXY XY = XXXYY =+1

5 YY XXX = Y XY XX = Y XXY X = Y XXXY 0.6667 0.11 ≤ τ5 ≤ 1

Game 2 = XYY XX = XY XY X = XY XXY

= XXYY X = XXY XY = XXXYY =+1

XYYYY = Y XYYY = YY XYY

= YYY XY = YYYY X =−1

6 XXXXXX =−1 0.9375 0.765 ≤ τ6 ≤ 1

Game 1 YY XXXX = Y XY XXX = Y XXY XX = Y XXXY X

= Y XXXXY = XYY XXX = XY XY XX = XY XXY X

= XY XXXY = XXYY XX = XXY XY X = XXY XXY

= XXXYY X = XXXY XY = XXXXYY =+1

6 YY XXXX = Y XY XXX = Y XXY XX = Y XXXY X 0.5 0 ≤ τ6 ≤ 1

Game 2 = Y XXXXY = XYY XXX = XY XY XX = XY XXY X

= XY XXXY = XXYY XX = XXY XY X = XXY XXY

= XXXYY X = XXXY XY = XXXXYY =+1

XXYYYY = XY XYYY = XYY XYY = XYYY XY

= XYYYY X = Y XXYYY = Y XY XYY = Y XYY XY

= Y XYYY X = YY XXYY = YY XY XY = YY XYY X

= YYY XXY = YYY XY X = YYYY XX =−1

6 XXYYYY = XY XYYY = XYY XYY = XYYY XY 0.9375 0.765 ≤ τ6 ≤ 1

Game 3 = XYYYY X = Y XXYYY = Y XY XYY = Y XYY XY

= Y XYYY X = YY XXYY = YY XY XY = YY XYY X

= YYY XXY = YYY XY X = YYYY XX =−1

YYYYYY =+1
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Figure 5.10 : Success probability of winning the proposed gamewhere the rule-maker is entangled with
the players using a four-qubit maximally entangled GHZ state

{MX
A }{MX

B }{MX
B }=−1 {MX

A }{MY
B}{MY

C} =+1

{MY
A}{MX

B }{MY
C}=+1 {MY

A}{MY
B}{MX

C } =+1
(5.12)

If Dave’s measurement outcome is |b0⟩, the winning condition for the game is as shown in
Eq. (5.11), and if his measurement outcome is |b1⟩, the winning condition for the game is as shown
in Eq. (5.12). Here, {MX

i } is the measurement outcome when the ith player measures her/his qubit
in X basis, and {MY

i } is the measurement outcome when the ith player measures her/his qubit in Y
basis. Whenever Dave prepares a maximally entangled four-qubit state as shown in Eq. (5.8), the
success probability of the game depends on the parameter of basis in which the measurement is
performed. Figure 5.10 shows the relation between thewinningprobability of the team for different
values of parameter λ . Clearly λ is a controlling parameter that controls the winning probability
of the game for the other three players. From Figure 5.10, it can be observed that the maximum
winning probability (1) is achieved for λ =

π
4
, i.e., if Dave measures his qubit in diagonal basis |−⟩,

|+⟩, the above game is always won by the players. Classically such a game can only be won half
the times, when the team gives random answers to the asked questions. Similarly, one can also
generalize different n-player games in higher dimensions, where the facilitator is entangled with
the players in the team. Such multi-player games can also be extended so as to share a secret key
among the players in a similar manner as described in the subsection 5.3.2.

5.6 CONCLUSIONS
In this work, the role of degree of entanglement was addressed for Vaidman’s game. The

relation between the success probability of winning the Vaidman’s game by sharing an entangled
quantum statewith the degree of entanglement of the shared state has been established. The results
obtained here indicate that entanglement and quantum strategies may not always be beneficial in
winning a quantum game. For instance, we found that there are set of GHZ class andW class states,
forwhich classical strategies give better results (in terms of gamewinning prospects) than quantum
strategies. On the other hand, for the special class of W -type states, i.e., Wn states, quantum
strategies are always better than the classical strategies inwinning the Vaidman’s game. Moreover,
we established a similarity between the Vaidman’s game using general three-qubit pure states and
the QSS protocol. Further, we also proposed an efficient game, where the player deciding the rules
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of the game (also termed as the controller) is itself entangled with other two players. The proposed
game may find an application in facilitated secret sharing, where a facilitator examines players for
their honesty and simultaneously controls the process of sharing information between them.

These games are also studied under real situations, i.e., by taking into account the
success probability of the game under noisy conditions using an amplitude damping channel, a
depolarizing channel, and a phase flip channel. Interestingly, we found that bothW andGHZ states,
when used as a shared quantum state in the game, are more robust to phase flip noise. Moreover,
GHZ states give better winning probability than that achieved classically, even when two of its
qubits pass through an amplitude damping channel. Further, our analysis has been extended for
similar games among four, five, and six players. Our analysis found that for games having more
than three players, GHZ states are a useful resource for the proposed protocol, as they help attain
100% winning probability. Precisely, the range of n-tangle is analysed for different GHZ-type states
to demonstrate the feasibility of opting quantum resources in comparison to classical strategies.
Furthermore, our analysis also confirmed that similar to the proposed there-qubit game, the
multi-qubit counterpart will also hold similar applications in the secret sharing protocol.

…
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