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Introduction to various tools

This chapter is devoted to a brief description of various tools used to study the dynamics of
quantum systems. Specifically, the dynamics of open and closed systems is spelled out, followed
by the description of dynamical maps. Further, a detailed account of various quantum correlation,
both temporal as well as spatial is presented.

2.1 Dynamics of closed systems

The state of a closed physical system is described by a state vector |ψ〉which is an element
of some Hilbert space H. The scalar product of two states |ψ〉 and |φ〉 in H is defined as 〈φ|ψ〉.
Accordingly, one defines the norm of |ψ〉 as ||ψ|| =

√
〈ψ|ψ〉 [210]. Let q be the set of various

parameters apart from time t on which the state vector depends, one shows this dependence as
|ψ(q, t)〉. The time evolution is given by the Schrödinger equation

i~
∂

∂t
|ψ(q, t)〉 = H |ψ(q, t)〉 . (2.1)

Here, H is the generator of time evolution known as Hamiltonian of the system, and is generally
a Hermitian operator. Though one can arrive at Schrödinger equation by different arguments, its
ultimate validity relies on the fact it agrees with the experiments [211–213]. The solution of Eq.
(2.1) can be represented in terms of unitary operator U(t, t0) which takes the state |ψ(q, t0)〉 at
time t0 to |ψ(q, t)〉 at some later time t, such that, |ψ(q, t)〉 = U(t, t0) |ψ(q, t0)〉. This leads to
a time evolution equation of the unitary operator i∂U(t, t0)/∂t = H(t)U(t, t0), subjected to the
initial condition U(t0, t0) = I. If Hamiltonian is time independent, the system is said to be closed
and isolated; such a system is described by the unitary U(t − t0) = exp[−iH(t − t0)]. If the
system is under the influence of an external driving, the dynamics may still be described by a time
dependent Hamiltonian H(t), the system is still called closed but not isolated. In this case, the
time evolution is given in terms of the time ordered operator U(t, t0) =

←−
T exp[−i

∫ t
t0
dsH(s)],

where
←−
T means that the product of time dependent operators are ordered such that the operators

at earlier times are at the left of the operators at later times.

The above description holds true for pure states. However, if the system is represented by
an ensemble of pure states {pi, |ψi(q, t)〉}, pi being the weight associated with pure state |ψi〉, one
has to resort to the description of density matrix description. At time t0, one defines the density
matrix as ρ(q, t0) =

∑
i
pi|ψi(q, t0)〉〈ψi(q, t0)|, which, under unitary evolution, evolves at some

later time t

ρ(q, t) =
∑
i

piU(t, t0)|ψi(q, t0)〉〈ψi(q, t0)|U †(t, t0). (2.2)
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This can be written more compactly as ρ(q, t) = U(t, t0)ρ(q, t0)U †(t, t0), which upon differenti-
ation leads to the von Neumann or Liouville-von Neumann equation

ρ(q, t)

dt
= −i[H(t), ρ(q, t)]. (2.3)

This equation is often written as dρ(q, t)/dt = L(t)ρ(q, t), with the understanding that L(t)σ
stands for−i[H(t), σ]. The operator L is called as Liouville super-operator, since it acts on opera-
tors. The complete solution of the Liouville equation becomes ρ(q, t) =

←−
T exp[−i

∫ t
t0
dsL(s)]ρ(q, t0).

In what follows, we will drop the explicit q-dependence and call the state ρ(t).

2.2 Dynamics of open systems
An open system is a quantum system S interacting with another quantum system E called

the environment with the underlying Hilbert spacesHS andHE , respectively [57, 214]. The com-
bined system, which belongs to the spaceHS ⊗HE , is assumed to be closed obeying Hamiltonian
dynamics. The interaction of system with its ambient environment leads to the development of
correlations between them. As a consequence the state of the system alone can no longer be de-
scribed by unitary Hamiltonian dynamics. One then extracts the reduced dynamics of the system
from the unitary Hamiltonian dynamics of the combined system S +E with the total Hamiltonian

H(t) = HS +HE +HSE . (2.4)

Here, HS and HE are the system and environment Hamiltonians, respectively, and HSE describes
the interaction between them.

