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Nonlocality, Entanglement, and Randomness in di erent

con icting interest Bayesian games

6.1 INTRODUCTION
Based on EPR’s argument [Einstein et al., 1935] of reality and localism, Bell designed an

inequality [Bell, 1964; Clauser et al., 1969] to delimit the boundaries between classical and quantum
correlations. The Bell inequality is violated by all two-qubit pure entangled states confirming
the presence of non-local correlations in an underlying entangled pure state. These correlations
are very important to understand the foundational aspects of quantum theory, and its wide
applicability in secure information processing, and computation [Einstein et al., 1935; Batle and
Casas, 2011; Bennett andBrassard, 1984; Ekert, 1991;Nielsen andChuang, 2011]. With the advent of
entanglement and nonlocality, the discussions regarding incommensurability of entanglement and
quantum nonlocality continued to exist- in fact it is established that entanglement and nonlocality
can be considered as distinct resources for quantum information and computation [Bennett
et al., 1999a; Horodecki et al., 2003; Brunner et al., 2005; A. Acín and Latorre, 2002; M´ethot and
Scarani, 2007]. Eventually, it was observed that quantum discord which is a measure of nonlocal
correlations even in the absence of entanglement, is a necessary resource for computational
speed-up [Brodutch and Terno, 2011; Gu et al., 2012]. Although a general intuition further suggests
direct correspondence between entanglement, nonlocality, and randomness in an experiment,
it was established that states with arbitrarily less entanglement and nonlocality can produce
randomness close to 2 bits suggesting that maximal entanglement or nonlocality do not coincide
with maximum randomness [Acin et al., 2012].

In order to efficiently analyse the benefits of nonlocality in computational tasks, a special
class of games, i.e., Bayesian games [Harsanyi, 1967a,b,c] serve as the best tool to represent
quantum correlations as they contain the required element of incompleteness. These games contain
partial information about the other player; since the type of at least one player in the game is
a random variable. The first link between Bayesian games and nonlocality was proposed to
demonstrate the relation between the game’s payoffs and Cereceda inequalities [Cheon and Iqbal,
2008; Cereceda, 2001]. Later, Brunner andLinden showed a direct correspondence between the Bell
inequality and payoffs of a general two player Bayesian game [Brunner and Linden, 2013]. They
further discussed that nonlocal correlations play a substantial role in generating efficient quantum
strategy for players to win and perform better than any classical strategy in Bayesian games.

In general, Bayesian games were studied and analysed with both players having common
interests- either they jointly won or jointly lost the game. Howbeit, in real life scenarios, the
interests of players may not always coincide, but may differ on several occasions. Conflicting
interest games [Osborne, 2003] are those in which both the players have different preferences,
like in the case of Battle of Sexes game [Osborne and Rubinstei, 1994]. On these lines, Pappa et
al. [Pappa et al., 2015] found that quantum correlations can also be used to win Bayesian games
wherein players have conflicting interests. For this, they formulated a combination of CHSH and
Battle of Sexes game, and demonstrated that for any classically correlated strategy, the sum of
average payoffs of both players can never exceed 9

8 , and a fair classical equilibrium exists at the
average payoff of each player being 9

16 . However, when the players share a maximally entangled
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two-qubit state and rely on the outcomes of various projectivemeasurements as an advise to choose
their quantum strategy, the picture turns out to be in their favour as the sum of average payoff
exceeds the classical bound of 9

8 . The fair quantum equilibrium (where sum of average payoff of
both players is 1.28) exists at the projective measurement settings which give maximum violation
for the Bell-CHSH inequality, i.e., 2

√
2 [Bell, 1964; Clauser et al., 1969]. Followed by this, some

interesting conflicting interest games have been proposed, in which the payoffs directly depend
on Bell-type inequalities [Situ, 2016; Situ et al., 2017; Rai and Pal, 2017]. Further, various three
player conflicting interest games [Situ et al., 2016; Bolonek-Lason, 2017] have also been presented,
where the payoffs hold relation to three-qubit Bell-type inequalities [Svetlichny, 1987].

Apart from Bayesian games, there are various two-player games [Wiesner, 1983; Meyer,
1999; Vaidman, 1999; Eisert et al., 1999] which demonstrate the advantages of quantum players
with respect to their classical counterparts. Although most of the games describe the usefulness of
maximally entangled Bell states, few also analyse the behaviour of non-maximally entangled states
[Kaur and Kumar, 2017, 2019], mixed quantum states [Das and Chowdhury, 2018], and the failure
of all quantum strategies [Anand and Benjamin, 2015]. Another pertinent question is the relation of
nonlocality with the degree of entanglement present in the system [Bennett et al., 1999a; Horodecki
et al., 2003; Brunner et al., 2005]. Since the foundation of Bayesian games lies on the structure of
nonlocal correlations, the effect of entanglement in an underlying state being shared by the players
in winning quantum games is studied in this chapter. For this, the game proposed by Pappa et al.
[Pappa et al., 2015] is analysed using general two-qubit pure Bell states as resources- this allows one
to analyse the behaviour of non-maximally entangled states towards playing a conflicting interest
game.

For a Bayesian game comprising a conflicting interest game and a common interest game,
we find that all pure entangled states quantum strategies surpass the classical limit to win the
game; and the total payoffs of players increases with the increase in degree of entanglement of
the shared resource. We further describe a quantum game by combining two conflicting interest
games, i.e., Battle of the Sexes game [Osborne and Rubinstei, 1994] and Chicken game [Sugden,
2005]. Precisely, the players undergo Chicken game when type of both players is Type 1, or Battle
of the Sexes game when type of at least one player is Type 0 [Brunner and Linden, 2013]. Since
both the Battle of the Sexes and Chicken games demonstrate conflicting interests of the players
involved, the analysis of quantum strategies for these games is substantial in understanding fully
conflicting interest CHSH-type Bayesian games. Surprisingly, our results indicate that the players
achieve a better payoff by sharing a set of non-maximally entangled pure states instead of the
maximally entangled pure state. Interestingly, in both game settings the total payoff of players has
a direct correspondence with the maximum expectation value of the Bell-CHSH operator for the
underlying state. Clearly, for CHSH inequality involving pure two-qubit states, less entanglement
always corresponds to a violation lesser than the one obtained using the maximally entangled
state [Popescu and Rohrlich, 1992]. Although, in both game settings, the maximally entangled
state violates the Bell-CHSH operator maximally, the setting where two conflicting interest games
are merged as a Bayesian game lead to the interesting result that a team of players sharing a set of
non-maximally entangled two-qubit pure stateswillwin the game against a teamof players sharing
the maximally entangled two-qubit Bell state. This result will be very useful in formulation of a
gamewhere non-maximally entangled states offermore benefit over themaximally entangled state
even in the settings of a CHSH inequality. Further, we also analyse two game settings for sharing
mixed entangled states sincemixed states are not exploredmuch as far as game theory is concerned.
For this, we consider the use ofWerner [Werner, 1989] andHorodecki states [Horodecki et al., 1996].
Unlike pure states, for mixed states, quantum strategies only offer an advantage over a certain
range of state parameters. In fact, our results show that classical strategies may be more useful
than quantum strategies for the use of mixed states even in the range where mixed states violate
the Bell-CHSH inequality. Therefore, well within the limitations of the discussed game settings,
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mere violation of the Bell-CHSH inequality may not guarantee a team of quantum players a win
over their classical opponents.

