List of Tables

Table	Title	page
1.1	The effects of Bob's and Charlie's measurements on Alice's state in a QSS protocol	20
1.2	A payoff matrix for the Prisoners' dilemma game	24
1.3	A payoff matrix for the Battle of sexes game	24
1.4	A payoff matrix for the Stag hunt game	25
1.5	The dependence of winning prospects on inputs received by players in a CHSH game	29
1.6	Payoffs of Alice and Bob in a general game setting where dependence of payoffs on	
	type of players commensurate with the input-output relation in a CHSH game (Here, u_1^A ,	
	$u_1^B, u_2^A, u_2^B, u_3^A, u_3^B, u_4^A$, and u_4^B are non-zero)	30
2.1	Payoffs of Alice in the general PPP game	38
2.2	Payoffs of Eve in the general PPP game	38
2.3	Conditions for (A_i, E_j) to be a Nash equilibrium	40
2.4	Payoffs of Alice in the PPP game with only two weight terms	40
2.5	Payoffs of Eve in the PPP game with only two weight terms	41
2.6	Conditions for (A_i, E_j) to be a NE for eavesdropping excluding DoS attacks	41
2.7	Conditions for (A_i, E_j) to be a Nash equilibrium for an eavesdropper with unlimited power	42
2.8	Payoffs of Alice in the two-way QKD game	43
2.9	Payoffs of Eve in the two-way QKD game	43
2.10	Conditions for (A_i, E_j) to be a Nash equilibrium in the two-way QKD game	44
3.1	Various attacks on PPP using an ω state, two Bell states, or a GHZ state for two bit	
-	information transfer using a combination of identity or σ_z operations on the travel photons	57
3.2	Payoffs of the team of a sender and a receiver in the game-theoretic model of PPP for	
	transmission of two bits of message	59
3.3	Payoffs of an eavesdropper in the game-theoretic model of PPP for transmission of two	
	bits of message	59
3.4	Conditions for (A_i, E_j) to be a Nash equilibrium in a three-qubit PP game	60
3.5	Conditions for different Nash equilibria in a three-qubit PP game	61
5.1	Winning probability of the three-qubit proposed game in a noisy environment	83
5.2	The control mode of facilitated information sharing	86
5.3	The message mode of facilitated information sharing	86
5.4	Generalization of Vaidman's Game for Multi-qubit Systems	89
6.1	Payoffs of Alice and Bob when they either play a conflicting interest coordination game	
	similar to the Battle of Sexes game or a common interest anti-coordination game	96
6.2	A payoff matrix for the Chicken game	100
6.3	Payoffs of Alice and Bob when they either play a conflicting interest coordination game	
	similar to the Battle of Sexes game or a conflicting interest anti-coordination game similar	
	to the Chicken game	101
6.4	Payoffs of Alice and Bob in a general game setting where dependence of payoffs on type	
	of players commensurate with the input-output relation in a tilted CHSH game where u_1^A ,	
	$u_1^B, u_2^A, u_2^B, u_3^A, u_3^B, u_4^A, u_4^B, u_5^A$, and u_5^B are non-zero	105

6.5	Payoffs of Alice and Bob in a common interest game setting where dependence of	
	payoffs on type of players commensurate with the input-output relation in the tilted	
	CHSH game	106
6.6	Payoffs of Alice and Bob in a conflicting interest game setting where dependence of	
	payoffs on type of players commensurate with the input-output relation in the tilted	
	CHSH game	107
6.7	Payoffs of Alice and Bob in a conflicting interest game setting involving the Chicken	
	game as an example of an anti-coordination game where dependence of payoffs on	
	type of players commensurate with the input-output relation in the tilted CHSH game	112