At time t0, let the combined state be ρ(t0) ∈ HS ⊗ HE , at some later time t, we have
ρ(t) = U(t, t0)ρ(t0)U †(t, t0) and the reduced state

ρS(t) = TrE
[
ρSE(t)

]
, (2.5)

such that the definition of the partial trace ensures TrSE
[
(MS ⊗ I)ρSE

]
= TrS

[
MS TrE [ρ]

]
for

all observablesMS . The equation of motion for the reduced state becomes

d

dt
ρS(t) = −iTrE

[
H(t), ρ(t)

]
. (2.6)

It is important to note that the unitary dynamics is reversible due to the symmetry, i.e., U−1(t) =
U(−t). However, this reversibility no longer holds in an open system scenario as the dynamics
contains a random element; a consequence of the system environment interaction.

2.3 Quantum measurement theory
The measurements in quantum mechanics play a dual role by telling us (i) how the state

of a system changes after a measurement is performed on it, and (ii) how to prepare a system
in a given state. Consider an observable A associated with the system under consideration. The
quantum measurement on a quantum statistical ensemble Σ described by state ρ is then given by
a set {Am} of the measurement operators, with the corresponding outcomes {λm}, satisfying the
completeness condition

∑
mA

†
mAm = 1. The probability of obtaining λm is given by p(λm) =

Tr[AmA
†
mρ]. The post measurement state

ρ′ =
AmρA

†
m

Tr[AmρA
†
m]
, (2.7)
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describes the sub-ensemble Σ′ of systems for which observable A has been measured. It should be
noted that Eq. (2.7) does not represent the most general form of measurement since it restricts the
post-measurement state to be pure when the input state is pure. The most general mathematical
abstraction of quantum measurement is known as quantum instrument proposed by Davies [215],
such that ρx = Ex[ρ]

Tr{Ex[ρ]} , where {Ex : x ∈ X} is the set of trace non-increasing completely positive
operators, and X is a countable set pertaining to the outcomes of the measurement.

For the special case of projective measurements, the measurement operators are given by
projectors Πm. The action on the state ρ = |ψ〉〈ψ| then results in ρ′ = [p(λm)]−1Πm(|ψ〉〈ψ|)Πm =
|φ〉〈φ|, where p(λm) = Tr[ΠmρΠm] is the probability of obtaining the outcome λm. Thus the
measured ensemble is represented by the normalized state vector |φ〉. The post measurement state
is not a pure state if the pre-measurement state ρ is mixed. However, if the eigenvalue λm is non-
degenerate and the projectors are Πm = |ψm〉〈ψm|, then the measurement does lead to a pure state
|φ〉 = |ψm〉, even if the pre-measurement state is mixed.

The generalized measurement theory is often described in terms of operations and effects
and is based on the following concepts [57]:

1. The outcome λm of a measurement is a random number with probability distribution p(λm) =
Tr[Emρ], such that Em is a positive operator called as effect, satisfying the normalization
condition

∑
mE

†
mEm = 1, such that the total probability

∑
m p(λm) = 1.

2. An experimental situation where a measurement on an ensemble leads to splitting into var-
ious ensembles conditioned on a specific measurement outcome is called a selective mea-
surement. The state corresponding to outcome λm is given by ρ′m = Em(ρ)/p(λm), where
Em is a positive superoperator also called as operation, obeying the condition Tr[Em(ρ)] =
Tr[Emρ].

3. In an experimental scenario where the post measurement ensembles again mix, the mea-
surement is called as non-selective. In this case, the post measurement state becomes
ρ′ =

∑
m p(λm)ρ′m =

∑
m Em(ρ).

2.4 Dynamical maps

Consider the composite state of the system and environment ρ(0) = ρS(0) ⊗ ρE , such
that ρE is fixed, that is, we assume that the system can be prepared in a given state independent
of the environment. The evolution of the system state from time t = 0 to some later time t can be
described as

ρS(t) = E(t,0)[ρ(0)] = TrE
[
U(t)ρS(0)⊗ ρEU †(t)

]
. (2.8)

The map E(t,0) is called as a dynamical map for a fixed time t such that it satisfies the following
properties:

1. Complete positivity (CP): It means that not only E is positive, but the combined operation
E ⊗ 1n, where 1n is the identity operator, is also positive for all dimensions n.