Moreover, considering that the use of tilted Bell-CHSH operator leads to high randomness
when sharing a non-maximally entangled state, we further propose an efficient demonstration
of a tilted version of Bell-CHSH inequality [Acin et al., 2012] as common interest and conflicting
interest Bayesian games. To the best of our knowledge, the analysis of tilted Bell-CHSH inequality
has not been proposed under the premise of game theory even for a pure two-qubit maximally
entangled Bell state. The extra term representing tilt in the expression for the tilted Bell-CHSH
inequality prompted us to study the inequality under the framework of game theory. For this, we
demonstrate a model to analyse the tilted Bell-CHSH inequality in the framework of a quantum
game for general two-qubit entangled pure states as well as mixed states. For pure states,
we observe that the quantum game where conflicting interest games are merged as a Bayesian
game results in a much larger set of non-maximally entangled states offering advantage over the
maximally entangled state as opposed to the quantum game where common interest games are
merged. On the other hand, for mixed states the use of Horodecki states, where common interest
games are merged, leads to quantum advantage for a relatively larger set of Horodecki states
in comparison to the quantum game where conflicting interest games are merged. Our analysis
suggests a similar observation in case of another important class ofmixed states [Singh andKumar,
2018c]; where the set of states offers a relatively better payoff than Horodecki states within the
settings of the discussed game.

6.2 STRUCTURE OF BAYESIAN GAMES THAT HOLDS DIRECT RELATIONWITH THE CHSH INEQUALITY
The structure of a CHSH game described in Section 1.5.3 can be utilized in the settings of

a Bayesian game [Brunner and Linden, 2013], where the players are of different types (‘xA’ and
‘xB’) depending on the inputs (‘x’ and ‘y’) they receive from the referee. For instance, input x = 0
corresponds to type 0 of Alice, i.e., xA = 0; input x = 1 corresponds to type 1 of Alice, i.e., xA = 1;
input y = 0 corresponds to type 0 of Bob, i.e., xB = 0; and input y = 1 corresponds to type 1 of Bob,
i.e., xB = 1. Moreover, outputs (‘a’ and ‘b’) define the strategies (‘yA’ and ‘yB’) that the players opt
for. Thus, in order to maintain the structure of a Bayesian game similar to the winning conditions
of a CHSH game, when xA = xB = 0, or xA ̸= xB, Alice and Bob get a non-zero payoff on choosing
strategies (yA and yB) such that yA⊕2 yB = 0. Similarly, to satisfy the CHSH setting, when xA = xB = 1,
the players get a non-zero payoff on choosing strategies yA(yB) = 0(1) or yA(yB) = 1(0). Hence, the
overall condition of win in a CHSH game (xA · xB = yA ⊕2 yB) enables quantum players to exploit
nonlocal correlations existing in the shared quantum system in order to win the game. Table 1.6
shows the payoffs attained by different types of Alice and Bob in a game with the above defined
settings. In each cell, the first number represents the payoff of Player 1, i.e., Alice, and the second
number represents the payoff of Player 2, i.e., Bob. The diagonal and off-diagonal terms appearing
in the two payoff matrices are results of winning conditions of the game.

6.3 COMBINATIONS OF COORDINATION AND ANTI-COORDINATION GAMES
Coordination and anti-coordination games are those in which there is no fixed dominant

strategy for a player. The players should coordinate (or anti-coordinate) in order to attain
maximum payoff for themselves, in a respective game. Coordination means that players choose
same or corresponding strategies at equilibria. On the other hand, anti-coordination signifies
that the players choose different strategies or strategies different from the corresponding ones, at
equilibria. Hence both games have multiple NE. In order to maintain the set-up of a game defined
in Table 1.6, the players should coordinate and choose same strategies at equilibrium, when the
logical AND of the type of players (xA and xB) is 0; and should anti-coordinate and choose different
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strategies at equilibrium, when the logical AND of the type of players (xA and xB) is 1.

6.3.1 The combination of a con icting interest (Battle of the Sexes game) and a common
interest game
Battle-of-the-Sexes (BoS) game is a two-player coordination game, where two players, a

man and a woman wish to spend an evening together. However they have different choices about
spending time together. The woman prefers to watch a movie whereas the man prefers to watch
a football match. Table 1.3 shows the payoffs of man and woman in the game. One can see that
there is no fixed dominating strategy for any player. Still, if man watches a football match, then
woman gets a better payoff by opting for the same. Similarly, if womanwatches amovie, thenman
gets a better payoff by opting to go for the movie. Thus, {Football,Football} and {Movie,Movie}
are two pareto-optimal NE of the game. Further, the game is a conflicting interest one, since man
prefers the {Football,Football} equilibrium, andwoman prefers the {Movie,Movie} equilibrium. In
contrast the common interest games are those in which both players benefit equally by opting for
a NE strategy, and do not have any preference over the other [Osborne and Rubinstei, 1994].

For our purpose, BoS game is combined with a common interest anti-coordination game
to demonstrate the role of quantum strategies in Bayesian games with CHSH-type dependence on
payoffs. When the logical AND of the type of players is 0, then the players play the coordination
BoS game and when the logical AND of the type of players is 1, then the players play an
anti-coordination game, the payoffs of which are defined in Table 6.1. Here, the usefulness

PPPPPPPPPAlice
Bob

yB = 0 yB = 1

yA = 0 16
9 ,

8
9 0,0

yA = 1 0,0 8
9 ,

16
9

PPPPPPPPPAlice
Bob

yB = 0 yB = 1

yA = 0 0,0 4
3 ,

4
3

yA = 1 4
3 ,

4
3 0,0

(a) xA · xB = 0 (b) xA · xB = 1

Table 6.1 : Payo sofAlice andBobwhen they either play a con icting interest coordinationgame similar
to the Battle of Sexes game or a common interest anti-coordination game

of general two-qubit pure Bell states as well as mixed quantum states (Werner and Horodecki
states) is elaborated instead of a maximally entangled state [Pappa et al., 2015] when the quantum
strategies correspond to performing different single-parameter measurements on the qubits.

Classical scenario
There can be 16 different classical strategies since yA and yB can take two different (0 or 1)

values, respectively, for two different (0 or 1) individual values of xA and xB. After analysing all
possible classical strategy sets, one can conclude that for no classical strategy, the total payoff of
the players exceeds 2. In addition, there are three NE for the game, i.e.,

• yA = 0 irrespective of the value of xA and yB = xB : This strategy leads to a pareto-optimal NE
preferred by Alice since Alice gets a payoff of 11

9 and Bob gets a payoff of 7
9 ;

• yA = xA and yB = xB : This strategy also leads to a pareto-optimal NE preferred by none of the
players since both players get an equal payoff of 1; and

• yA = xA and yB = 1 irrespective of the value of xB : This strategy further leads to a
pareto-optimal NE preferred by Bob since Alice gets a payoff of 7

9 and Bob gets a payoff of
11
9
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Quantum scenario
However, the situation becomes different when the players are allowed to share an

entangled quantum state. Let us assume that the probability of Alice to be of type 0 (xA = 0) be
‘p’ and the probability of Bob to be of type 0 (xB = 0) be ‘q’. By using any quantum strategy thereof,
the sum of payoff of Alice ($A) and payoff of Bob ($B) is given as

$A +$B =
8
3
[
pq
(
P00

00 +P11
00
)
+ p(1−q)

(
P00

01 +P11
01
)
+(1− p)q

(
P00

10 +P11
10
)

