List of Tables

Table	Title	Page
2.1	Masses and charges of atoms of BTMAC and SA used in the atomistic simulations. These parameters are taken from the previously studied system [Debnath <i>et al.</i> , 2009].	21
2.2	Number of molecules of BTMAC, SA and water used in different water concentrations	
	investigated. BTMAC to SA ratio is fixed at $2:1$. The percentage of water decreases	
	from S1 to S2.	21
2.3	Number of molecules of BTMAC, SA and water in different systems investigated.	
	BTMAC to SA ratio is fixed at $2:1$ in A1 and A2. The percentage of water decreases	00
	from A1 to A2.	22
3.1	Number of molecules in systems A1, B1 and B11.	35
3.2	Definition of bead type in the MARTINI model	36
3.3	Mapping scheme for coarse-grained simulation	36
3.4	Non-bonded parameters used in CG B11 where M , M_a and M_b represent the MARTINI	
	model and their modifications respectively. PM is the polarizable MARTINI water model.	39
4 1	Comparisions initial and final confirmations, we look the and compared a superstant	
4.1	Compositions, initial and final configurations, run-lengths and asymmetry percentage of systems investigated. The asymmetry in each system is computed using equation 4.1.	
	The asymmetry percentage remains unchanged from AA to CG scales except S5 which	
	has a standard deviation of 0.77% in asymmetry.	48
4.2	Area per surfactant molecule (APS) (nm^2) and volume per surfactant (VPS) (nm^3) of	10
	simulated bilayers at AA and CG resolutions. M_p and L_p denoted the more and the less	
	populated leaflets respectively. Standard deviations of APS at AA and CG resolutions	
	are 0.001 and 0.0002-0.0003 respectively. ^{<i>a</i>} [Lunkad <i>et al.</i> , 2017], ^{<i>b</i>} [N Stelter and Keyes,	
	2017], ^{<i>c</i>} [Boek <i>et al.</i> , 2005a].	49
4.3	Extent of interdigitation $(O_{overlap})$ of simulated bilayers at AA and CG resolutions. S6	
	is prepared only for CG runs as the system size is large.	53
4.4	Bilayer thickness (in nm) from AA and CG simulations. ^a [Lunkad et al., 2017], ^b [Ritwiset	
	et al., 2016], c [Khakbaz and Klauda, 2018], d [Zhao et al., 2019], e [Takahashi et al., 1997].	60
4.5	Average single chain configurational entropy, $S^{per-chain}_{conf}$, (JK^1mol^{-1}) with standard	
	deviations calculated from time-frames over which $S^{per-chain}_{conf}$ converges and all	
	molecules of BTMAC and SA in AA and CG simulations. All the values are rounded off	
	to their nearest integers and the standard deviations smaller than 0.1 are not reported here.	62
4.6	Average order parameter, $ S_{CD} $ of simulated bilayers at AA resolutions. ^a [Debnath	
	<i>et al.</i> , 2009], ^b [Lunkad <i>et al.</i> , 2017], ^c [Khakbaz and Klauda, 2018], ^d [Zhao <i>et al.</i> , 2019], ^c [Davia, 1070]	70
4 7	^e [Davis, 1979]	70 71
4.7	Average order parameter, P_2 of simulated bilayers at AA and CG resolutions.	71
5.1	Binding energies (kcal mol $^{-1}$), angles (°) and distances (Å) for the RH and LH dimers.	
	The results are compared with reported values for similar PDI analogues and PDI	
	derivatives. [Ahmed <i>et al.</i> , 2017] ^{<i>a</i>} , [Oltean <i>et al.</i> , 2013] ^{<i>b</i>} , [Chen <i>et al.</i> , 2015] ^{<i>c</i>} .	84
5.2	Non-bonded energies, closest distance and inter-planar angle of dimers with positive	
	(RH) and negative (LH) inter- planar angle from molecular dynamics simulations.	88

- 6.1Energies of the open and folded dimers, stacked dimers and their stacking energies
obtained from the DFTB calculations. The folded PyKC conformer has a stronger
stacking energy. The inter-planar distances obtained after DFTB geometry optimization
and PXRD experiment [Singha *et al.*, 2019] are in good agreement indicating towards
the presence of $\pi \pi$ stacking.100
- A1 Box lengths of the simulated bilayers for AA and CG simulations. 107