2. Trace preserving (TP): Tr[E(t,0)[ρ]] = Tr[ρ], for all ρ ∈ H.

The positivity and trace preserving is important for a map to connect an input density matrix to
an output density matrix. The complete positivity is also a physically motivated axiom, since a
combined operation E ⊗1n may be viewed as a local operation on first of the two widely separated
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systems without influencing the second. A famous result by Kraus [216] is that any CP map can
be written in the form

ρS(t) = Kµ(t1, t0)ρS(t0)K†µ(t1, t0). (2.9)

The condition
∑

µK
†
µKµ = I then implies that Tr[ρS(t)] = 1 for any input state ρS(t0).

2.4.1 Quantum channel
A quantum channel in the Schrödinger picture is a completely positive and trace preserving

map Φ : T (HA)→ T (HB), where T (HA) and T (HB)) denote the set of operators defined in the
underlying Hilbert spaceHA andHB , respectively. A corresponding description in the Heisenberg
picture would invoke the dual channel [109].

The operator sum representation of a channel is given as

Φ[ρ] =
∑
µ

MµρM†µ, (2.10)

such that the operators Mµ, called as Kraus operators, obey the completeness condition,
∑
µ

M†µMµ =

I . Here, I is the identity operator. Note that ρ, in Eq. (2.10), need not be a pure state. A linear
map given in Eq. (2.10), is called a quantum channel or superoperator (as it maps operators to op-
erators) or completely positive trace preserving (CPTP) map. A quantum channel is characterized
by the following properties:

1. They are linearity transformations, that is, for states ρ1 and ρ2, we have

Φ[αρ1 + βρ2] = αΦ(ρ1) + βΦ(ρ2),

where α and β are complex numbers.

2. They represent Hermicity preserving maps, that is,

ρ = ρ† =⇒ Φ[ρ] = Φ[ρ]†.

3. They preserve positivity, that is,

ρ ≥ 0 =⇒ Φ[ρ] ≥ 0.

4. They are trace preserving, that is,

Tr(Φ[ρ]) = Tr(ρ).

5. They are completely positive

Ik×k ⊗ Φ[ρ] ≥ 0, for all k (2.11)

2.5 Markovian and Non-Markovian processes

A precise definition of Markov process involves considering a random variable X with
sample space {x1, x2, . . . , xn}. One can ask about the probability that any given value from
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this sample space is attained at a given time, denoted by p1(xj , tj), where subscript reminds us
that this is a one time probability. Similarly, one can ask the questions about joint probability
p2(x2, t2;x1, t1), p3(x3, t3;x2, t2;x1, t1), and so on. Thus a stochastic process is described by an
infinite hierarchy of probability. The conditional and joint probabilities are related as

pn(xj , tj ;xn−1, tn−1, . . . , x1, t1) = pn(xj , tj |xn−1, tn−1, . . . , x1, t1)

× pn−1(xn−1, tn−1, . . . , x1, t1). (2.12)

It is a formidable task to specify all the joint probabilities. If the probability of a random vari-
able taking value xn at time tn is conditioned only to the values xn−1 at time tn−1, that is,
pn(xj , tj |xn−1, tn−1; . . . ;x0, t0) = p2(xn, tn|xn−1, tn−1), for all time n, then the process is called
as Markov process. Therefore, under this assumption,

pn(xj , tj ;xn−1, tn−1, . . . , x1, t1) =
n−1∏
s=1

p2(js+1, ts+1|js, ts)p1(x1, t1). (2.13)

A further simplification can be made in case the processes do not change statistically with time.
Such processes are called stationary processes and obey the condition p2(xk, t|xj , t′) = p2(xk, (t−
t′)|xj , 0) (the right hand side is often written simply as p2(xk, (t−t′)|xj)). In other words, shifting
the origin of time does not change the probabilities. This also implies that for one time probabil-
ity, the time dependence disappears, i.e., p1(xj , t) = p1(xj) must be time independent. For the
stationary Markov processes

pn(xj , tj ;xn−1, tn−1, . . . , x1, t1) =
n−1∏
s=1

p2(js+1, ts+1 − ts|js)p1(x1). (2.14)