+(1− p)(1−q)
(
P01

11 +P10
11
)] (6.1)

where probability Pkl
i j is defined as a product of two conditional probabilities, i.e., P(yA = k|xA =

i)P(yB = l|xB = j). In game theory, the notion ‘$’ represents payoff to a player in a game which
may be considered as an incentive to the player for using a certain strategy. The payoff may be
monetary or more spiritual such as happiness quotient. If there are two players Alice and Bob in
the game then ‘$A’ and ‘$B’ represents payoff of Alice and Bob in the game. Further, the coefficient
8
3 in Eq. (6.1) appears because of the values assumed as payoffs of players in Table 6.1. Moreover,
the structure of the designed game requires that the sum of payoffs of both players in the games
in Table 6.1 (a) and Table 6.1 (b) should be same, just as in our case, i.e., 16

9 + 8
9 = 4

3 +
4
3 = 8

3 .
Since the game in Table 6.1 (a) is a payoff representation of Battle-of-Sexes game, it must obey
certain conditions such as, $A > $B for strategies yA = 0 and yB = 0, and $A < $B for strategies
yA = 1 and yB = 1. The coefficient term could be any non-negative number. The payoff values are
taken as an example of a Bayesian game combining a conflicting interest coordination game and
a common interest anti-coordination game. Assuming the strategies yA = 0 and yB = 0 correspond
to measurement outcomes yielding positive eigenvalue (+1), and strategies yA = 1 and yB = 1
correspond to measurement outcomes yielding negative eigenvalue (−1); the expectation value
E(i j) = E(xA = i,xB = j) can be defined as P00

i j −P01
i j −P10

i j +P11
i j . Thus the total payoff of players can

be re-expressed as

$A +$B =
4
3
[
1+ pqE(00)+ p(1−q)E(01)+(1− p)qE(10)− (1− p)(1−q)E(11)

]
(6.2)

For simplicity, it is assume that p = q = 1
2 . Under this assumption, the sum of the payoffs of Alice

and Bob hold a direct relation with the Bell-CHSH operator ⟨B⟩ [Bell, 1964] as

$A +$B =
4
3

[
1+

⟨B⟩
4

]
(6.3)

In order to attain a better payoff in the quantum scenario in comparison to classical scenario, it is
considered that Alice and Bob share a general two-qubit entangled quantum state. If xA and xB are
types of Alice and Bob, respectively, and yA and yB are their respective moves in the game, then
the measurements performed by them as a team on their qubits can be represented as AyA

xA and ByB
xB

[Pappa et al., 2015], where

Aa
0 = |Φa(0)⟩⟨Φa(0)|,

Aa
1 = |Φa(

π
4
)⟩⟨Φa(

π
4
)|,

Bb
0 = |Φb(λ )⟩⟨Φb(λ )|,

Bb
1 = |Φb(−λ )⟩⟨Φb(−λ )|

(6.4)

The basis of measurement |ϕ0(θ)⟩ and |ϕ1(θ)⟩ are the same as |v0(θ)⟩ and |v1(θ)⟩ respectively, as
defined in Eq. (1.32).

Moreover, one can also relate this quantum strategy with the experimental settings in a
Bell-CHSH experiment [Bell, 1964; Clauser et al., 1969]. For example, in a Bell-CHSH experimental
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set-up, Alice randomly chooses to perform a measurement Q =

[
cosθ1 sinθ1e−iϕ1

sinθ1eiϕ1 −cosθ1

]
or R =[

cosθ ′
1 sinθ ′

1e−iϕ ′
1

sinθ ′
1eiϕ ′

1 −cosθ ′
1

]
and similarly Bob also randomly chooses to perform a measurement S =[

cosθ2 sinθ2e−iϕ2

sinθ2eiϕ2 −cosθ2

]
or T =

[
cosθ ′

2 sinθ ′
2e−iϕ ′

2

sinθ ′
2eiϕ ′

2 −cosθ ′
2

]
, on their respective qubits. The expectation

value of Bell-CHSH operator thus designed is equal to E(QS) + E(RS) + E(RT )− E(QT ) which
is same as the expectation value of Bell-CHSH operator ⟨B⟩ obtained in Eq. (6.3). However,
the measurements performed by Alice and Bob as quantum strategies in the game (Eq. (6.4))
correspond to themeasurements in the experimental set-upwhen θ1 = 0, θ ′

1 =
π
2 , θ2 = 2λ , θ ′

2 =−2λ ,
and ϕ1 = ϕ ′

1 = ϕ2 = ϕ ′
2 = 0. This can also be termed as restricted one parameter (λ ) measurements.

The above set of measurements are choosen so as to achieve maximum expectation value of the
Bell-CHSH operator for a general two-qubit Bell state. Nevertheless, quantum advantage can still
be witnessed in a wide class of pure and mixed states.

Figure 6.1 : Relation between the sum of payo s of players with the concurrence for a combination
of BoS and common interest anti-coordination games when di erent quantum states are
shared among the players

Furthering proceeding to analyse the total payoff of players in the game, it is considered
that Alice and Bob share a general two-qubit Bell state given by

|ϕ⟩Bell = cosθ |00⟩+ sinθ |11⟩ (6.5)

Clearly, the state in Eq. (6.5) violates the Bell-CHSH inequality for all values of θε(0, π
4 ], and the

violation increaseswith the increase in degree of entanglement of the shared state, i.e, the Bell-CHSH
inequality is maximally violated by the maximally entangled state, and not by a non-maximally
entangled state. The total payoff of both players sharing a general two-qubit Bell state can be
evaluated as

$A +$B =
2
3
[
2+ sin2θsin2λ + cos2λ

]
(6.6)

One can see that the same value of total payoff can be achieved when players share a two-qubit
arbitrary state |ψarbitrary⟩= cosθ |00⟩+ eiϕ sinθ |11⟩, and perform measurements given in Eq. (6.4) in
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an arbitrary orthogonal basis given by |ϕ0(θ)⟩= cosθ |0⟩+eiϕ/2sinθ |0⟩ and |ϕ1(θ)⟩=−e−iϕ/2sinθ |0⟩+
cosθ |1⟩. Moreover, it can be evaluated that the maximum value of the summed payoff in Eq.

(6.6) is achieved at λ =
1
2

tan−1
(
sin2θ

)
. Thus, the black line in Figure 6.1 shows that the sum of

payoffs of Alice and Bob thereof always exceeds the classical bound (red line) of 2. In other words,
general two-qubit pure Bell states offer quantum advantage for all values of state parameter θ in
a CHSH-type Bayesian game setting including conflicting and common interest games. Therefore,
although themaximally entangled Bell state gives maximum total payoff of 2.276, non-maximally
entangled Bell states for 0 < θ <

π
4
also give better total payoff than any other classical strategy.

As examples of mixed states for this scenario, Werner class states [Werner, 1989] and
Horodecki states [Horodecki et al., 1996] are considered. Firstly, the Werner states is described

as a linear combination of a Bell state |ϕ+⟩ = 1√
2

(
|00⟩+ |11⟩

)
and a maximally mixed state I4 =

|00⟩⟨00|+ |01⟩⟨01|+ |10⟩⟨10|+ |11⟩⟨11| as given below in Eq. (6.7).