For the stationary Markov processes, one can write the “chain equation” for the probability of
going from any state xj to a state xk in time t as the probability of going from xj to xl in time
t′ and then from xl to xk in the remaining time t − t′ (0 < t′ < t) by summing over all the
intermediate paths

p(xk, t|xj) =

N∑
l=1

p(xk, t− t′)p(xl, t′|xj). (2.15)

This is known as Chapman–Kolmogorov equation. It is often desirable to avoid the nonlinearity
of this equation by considering the probability for the scenario involving small time difference,
i.e., when t − t′ = δt. In this case, one expects p(xk, δt|xj) = w(xk|xj)δt, where w(xk|xj) is
the transition probability per unit time or transition rate. Note that this is true even for the non
stationary processes where one would have p(xk, t+ δt|xj) and should be proportional to δt when
δt is small. However, the transition rate in this case will depend on time w(xk|xj ; t). One obtains
the following “Master equation”

dp(xk, t|xj)
dt

=

N∑
l=1,xl 6=xk

[w(xk|xl)p(xl, t|xj)− w(xl|xk)p(xk, t|xj)]. (2.16)

2.5.1 Theory of Markovian open quantum systems

The theory of open quantum systems constitutes the study of quantum systems in presence
of ambient environment. The environment is indeed fundamentally quantum mechanical in nature,
however, under certain circumstances it is useful to treat it classical, stochastically varying driving
terms in the Hamiltonian of the system. Either way, one inevitably deals with a master equation,
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the equation of motion for state of the system ρS(t) = Tr[ρSE(t)], which upon using Nakajima-
Zwanzig projection technique, is given by

d

dt
ρS(t) = −i[HS , ρS(t)] +

∫ t

t0

Kt,t′ [ρS(t′)]dt′. (2.17)

Here, HS denotes the system Hamiltonian in the absence of system environment interaction. Also,
Kt,t′ , called as memory kernel, is a linear map which describes the effects of environment on
the system. The notion of Markovian dynamics as traditionally advocated in quantum statistical
mechanics involves two assumptions [57, 58, 217]:

1. Born-Markov approximation: This involves neglecting the memory effects by approximat-
ing the memory kernel as

Kt,t′ [ρS(t′)] = Kδ(t− t′)[ρS(t′)] (2.18)

2. Rotating wave approximation: Here, the fast rotating terms in the memory kernel are ig-
nored.

When the timescale of system environment interaction is compared to timescales of environment,
the system couples to all the frequencies of environment (white noise scenario). This happens
when the system environment coupling is weak and leads to the Markovian dynamics.

A simple quintessential example of a Markov process of an open system dynamics is the
one for which all memory effects are neglected and the dynamics is stationary in time. Under these
conditions, the family of maps has quantum dynamical semigroup (QDS) structure [218]

Φ(t2+t1,0) = Φ(t2,0)Φ(t1,0), t1, t2 ≥ 0. (2.19)

Such a quantum dynamical semigroup can be associated with a generator L, defined as Φt,0 =
exp(−Lt) [59] which governs the dynamics of the reduced state, i.e., dρS(t)/dt = LρS(t). The
most general form of L is given by

LρS = −i[H, ρS ] +
∑
i

γi
(
AiρSA

†
i −

1

2
{A†iAi, ρS}

)
. (2.20)

Here, H is the Hamiltonian of the system, Ai’s are the system jump operators and γi ≥ 0 the
corresponding decay rates. The equation of the form dρS(t)/dt = LρS(t) with generator given by
Eq. (2.20) are often known as Markovian master equation.

The master equations for subsystem dynamics are usually obtained either phenomenolog-
ically or derived with microscopic approaches under various approximations [57]. It is possible
that the assumptions made in the derivation may lead to unphysical equation of motion. However,
a powerful theorem proved in [219] says that irrespective of how one derives the master equation,
if the generator is of the form of Eq. (2.20), it is guaranteed to lead to physically consistent and
feasible solutions, i.e., it generated a family of CP maps. No such elegant mathematical framework
is available for a general non-Markovian process.

2.5.2 Theory of non-Markovian open quantum systems

The Lindblad master equation represents the universally accepted prototype of Markovian
dynamics, the memoryless dynamics implied by the semi-group property which make the future
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evolution of the system independent of the past states. However, there is divided opinion on what
is not Markovian and, to date, various points of view have been advocated, and as a result each
non-Markovian map is non-Markovian in its own way. This subsection is devoted to a quantitative
description of non-Markovianity by various existing measures.

The semi-group property defined in Eq. (2.19) is a characteristic feature of all master
equations in the Lindblad form. Two independent studies reported by Lindblad in [219] and V.
Gorini, A. Kossakowski, E.C.G. Sudarshan in [220] proved one-to-one correspondence between
CPTP dynamical maps with semi-group property and master equations in the Lindblad form. In
[76], it was proposed that any deviation from semi-group property should be considered the prin-
cipal characteristic of non-Markovian dynamical maps, and constructed a quantitative measure of
non-Markovianity as the minimum amount of isotropic noise needs to be added to the dynamics
of open system to make it Markovian. Recently, the concept of self-similarity was defined and
non-Markovian behaviour was quantified as the departure from self-similarity [221].

The time independence of the Lindbladian leads to the master equation of the form dΦ/dt =
LΦ, with the solution Φ(tj ,ti) = exp[L(tj − ti)] which represents a family of completely positive
trace preserving (CPTP) maps for all tj > ti. The stationarity is implied by the dependence of the
evolution on the time difference tj − ti such that the maps form a one parameter semigroup, Eq.
(2.19). When the system environment time scales are smaller than the environment time scales,
the system couples to the environment at certain frequencies [94]. As a result, the generator L,
Eq. (2.20), acquires additional time dependences in the form of HS(t), γi(t), and Ai(t) [222]. A
non trivial time dependence of γi(t) on time breaks the QDS structure, Eq. (2.19), of the maps;
however, if γi ≥ 0, the map is CP divisible and represents the time-dependent Markov processes.
The resulting dynamics is given in terms of a two parameter family of CPTP maps with time in-
homogenous composition law Φt,t0 = Φt,t′Φt′,t0 , for t > t′ > t0, with the map Φt,t0 obeying
the master equation dΦt,t0/dt = LΦt,t0 . It turns out that the full map Φt,t0 depends on the time
difference t − t0 but violates the semigroup property, Eq. (2.19), because the intermediate map
Φt′,t0 6= Φ(t′ − t0).

2.6 Quantum correlations
In this section, we describe various quantum correlations, both temporal as well as spatial,

which have been analyzed in various systems, as discussed in this thesis.

2.6.1 Temporal quantum correlations

Temporal correlations exist between the outcomes of an observable measured on a single
system at different times. In this thesis, we have analyzed a family of temporal quantum cor-
relations which go by the name of Leggett-Garg inequalities (LGIs). Here, we provide a brief
description of various avatars of LGIs.

Standard Leggett-Garg inequality (SLGI): Leggett Garg inequalities are based on the con-
cept of macrorealism (MR) and non-invasive measurability (NIM). MR means that the system
which has available to it two or more macroscopically distinct states, pertaining to an observ-
able M̂(t), always exists in one of these states irrespective of any measurement performed on
it. NIM states that, in principle, we can perform the measurement without disturbing the future
dynamics of the system [23]. To derive a simple form of the SLGI, let the observable M̂(t) be
dichotomic, i.e., it takes values mi = ±1 at time ti (dichotomicity is not necessary here, but is
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invoked for simplification. In fact, the results obtained hold true provided M̂ is bounded, i.e.,
|M̂ | < 1 [23, 223, 224]). The measurement of this observable is performed on a single system at
different times t1 < t2 < t3. After a series of measurements, one can estimate the value of the two
time correlation function

C(ti, tj) =
1

N

N∑
s=1

m
(s)
i m

(s)
j . (2.21)