ρwerner = γ|ϕ+⟩⟨ϕ+|+ 1− γ
4

I4 (6.7)

where γ is a state parameter. Acin et al. [Acín et al., 2006] have shown thatWerner states violate the

Bell-CHSH inequality only for γ >
1√
2
, i.e., even though they possess entanglement for γ

3 < γ ≤ 1√
2
,

they violate the inequality only for states having concurrence more than
3

2
√

2
− 1

2
. Moreover, the

total payoff of both the players sharing a Werner state is

$A +$B =
2
3
[
2+ γsin2λ + γcos2λ

]
(6.8)

Clearly the maximum value of the summed payoff in Eq. (6.8) is achieved at λ =
π
8
. Thus, the

blue line in Figure 6.1 shows that the sum of payoffs of Alice and Bob thereof exceeds the classical

bound (red line) of 2 for γ >
1√
2
or C = (1.5γ − 0.5) > 0.5606. In other words, Werner states offer

quantum advantage for a fixed range of state parameters only, and for γ ≤ 1√
2
, classically defined

strategies yield a better payoff than a team of Alice and Bob equipped with quantum strategies.

As mentioned above, another class of mixed states that are analysed are Horodecki states

which are defined as a linear combination of a Bell state |ψ+⟩ = 1√
2

(
|01⟩+ |10⟩

)
and a separable

state |00⟩ as shown below in Eq. (6.9)

ρhorodecki = µ|ψ+⟩⟨ψ+|+(1−µ)|00⟩⟨00| (6.9)

where µ is the state parameter. It was established that Horodecki states violate the Bell-CHSH

inequality for µ >
1√
2
, i.e., even though they possess entanglement for all values of the state

parameter, they violate the Bell-CHSH inequality only for states having concurrence greater than
1√
2
[B. Horst andMiranowicz, 2013]. Thus, the total payoff of both the players sharing aHorodecki

state is

$A +$B =
2
3
[
2+µsin2λ +

(
1−2µ

)
cos2λ

]
(6.10)
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As in the previous cases, one can calculate the maximum value of the summed payoff in Eq. (6.10)

which is achieved at λ =
1
2

tan−1 µ
1−2µ

. Therefore, the green line in Figure 6.1 demonstrates that the

sum of payoffs of Alice and Bob thereof exceeds the classical bound (in red) of 2 for C(= µ)> 0.8.
In other words, Horodecki states offer quantum advantage for a fixed range of state parameter
only. Interestingly, for the range 1√

2
< C(= µ) < 0.8, even though Horodecki states violate the

Bell-CHSH inequality, they do not provide any quantum advantage in the designed set-up of the
game. This can be attributed to the difference in measurement settings of our game from the
Bell-CHSH experimental set-up, as explained above.

Hence, any general two-qubit pure Bell state, any Werner class for γ >
1√
2
, or any

Horodecki state for µ > 0.8, can be used as a quantum resource by Alice and Bob in order to exceed
the total payoff from the classical bound of 2. In other words, a large set of pure and mixed states
have been analysed for which the above defined quantum strategy gives better summed payoff
than any strategy opted by classical players. Thus, it can be concluded that just like pure states,
mixed quantum states are also useful for the players in the game described above. However, for a
fixed value of concurrence, pure states help attain better payoff in the game than mixed states.

6.3.2 The combination of two con icting interest games (Battle of the Sexes game and
Chicken game)
In the previous subsection, the analysiswas performed for the scenariowhere players either

got engaged in a conflicting interest game or a common interest game, depending on their inputs.
In this section, an attempt ismade to combine two conflicting interest games in order to understand
the benefits of nonlocality when the players always have conflicting interests. A simple example of
conflicting interest anti-coordination game, also known as the hawk-dove game or snowdrift game,
is Chicken game [Sugden, 2005]. Firstly, Chicken game is briefly described through two drivers
who drive towards each other, and can suffer a head-on collision if both keep driving straight. On
the other hand, if one driver swerves and the other does not, the one who swerved will be named
”chicken”, signifying him as a coward. Therefore, the coward gets a lower payoff than the onewho
drives straight. However, the lowest payoff incurs when none of the players risk to be a chicken
or a coward, but rather choose to go straight, i.e., if both drivers do not swerve. Thus, there is no
dominant strategy for this game as indicated in Table 6.2. One can see that if Driver 1 goes straight,

XXXXXXXXXXXDriver 1
Driver 2 Swerve Straight

Swerve 0,0 −1,+1
Straight +1,−1 −5,−5

Table 6.2 : A payo matrix for the Chicken game

thenDriver 2 gets a better payoff by opting to swerve rather than going straight. Similarly, if Driver
2 goes straight, then Driver 1 gets a better payoff by opting to swerve instead of driving straight.
Thus {Swerve,Straight} and {Straight,Swerve} are two pareto-optimal NE of the game. Further, the
game is a conflicting interest game asDriver 1 prefers the {Straight,Swerve} equilibrium, andDriver
2 prefers the {Swerve,Straight} equilibrium. Due to no fixed dominating strategy, the game can be
termed as an anti-coordination one. Being a conflicting interest anti-coordination game involving
greed between the players, but no fear, analysing the effects of quantum strategies on such games
becomes an interesting problem. Thus, BoS game is combined with Chicken game to demonstrate
the role of quantum strategies in conflicting interest Bayesian games with CHSH-type dependence
on payoffs. For this, it is considered that when the logical AND of the type of players is 0, then the
players play the coordination BoS game and when the logical AND of the type of players is 1, then
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the players play the anti-coordination Chicken game; the payoffs of which are defined in Table 6.3.

PPPPPPPPPAlice
Bob

yB = 0 yB = 1

yA = 0 4
3 ,

2
3 0,0

yA = 1 0,0 2
3 ,

4
3

PPPPPPPPPAlice
Bob

yB = 0 yB = 1

yA = 0 0,0 −1
2 ,

5
2

yA = 1 5
2 ,−

1
2 −1,−1

(a) xA · xB = 0 (b) xA · xB = 1

Table 6.3 : Payo s of Alice and Bob when they either play a con icting interest coordination game
similar to the Battle of Sexes game or a con icting interest anti-coordination game similar
to the Chicken game

Classical scenario
For the above defined game, the maximum total payoff achieved by opting for any of the

strategies is 3
2 . Thus, there are three NE for the game, i.e.,

• yA = 0 irrespective of the value of xA and yB = xB : This strategy leads to a pareto-optimal NE
preferred by Bob since Alice gets a payoff of 13

24 and Bob gets a payoff of
23
24 ;

• yA = xA and yB = xB : This strategy also leads to a pareto-optimal NE preferred by Alice since
Alice gets a payoff of 9

8 and Bob gets a payoff of
3
8 ; and

• yA = 1 and yB = 1 irrespective of the value of xA and xB : This strategy leads to non
pareto-optimal NE since Alice gets a payoff of 1

4 and Bob gets a payoff of
3
4 .

Quantum scenario
Unlike the previous game setting, where a conflicting interest game is combined with a

common interest game, the combination of two conflicting interest games lead to some interesting
observations. Similar to the previous case, let us start with assuming the probability of Alice to
be of type 0 (xA = 0) be ‘p’ and the probability of Bob to be of type 0 (xB = 0) be ‘q’. By using any
quantum strategy thereof, the sum of payoffs of Alice and Bob is given as

$A +$B = 2
[
pq
(
P00

00 +P11
00
)
+ p(1−q)

(
P00

01 +P11
01
)
+(1− p)q

(
P00

10 +P11
10
)

+(1− p)(1−q)
(
P01

11 +P10
11 −P11

11
)] (6.11)

where the probability Pkl
i j are defined earlier. The occurrence of the factor 2 in Eq. (6.11) can also be

understood following the description of previous game setting. Further, considering the strategies
yA = 0 and yB = 0 correspond to measurement outcomes yielding positive eigenvalue (+1) and
strategies yA = 1 and yB = 1 correspond to measurement outcomes yielding negative eigenvalue
(−1), the expectation value E(i j) = E(xA = i,xB = j) can be defined as P00

i j −P01
i j −P10

i j +P11
i j . Thus

Eq. (6.11) is re-expressed as

$A +$B = 2
[1

2
+

1
2
{

pqE(00)+ p(1−q)E(01)+(1− p)qE(10)− (1− p)(1−q)E(11)
}

− (1− p)(1−q)P11
11

] (6.12)

As earlier, for simplicity, it is assumed that p = q = 1
2 . Therefore, Eq. (6.12) can be re-expressed

in terms of the Bell-CHSH operator ⟨B⟩ [Bell, 1964] along with an additional conditional probability
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term as

$A +$B = 2
[1

2
+

⟨B⟩
8

− P11
11
4

]
(6.13)

Since the game is being described under CHSH setting, it is important to note that a maximally
entangled pure state will violate the Bell-CHSH inequality maximally. Furthermore, since P11

11 > 0
and classically ⟨B⟩max = 2, these values can be replaced in Eq. (6.13) and verify that the classical
bound for this game is ≤ 3

2 .

Figure 6.2 : Relation between the sum of payo s of players with the concurrence for a combination of
BoS and Chicken games when di erent quantum states are shared among the players

Clearly, when players share a general two-qubit Bell state as given by Eq. (6.5) and perform
measurements defined in Eq. (6.4), then the total payoff of both players is

$A +$B =
1
8
[
7+5sin2θsin2λ +

(
cos2θ +4

)
cos2λ

]
(6.14)

As explained earlier, one can also attain the same payoff when players share a two-qubit arbitrary
state |ψarbitrary⟩ = cosθ |00⟩+ eiϕ sinθ |11⟩, and perform measurements given in Eq. (6.4) in an
arbitrary orthogonal basis given by |ϕ0(θ)⟩ = cosθ |0⟩+ eiϕ/2sinθ |0⟩ and |ϕ1(θ)⟩ = −e−iϕ/2sinθ |0⟩+
cosθ |1⟩. Therefore, the maximum value of the summed payoff in Eq. (6.14) is achieved at

λ =
1
2

tan−1 5sin2θ
cos2θ +4

. Evidently, the black line in Figure 6.2 shows that the sum of payoffs of Alice

and Bob always exceeds the classical bound (red line) of 3
2 . In other words, general two-qubit

pure Bell states offer quantum advantage for all values of the state parameter θ . Surprisingly,
the maximally entangled Bell state (θ = π

4 ) does not give maximum total payoff. However, a
non-maximally entangled state at θ = 40.188◦ with concurrence 0.986 gives maximum summed
payoff of approx. 1.6819 for both players. This is contrary to our general belief that the maximally
entangled pure state will always be more efficient than a non-maximally entangled pure state, at
least under the setting of the discussed game. Although, the value of Bell-CHSH operator ⟨B⟩ is
maximum at θ = 45◦, the value of ⟨B⟩−2P11

11 at θ = 40.188◦ is more than the value of ⟨B⟩−2P11
11 at

θ = 45◦ while maximizing total payoff $A +$B. Since P11
11 = P(yA = 1,yB = 1|xA = 1,xB = 1) is a very

small number, an angle very close to 45◦ (with concurrence very close to 1) gives the maximum
total payoff. Furthermore, the analysis shows that all non-maximally entangled Bell states in the
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range 0 < θ ≤ π
4
give better total payoff than any classical strategy. Interestingly, non-maximally

entangled states for 34.1804◦ ≤ θ < 45◦ lead to a better payoff in the game in comparison to a
maximally entangled Bell state.

As examples of entangled mixed states, Werner and Horodecki states are again considered
as defined in Eq. (6.7) and Eq. (6.9), respectively. When the players share a mixed Werner class
state, then the total payoff of both players is

$A +$B =
1
8
[
7+5γsin2λ +4γcos2λ

]
(6.15)

Thus, the maximum value of the summed payoff in Eq. (6.15) is achieved at λ =
1
2

tan−1 5
4
. The blue

line in Figure 6.2 describes that the sumof payoffs of Alice and Bob exceeds the classical bound (red
line) of 3

2 forC(= 1.5γ−0.5)> 0.6712. Similar to the previous case, amixedWerner class state offers
quantum advantage for a fixed range of state parameter only. However, unlike the previous case,

even though Werner states exhibit non-local correlations for
1√
2
< γ ≤ 0.7808, i.e. 0.5606 < C <

0.6712, they still fail to provide any advantage to quantum players in this particular game setting.
The failure of Werner states to provide advantage to quantum players over classical players in
the above region even though they violate the Bell-CHSH inequality in that particular region is
attributed to the combination of two conflicting interest games in comparison to the previous case
(combination of a conflicting interest game with a common interest game) where no such result
was obtained.

Similarly, when the players share a Horodecki state, then the total payoff of both players is

$A +$B =
1
8
[
7+5µsin2λ +

(
5−9µ

)
cos2λ

]
(6.16)

One can evaluate that the maximum value of the summed payoff in Eq. (6.16) is achieved at λ =
1
2

tan−1 5µ
5−9µ

. Thus, the green line in Figure 6.2 shows that the sum of payoffs of Alice and Bob

exceeds the classical bound (red line) of 3
2 for C(= µ)> 0.85 only. Hence, the players do not get a

better payoff on sharing aHorodecki states in the range of state parameter, i.e.,
1√
2
<C(= µ)≤ 0.85,

even though the quantum state possesses non-local correlations in that range. It is interesting to
see that the range of state parameter where the state violates the Bell-CHSH inequality is increased
in comparison to the previous game setting where C > 0.8 is obtained as the value of concurrence
which leads to quantumadvantage. Clearly, the results obtained for combination of two conflicting
interest games are quite different and interesting from the casewhere the combination of a common
interest and a conflicting interest game are considered.

This study which highlights the advantages offered by non-maximally entangled pure
states in comparison to the maximally entangled pure state due to the terms such as P11

11 will
definitely motivate us to study games where such contribution to total payoff may have more
drastic effect towards the final output of the game. In addition the analysis also highlights
that under the proposed game settings use of mixed entangled states may not always result in
advantage even if the state violated the Bell-CHSH inequality. Moreover, it further paves way to
study the important property of randomness in quantum states, which is discussed in the following
section.
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6.4 REPRESENTATION OF THE TILTED BELL-TYPE INEQUALITY IN A BAYESIAN GAME SETTING
Like nonlocal correlations, randomness is also inherent to the foundations of quantum

mechanics. The outcomes of an experiment designed to test the Bell inequality formalism
are always random (for violation of the inequality), i.e., measurement outcomes cannot be
deterministically predicted within quantum theory. Acin et. al [Acin et al., 2012] have shown
that the maximal violation of the Bell-CHSH inequality involves the generation of only 1.23 bits
of randomness instead of generating 2 bits of global randomness. Interestingly, they found that
less entangled states can produce randomness close to 2 bits, showing that there is no direct relation
between entanglement (or nonlocality) with randomness. In order to capture high randomness in
non-maximally entangled states, a specific class of Bell-type inequality was defined, i.e.,

Iβ
α = β ⟨A0⟩+α⟨A0B0⟩+α⟨A0B1⟩+ ⟨A1B0⟩−⟨A1B1⟩ (6.17)

The inequality in Eq. (6.17) depends on two parameters, i.e., α ≥ 1 and β ≥ 0. The classical
bound of the inequality is β + 2α and the maximum violation of the inequality is attained at

Iβ
α = 2

√
(1+α2)

(
1+

β 2

4

)
. For simplicity, the inequality Iα

1 is considered, known as tilted Bell-CHSH
inequality and its effect when two players share a two-qubit quantum state for playing a Bayesian
game is demonstrated.