Here, m(n)
i (or m(n)

j ) is the outcome of n-th measurement of M̂(ti) (or M̂(tj)). The MR assures
that the system exists in a well defined state even when no measurement is performed on it. As
a consequence, one can say the joint probability of outcomes m1, m2 and m3 is determined a
priori at some initial time say t0, say P (m1,m2,m3). Further, the two time probability can be
obtained as a marginal Pij(mi,mj) =

∑
k,k 6=i,j Pij(m1,m2,m3), where the indices i, j remind

us that only two observables are measured. In general, P12(m1,m2,m3), P23(m1,m2,m3) and
P13(m1,m2,m3) are different since the measurements at different times may affect the dynamics
differently. However, invoking NIM one assumes that Pij(m1,m2,m3) = P (m1,m2,m3) for all
i, j. Therefore, we haveP (m1,m2) =

∑
m3=±1 P (m1,m2,m3), P (m2,m3) =

∑
m1=±1 P (m1,m2,m3)

and P (m1,m3) =
∑

m2=±1 P (m1,m2,m3). The correlation functions are written in terms of
joint probabilities P (mi,mj)

C(ti, tj) = P (mi = +1,mj = +1)− P (mi = +1,mj = −1)

− P (mi = −1,mj = +1) + P (mi = −1,mj = −1). (2.22)

We define the Leggett Garg parameter K3 as

K3 = C(t1, t2) + C(t2, t3)− C(t1, t3). (2.23)

The subscript in K3 reminds us that we are considering three measurements, made at t1, t2 and t3.
We have

K3 = 1− 4
[
P (m1 = 1,m2 = −1,m3 = 1) + P (m1 = −1,m2 = 1,m3 = −1)

]
. (2.24)

The sum of the probabilities inside the bracket can range from 0 to 1, therefore we have the simplest
SLGI given by −3 ≤ K3 ≤ 1. The maximum quantum value of K3 for a two level system in 3/2
[17] and has been found to hold for any system, irrespective of the number of levels, as long as
the measurements are given by just two projectors Π± [225], a fact revealed in several studies
[22, 226–228]. One can talk about n measurement scenario leading to more SLGIs: −n ≤ Kn ≤
n− 2 for n ≥ 3 (and odd), and −(n− 2) ≤ Kn ≤ n− 2, for n ≥ 4 (and even) [23]. It was shown
in [229] that in the limit N →∞, the SLGI can be violated up to its maximum algebraic sum.

Stationarity based Leggett-Garg inequality: It is often convenient to deviate from the
original formulation of LGI and study instead a variant form of it, known as Leggett-Garg type
inequalities (LGtIs) introduced in [38, 230–232] and experimentally verified in [31, 233]. These
inequalities were derived to avoid the requirement of noninvasive measurements at intermediate
times. This feature makes them more suitable for the experimental verification as compared to
LGIs. The assumption of NIM is replaced by a weaker condition known as stationarity. This
asserts that the conditional probability p(φ, tj |ψ, ti) that the system is found in state φ at time
tj given that it was in state ψ at time ti is a function of the time difference (tj − ti). Invoking
stationarity leads to the following form of LGtIs

K± = ±2C(t1, t)− C(t1, 2t) ≤ 1. (2.25)

Here, t = t3 − t2 = t2 − t1, is the time between two successive measurements. Though the
assumption of stationarity helps to put the inequalities into easily testable forms, it reduces the class
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of macrorealist theories which are put to the test [38]. The stationarity condition holds provided the
system can be prepared in a well-defined state and the system evolves under unitary or Markovian
dynamics.