To the best of our knowledge, no Bayesian game representation of the tilted version of the
Bell-CHSH operator as shown in Eq. (6.18) has been encountered. Therefore, the following study
attempts to represent the input-output relation of the tilted counterpart of the CHSH games as type
of players-reward relation in Bayesian games.

Iα
1 = α⟨A0⟩+ ⟨A0B0⟩+ ⟨A0B1⟩+ ⟨A1B0⟩−⟨A1B1⟩ (6.18)

In order to collectively represent the operator into the settings of a Bayesian game, there is need
to incorporate the additional ⟨A0⟩ term in the payoff table. Therefore, it is assumed that Alice and
Bob play a tilted coordination game whenever Alice’s input is xA = 0. However, for Alice’s input
xA = 1 and Bob’s input xB = 0, the players play the usual un-tilted version of the coordination
game. Further, when Alice’s and Bob’s inputs are 1 each, i.e., xA = xB = 1, they play an untilted
anti-coordination game. The players in these coordination and anti-coordination games can have
varying interests- either common interest or conflicting interest. Table 1.6 shows the payoff of
Alice and Bob in a general Bayesian game where the payoffs depend on the type of players in a
fashion similar to the winning input-output relation in a tilted CHSH game as defined by the tilted
Bell-CHSH-type operator in Eq. (6.18). Here, the total payoff of the players is given by T = uA

i +uB
i

where i ∈ {1,2,3,4} and T ′ = uA
5 +uB

5 . The sum of payoffs which play role in the untilted version of
the game is taken as T and the sum of payoffs which contributes to the tilted version of the game is
taken as T ′. Therefore, the value of T ′ depends on the term α of the tilted Bell-CHSH expression in
Eq. (6.18). Assuming that the chances of xA(xB) to be 0 and 1 are equiprobable, the sum of payoffs
of Alice and Bob can be given as

$A +$B =
T
4

[
(P00

00 +P11
00 )+(P00

01 +P11
01 )+(P00

10 +P11
10 )+(P01

11 +P10
11 )
]
+

T ′

2

[
P0

0 −P1
0

]
(6.19)

wherePkl
i j =P(yA = k,yB = l|xA = i,xB = j) andPn

m =P(yA = n|xA =m). Thus, similar to the calculations
in Eqs. (14) and (15), the sum of payoffs of the players can be re-expressed as

$A +$B =
T
2
+

T
8

[
⟨A0B0⟩+ ⟨A0B1⟩+ ⟨A1B0⟩−⟨A1B1⟩+

4T ′

T
⟨A0⟩

]
(6.20)

which is equal to
T
2
+

T
8
(
Iα
1

)
at α =

4T ′

T
. In order to exemplify the payoff Table 6.4 in detail, T = 2 is

considered and thus T ′ = αT
4 = α

2 . As described above, there can be two types of games, or simply,

104



PPPPPPPPPAlice
Bob

yB = 0 yB = 1

yA = 0 uA
1 + xAuA

5 ,u
B
1 + xAuB

5 xAuA
5 ,xAuB

5
yA = 1 −xAuA

5 ,−xAuB
5 uA

2 − xAuA
5 ,u

B
2 − xAuB

5

(a) xA · xB = 0

PPPPPPPPAlice
Bob

yB = 0 yB = 1

yA = 0 0,0 uA
3 ,u

B
3

yA = 1 uA
4 ,u

B
4 0,0

(b) xA · xB = 1

Table 6.4 : Payo s of Alice and Bob in a general game setting where dependence of payo s on type of
players commensuratewith the input-output relation in a tilted CHSH gamewhere uA

1 , u
B
1 , u

A
2 ,

uB
2 , uA

3 , uB
3 , uA

4 , uB
4 , uA

5 , and uB
5 are non-zero

two ways of representation: common interest games and conflicting interest games. In a common
interest game uA

i = uB
i for i ∈ {1,2,3,4,5}, but in a conflicting interest game, uA

i ̸= uB
i , thus creating

a conflict in interest of the two players in preferring one strategy over the other.

6.5 A COMMON INTEREST GAME FOR TILTED CHSH OPERATOR
In a common interest games, both players have the same payoff for any strategy set.

As an instance, assume the utilities as uA
1 = uB

1 = uA
2 = uB

2 = uA
3 = uB

3 = uA
4 = uB

4 = 1, and uA
5 =

uB
5 = α

4 . The payoffs of Alice and Bob are given by Tables 6.5(a), 6.5(b), and 6.5(c). Clearly,
Table 6.5(a) represents a tilted common interest coordination game and Table 6.5(b) represents
a usual/ non-tilted common interest coordination game. Both games (Table 6.5(a) and (b)) have
{yA = 0,yB = 0} and {yA = 1,yB = 1} as the two NE. In case of the non-tilted version, both NEs are
pareto-optimal. But, in case of tilted common interest game, one of the NEs is not pareto-optimal
due to extra ’tilt’ factor α . Similarly, Table 6.5(c) shows a common interest anti-coordination game.

Classical scenario
Out of 16 different classical strategies, there can be four pareto-optimal NEs as follows

• yA = yB = 0 irrespective of the values of xA and xB;

• yA = 0 irrespective of the values of xA and yB = xB;

• yA = xA and yB = 0 irrespective of the value of xB; and

• yA = xA and yB = xB.

Each of the above NE strategy is preferred by none of the players as each gives them a payoff of
6+α

8
. In addition, there are two non-pareto optimal NE for the common interest game, i.e.,

• yA = xA = 0 and yB = 1 irrespective of the value of xB; and
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PPPPPPPPPAlice
Bob

yB = 0 yB = 1

yA = 0 1+
α
4
,1+

α
4

α
4
,
α
4

yA = 1 −α
4
,−α

4
1− α

4
,1− α

4

PPPPPPPPPAlice
Bob

yB = 0 yB = 1

yA = 0 1,1 0,0
yA = 1 0,0 1,1

(a) (xA = 0, xB = 0) or (xA = 0, xB = 1) (b) (xA = 1, xB = 0)

PPPPPPPPAlice
Bob

yB = 0 yB = 1

yA = 0 0,0 1,1
yA = 1 1,1 0,0

(c) (xA = 1, xB = 1)

Table 6.5 : Payo s of Alice and Bob in a common interest game setting where dependence of payo s
on type of players commensurate with the input-output relation in the tilted CHSH game

• yA = yB = 1 irrespective of the values of xA and xB.

Both NEs are again not preferred by any player, and each yields a payoff of
6−α

8
.

The quantum strategy for this game is similar to the game where players have conflicting
interests, and hence is merged with the next section.