Wigner and CHSH forms of Leggett-Garg inequality: From the assumptions of joint
probability and non-invasive measurability, we obtain the pairwise statistics of measurement of
M̂2 and M̂3 having outcome m2 and m3 as P (m2,m3) =

∑
m1=± P (m1,m2,m3) and sim-

ilarly for others. We can write the expression, P (−m1,m2) + P (m1,m3) − P (m2,m3) =
P (−m1,m2,−m3)+P (m1,−m2,m3). By invoking the non-negativity of the probability, Wigner
form of LGIs can be derived as

P (m2,m3)− P (−m1,m2)− P (m1,m3) ≤ 0. (2.26)

One can obtain eight variants Wigner form of LGIs from (6.65). Similarly, sixteen more inequali-
ties can be derived from

P (m1,m3)− P (m1,−m2)− P (m2,m3) ≤ 0, (2.27)

P (m1,m2)− P (m2,−m3)− P (m1,m3) ≤ 0. (2.28)

Thus one has twenty four variants of Wigner form of LGI characterized by different measurement
settings. This richness turns out to be very useful especially in systems where experimental con-
straints put limitation on arbitrary preparation and detection process, viz., in subatomic systems
like neutrinos and mesons. It has been recently shown that Wigner form of LGIs are stronger than
the standard LGIs [100, 234].

The single marginal statistics of the measurement of the observable, for example, prob-
ability of getting outcome, when M2 measurement is performed can be obtained as P (m2) =∑

m1,m3=± P (m1,m2,m3) and similarly for P (m1) and P (m3). By combining single and pair-
wise statistics, we can get the expression, P (m1,m3) + P (m2) − P (m1,m2) − P (m2,m3) =
P (m1,−m2,m3) + P (−m1,m2,−m3), which gives

P (m1,m2) + P (m2,m3)− P (m1,m3)− P (m2) ≤ 0.

(2.29)

Inequality (2.29) can lead to eight variants of Clauser-Horne form of LGIs [234]. Similarly, sixteen
more inequalities can be derived in this manner. In compact notation, we can write,

P (m1,m3) + P (m1,m2)− P (m2,m3)− P (m1) ≤ 0,

(2.30)

P (m1,m3) + P (m2,m3)− P (m1,m2)− P (m3) ≤ 0.

(2.31)

Note that in the Wigner form of LGIs only pair-wise probabilities are involved but in Clauser-
Horne form of LGIs single probabilities are also involved along with pair-wise ones. Wigner and
Clauser-Horne forms of LGIs can be shown to be equivalent to standard LGIs in macrorealist
model, but inequivalent in quantum theory [234].

Entropic Leggett-Garg inequality: We now provide a brief review of some rudiments of
information theory used in the development of the entropic Leggett-Garg inequality. We begin
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by considering the observable A which can take discrete values denoted by ai at time ti, that is,
A(ti) = ai. We define the joint probability of the measurement of A at times ti and tj giving
results ai and aj , respectively, as P (ai, aj). According to Bayes’s theorem the joint probability is
related to the conditional probability as,

P (ai, aj) = P (aj |ai)P (ai) = P (ai|aj)P (aj). (2.32)

Here, P (aj |ai) is the conditional probability of obtaining the outcome aj at time tj , given that ai
was obtained at time ti.

A classical theory can assign well defined values to all observables of the system with no
reference to the measurement process. This assumption lies at the heart of Bell and Leggett-Garg
inequalities, leading to bounds which may not be respected by the nonclassical systems. In other
words, this assumption demands a joint probability distribution, P (ai, aj), yielding information
about the marginals of individual observations at time ti. The assumption of non-invasive mea-
surability implies that the measurement made on a system at any time does not disturb its future
dynamics and hence any measurement made at a later time tj where tj > ti. The mathemati-
cal statement would be that the joint probabilities be expressed as a convex combination of the
product of probabilities P (ai|λ), averaged over a hidden variable probability distribution ρ(λ)
[36, 235, 236]:

P (a1, a2, . . . , an) =
∑
λ

ρ(λ)P (a1|λ)P (a2|λ) · · ·P (an|λ), (2.33)

such that the following properties are satisfied

0 ≤ ρ(λ) ≤ 1,
∑
λ

ρ(λ) = 1; 0 ≤ P (ai|λ) ≤ 1,
∑
λ

P (ai|λ) = 1. (2.34)

A close resemblance of Eq. (2.33) may be noted to the corresponding assumption made in the
derivation Bell inequality [1] with the difference that in later case one talks about the joint proba-
bilities of outcomes in spatially separated systems. One can use the conditional probability given
by Eq. (2.32) to define the conditional entropy as