6.6 A CONFLICTING INTEREST GAME FOR TILTED BELL-CHSH OPERATOR
In order to better understand the representation of tilted CHSH game as a conflicting interest

game, the following values of utilities are assumed, uA
1 = uB

2 = uB
3 = uA

4 = 1
2 , uB

1 = uA
2 = uA

3 = uB
4 = 3

2 ,
and uA

5 = uB
5 = α

4 . The payoffs of Alice and Bob engaging in the above defined game are given in
Tables 6.6(a), 6.6(b), and 6.6(c). Clearly, Table 6.6(a) represents tilted Battle-of-Sexes game, and
Table 6.6(b) represents the usual Battle-of-Sexes game. Thus, for xA.xB = 0, the players engage in
a BoS game, with an exception at xA = 0, where the players play a tilted version of the BoS game.
Still for both versions of the game, both {yA = 0 (Activity 0 by Alice), yB = 0 (Activity 0 by Bob)}
and {yA = 1 (Activity 1 by Alice), yB = 1 (Activity 1 by Bob)} are the pareto-optimal NE of the game.
However, the first NE is preferred by Bob and the second NE is preferred by Alice. Also, due to
the tilt α at xA = 0, the total payoff of the first NE (preferred by Bob) is more than the total payoff
of the second NE (preferred by Alice).

At xA = xB = 1, the players play an anti-coordination gamewhichwe term as a lottery game,
where yA = 0 or yB = 0 corresponds to winning a bigger/ more desired prize, and yA = 1 or yB = 1
corresponds to winning a smaller/ less desired prize. Apparently, the desire of both players to
win the bigger prize is the same, and both win different prizes at a time on the basis of a lottery.
This leads to a conflicting-interest anti-coordination game as depicted in Table 6.6(c).

Classical scenario
After analysing all possible classical strategy sets, one can conclude that for no classical

strategy, the total payoff of the players exceeds
6+α

4
. The strategy sets forming the NE, however,
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PPPPPPPPPAlice
Bob

yB = 0 yB = 1

yA = 0
1
2
+

α
4
,
3
2
+

α
4

α
4
,
α
4

yA = 1 −α
4
,−α

4
3
2
− α

4
,
1
2
− α

4

PPPPPPPPPAlice
Bob

yB = 0 yB = 1

yA = 0
1
2
,
3
2

0,0

yA = 1 0,0
3
2
,
1
2

(a) (xA = 0, xB = 0) or (xA = 0, xB = 1) (b) (xA = 1, xB = 0)

PPPPPPPPAlice
Bob

yB = 0 yB = 1

yA = 0 0,0
3
2
,

1
2

yA = 1
1
2
,

3
2

0,0

(c) (xA = 1, xB = 1)

Table 6.6 : Payo s of Alice and Bob in a con icting interest game setting where dependence of payo s
on type of players commensurate with the input-output relation in the tilted CHSH game

are different for the different type of interest (common or conflicting) of players. In case of the
conflicting interest game discussed above, there are two pareto-optimal NE, i.e.,

• yA = yB = 0 irrespective of the values of xA and xB; and

• yA = xA and yB = 0 irrespective of the value of xB.

Both strategies lead to a pareto-optimalNE. Both these NE strategies are still preferred by Bob since

Alice gets a payoff of
3+α

8
, and Bob gets a payoff of

9+α
8

.

Furthermore, for α < 1, there are two more pareto-optimal NE for the conflicting interest
game, i.e.,

• yA = xA and yB = xB; and

• yA = 1 irrespective of the value of xA, and yB = xB.

Both strategies lead to a pareto-optimal NE strategy preferred by Alice wherein Alice gets a payoff

of
7−α

8
, and Bob gets a payoff of

5−α
8

.

6.7 ANALYSIS OF THE TILTED CHSH GAME FOR DIFFERENT QUANTUM STATES
The games represented in Table 6.5 or 6.6 refer to Bayesian games where the total sum of

payoff of both players (Alice and Bob) is equal to the value of operator 1+
Iα
1
4
where Iα

1 is the value
of the tilted Bell-CHSH operator.

6.7.1 Quantum scenario using a pure state
When the players share a general two-qubit entangled pure state |ψ⟩= cosθ |00⟩+ sinθ |11⟩,

and perform measurements as shown in Eq. (6.4) as strategies in the game, where |Φ0(θ)⟩ =
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cosθ |0⟩+ sinθ |1⟩ and |Φ1(θ)⟩ = −sinθ |0⟩+ cosθ |1⟩ the total payoff of both players after their
respective moves/measurements is estimated as

$A +$B =
1
4

[
αcos2θ +4+2cos2λ +2sin2θsin2λ

]
(6.21)

Similar to the previous cases, same payoff can be achieved when players share an arbitrary
two-qubit entangled state |ψarbitrary⟩ = cosθ |00⟩+ eiϕ sinθ |11⟩. This aggregated payoff achieves its

maximum at measurement parameter λ =
1
2

tan−1(sin2θ), and can be given by

$A +$B =
1
4

[
αcos2θ +4+2

√
1+ sin22θ

]
(6.22)

Optimizing with respect to θ , shows that the optimal value of $A + $B = 1 +
1
4

√
8+2α2

can be obtained for a non-maximally entangled state where θ =
1
2

sin−1

√
4−α2

4+α2 . Moreover, as the
value of α increases from 0 to 2, the classically attained sum of payoffs increases from 1.5 to 2.
Also, with increase in α , the angle θ at which Alice and Bob benefit with highest possible payoff
decreases. At α = 0, the maximally entangled Bell state gives the maximum possible payoff to
the players, as the total payoff holds correspondence with the original CHSH inequality. But at
α ∼ 2, a quantum state very close to a separable state gives the highest total payoff of Alice and
Bob. Apart from this, for higher α the maximally entangled state gives no benefit over classical
strategies. However, non-maximally entangled states still give better payoff than the classically
attained payoff. Therefore, the analysis suggests an interesting anomaly where players in this
quantum game can achieve higher payoff by sharing a non-maximally entangled pure state instead
of a maximally entangled pure state of two qubits in line with [Acín et al., 2006]. For comparison
between the two game settings, one can analyse that the quantum game where conflicting interest
games are merged as a Bayesian game results in a much larger set of non-maximally entangled
states offering advantage over the maximally entangled state as opposed to the quantum game
where common interest games are merged. Thus, this model is a clear instance where high
randomness in non-maximally entangled pure states help quantum players benefit over their
classical counterparts.

For further demonstration of the dependence of total payoff of the degree of entanglement,
the total payoff of the players is plotted with the entanglement measure (concurrence) in Figure
6.3. Interestingly, as the value of α increases, opting for a classical strategy pays more dividends
for a larger range of degree of entanglement in comparison to opting for a quantum strategy.

6.7.2 Quantum scenario using a mixed state
In order to study the quantum scenario using mixed states, first Horodecki states are

considered. Figure 6.4 clearly shows that as α increases, the classical payoff exceeds the quantum
mechanically achieved sum of payoff. However, for smaller values of α , Horodecki states with
concurrence close to unity leads to quantum advantage. Interestingly,Werner states lead to similar
results as in the previous section as the total payoff attained does not depend on the parameter α .

The total payoff in the game is now analysed by sharing an efficient class of two-qubit
mixed states [Singh and Kumar, 2018c], represented as

ρ =
1
N

[1
2

γ(1−η){γ(1−η)|00⟩⟨00|+ |01⟩⟨01|+ |10⟩⟨10|}+ |ϕ+⟩⟨ϕ+|
]

(6.23)

where |ϕ+⟩= 1√
2

[
|00⟩+ |11⟩

]
, γ represents the amplitude-damping noise parameter, η represents

the weak measurement strength parameter [Korotkov and Jordan, 2006; Kim et al., 2012], and
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Figure 6.3 : Relation between the sumof payo s of playerswith the concurrence of a general two-qubit
Bell state for Bayesian game representation of the tilted Bell-CHSH operator

N =
1
2
[
2+ γ(1−η){2+ γ(1−η)}

]
. The proposed quantum state is entangled for all values of γ

and η , but violates the Bell-CHSH inequality only for the range: max
{

0,1− 0.2428
γ

}
< η < 1 [Singh

and Kumar, 2018c]. In comparison to the original Bell-CHSH inequality, tilted CHSH inequality is
violated for a slightly bigger range of values of η . However, Figure 6.5 shows that as the value
of tilt increases, Alice and Bob achieve quantum advantage for a smaller range of concurrence
close to unity. Even at α = 0.25, only the mixed state with 0.78 < C < 1 help attain better
payoff than classical strategy. In addition, at α > 0.825, classical strategies are better than the
considered mixed states as they result in higher reward to the players. Thus, a very small set
of mixed states benefit the quantum players in this game setting. Nevertheless in comparison to
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(a) α = 0.25 (b) α = 0.5

(c) α = 0.75 (d) α = 0.9

Figure 6.4 : Relation between the sum of payo s of players in tilted CHSH game with the concurrence
of the Horodecki state for Bayesian game representation of the tilted Bell-CHSH operator

Horodecki states, use of these states result in attaining better payoff in the game. For measurement
strategies, the orthogonal basis vectors are considered as |Φ0(θ)⟩ = cosθ |0⟩ + eiϕ sinθ |1⟩ and
|Φ1(θ)⟩=−e−iϕ sinθ |0⟩+ cosθ |1⟩ at ϕ = 0◦ so as to attain maximum possible total payoff.

6.8 A CONFLICTING INTEREST GAME FOR TILTED BELL-CHSH OPERATOR INVOLVING CHICKEN GAME
Similar to the discussion above, this section presents a study on the tilted version of the

game represented in Table 6.3. Here, the players play a tilted BoS game when the type of atleast
one player is Type 0, and a Chicken game otherwise. The payoff table (Table 6.7) of the game is
shown below. The payoffs of the players playing this game is shown by green line in Figure 6.3 for
a general two-qubit Bell state; in Figure 6.4 for a Horodecki state; and in Figure 6.5 for the mixed
state represented in Eq. 6.23. It is clear from these figures that the introduction of Chicken game
in the Bayesian representation of tilted Bell-CHSH inequality, reduces the payoff for pure as well as
mixed states. The behaviour of resources in this game is similar to the one discussed above (blue
curve). However, the green curve in Figure 6.3 indicates that the set of non-maximally entangled
states that perform better than the maximally entangled Bell state increases under this setting. On
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(a) α = 0.25 (b) α = 0.5

(c) α = 0.75 (d) α = 0.9

Figure 6.5 : Relation between the sumof payo s of players in tilted CHSHgamewith the concurrence of
the de ned mixed state for Bayesian game representation of the tilted Bell-CHSH operator

the other hand, Figure 6.4 and 6.5 demonstrate that the set of mixed states which perform better
than the classical strategies reduces for this representation.

6.9 CONCLUSIONS
In last two decades, the connection between the apparently unrelated fields of Bayesian

games and quantum nonlocality has been studied in great details to understand the foundations
of quantum mechanics and quantum information. In general, Bayesian games in the settings of a
CHSH game whose foundation makes use of quantum correlations with the purpose of defeating
classical players, rely on maximally entangled states. In this work, general two-qubit pure states
and mixed states are used to analyse the game proposed by Pappa et al. It was found that all pure
two-qubit entangled Bell states, set of Werner and Horodecki class states offer benefit when used
as resources in comparison to classical strategies. Precisely, the players have higher advantage
when they shared any general two-qubit maximally or non-maximally entangled pure Bell state
over a Werner or a Horodecki class states.

The analysis for a fully conflicting interest Bayesian game as opposed to the game designed
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PPPPPPPPPAlice
Bob

yB = 0 yB = 1

yA = 0
1
2
+

α
4
,
3
2
+

α
4

α
4
,
α
4

yA = 1 −α
4
,−α

4
3
2
− α

4
,
1
2
− α

4

PPPPPPPPPAlice
Bob

yB = 0 yB = 1

yA = 0
1
2
,
3
2

0,0

yA = 1 0,0
3
2
,
1
2

(a) (xA = 0, xB = 0) or (xA = 0, xB = 1) (b) (xA = 1, xB = 0)

PPPPPPPPAlice
Bob

yB = 0 yB = 1

yA = 0 0,0
−1
2

,
5
2

yA = 1
5
2
,
−1
2

−1,−1

(c) (xA = 1, xB = 1)

Table 6.7 : Payo s of Alice and Bob in a con icting interest game setting involving the Chicken game as
an example of an anti-coordination game where dependence of payo s on type of players
commensurate with the input-output relation in the tilted CHSH game

by Pappa et al. resulted in some interesting observations. The designed game is a replica of Battle
of the Sexes game when type of at least one player is Type 0, otherwise the game enacts a Chicken
or a Hawk-Dove game. Similar to the previous case, it is found that all pure states help attain
higher payoff than the classical bound. Interestingly, Alice and Bob achieved higher total payoff
when they shared a non-maximally entangled Bell state (cos(40.188◦)|00⟩+ sin(40.188◦)|11⟩) with
concurrence 0.986 rather than sharing amaximally entangled Bell state with unit concurrence. This
anomaly can be attributed to an extra term in the total payoff when a Chicken game is involved,
which leads to a less entangled state giving a higher payoff. Although mixed states are found
to be useful as opposed to classical strategies for certain ranges of states parameters, the results
suggested that classical strategies may be more useful than quantum strategies even in the range
where mixed states violate the Bell-CHSH inequality. Therefore, mere violation of the Bell-CHSH
inequality by amixed state may not guarantee a team of quantum players a win over their classical
opponents.

Inspired by the game set-up, a general Bayesian game representation of the tilted Bell-CHSH
inequality is formulated. A similar phenomenon of higher payoff with less entangled states is
observed after designing a Bayesian game based on the tilted Bell-CHSH inequality. Nevertheless,
the analysis with the Bayesian game based on the standard Bell-CHSH inequality turned out
to be more interesting due to the belief that maximally entangled pure Bell states are always
more efficient than the non-maximally entangled pure states. Similar to the previous case,
the combination of conflicting interest games led to interesting observations as opposed to the
combinations of common interest games. Due to the uniqueness of tilted CHSH game, highly
random non-maximally entangled states lead to higher payoff in the game, than maximally
entangled Bell state. The same however is not true for all mixed states, e.g., Werner states are
found to be independent of the tilt parameter and hence add no new interpretation in comparison
to the Bayesian game based on the standard CHSH inequality. The set ofmixed states represented in
Eq. (6.23) are found to be slightlymore useful resources for tilted game in comparison toHorodecki
states. As the value of tilt parameter increases, classical strategies, however, lead to better efficiency
in the game against the use of these mixed states. As a part of quantum strategy, it is specifically
assumed that the players in the game perform one-parameter quantum measurements on their
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shared qubits.

…
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