H[A(tj)|A(ti)] = −
∑
ai,aj

P (aj |ai) log2 P (aj |ai). (2.35)

Now using chain rule and the fact that conditioning reduces entropy [237], one obtains [238]

H[A(tN−1), ..., A(t0)] ≤ H[A(tN−1)|A(tN−2)] + ...+H[A(t1)|A(t0)] +H[A(t0)].
(2.36)

This temporal entropic inequality was used in [238] to study the role of quantum coherence in
Grover’s algorithm. Using the relation H[A(ti), A(ti+j)] = H[A(ti+j)|A(ti)] + H[A(ti)], one
can derive the temporal analogues of the spatial entropic Bell inequalities

N−1∑
k=1

H[A(tk)|A(tk−1)]−H[A(tN−1)|A(t0)] ≥ 0. (2.37)

These are the entropic Leggett-Garg inequalities [239]. Here, N denotes the number of measure-
ments, inclusive of the preparation; the case of N = 3 was experimentally tested in [35].
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2.6.2 Spatial quantum correlations

Here, we discuss some of the important quantum correlations existing between spatially
separated systems. The simplest scenario for realizing correlations is by considering a bipartite
system consisting of subsystems A and B, with respective Hilbert spacesHA andHB . The tensor
product of these spaces, i.e.,HA ⊗HB harbors the states of the total system.

Entanglement: If the two subsystems are completely independent, then the composite
state (of the total system) is a tensor product of the states of subsystems, i.e., if |ψA〉 ∈ HA and
|ψB〉 ∈ HB , then |ψAB〉 ∈ HA⊗HB , such that |ψAB〉 = |ψA〉⊗|ψB〉. In this case, no correlations
of any kind (neither classical nor quantum) exist between the subsystems. However, it may not be
possible to write the composite state as a product of two states of the respective subsystems. In
this case |ψAB〉 describes an entangled state of the two subsystems. In a pure bipartite scenario,
entanglement manifests in different yet equivalent ways. For example, all pure entangled states
are non-local and hence can violate Bell’s inequality [240]. Further, every pure entangled state is
definitely disturbed by an action of any possible local measurement [5, 241].

Steering: Steering is the manipulation of the state of one subsystem by performing local
operations on the other. It captures the original notion of inseparability which was appreciated by
Schrödinger [136], and was recently formalized from the quantum information theoretic point of
view [242]. Steering is an example of an asymmetric correlation which means that A can steer
B but not the other way around. A recent review on steering [243] summarizes the important
developments in this direction.

Nonlocality: Nonlocality provides an example of the most radical departure from a clas-
sical description of the world. It says that the probabilities of outcomes of the measurements
performed on subsystems cannot be generated from classical correlations. It is a symmetric corre-
lation like entanglement, i.e., invariant under the swap of the subsystems A and B [244].

2.7 Nonclassical properties of light

We now briefly revisit some important notions relevant for understanding the nonclassical
nature of light. An important property in this context is the coherence, i.e., the ability to show
interference, and is encountered both in classical as well as in quantum description of light. Recall
that the interference in the Mach Zehnder or Michealson interferometric setups, where interference
means that there is a well defined correlation between the field at two different times, is an example
of temporal coherence. However, from the perspective of quantum mechanics, the coherence is
described as interference of two processes associated with photons. The two processes are associ-
ated with wave amplitudes ψ1 and ψ2. If the processes are indistinguishable, the total amplitude
for the detection is the sum ψ = ψ1 + ψ2. Consequently the probability |ψ|2 contains the cross
termRe[ψ1ψ

∗
2]. The degree to which we see the interference is proportional to the degree to which

the two processes are indistinguishable. It is worth mentioning that the interaction of such systems
with the environment can increase the distinguishablity of these processes and thereby destroy the
ability of the system to show interference, a process known as decoherence.

To better appreciate the nonclassical features of light, we discuss in a nutshell, the quan-
tization of electromagnetic field. Recall that the classical field can be decomposed in terms of
plane waves in three dimensions ~u~k,µ(~r) = ε̂~k,µ e

i~k.~r/
√
V with complex amplitudes α~k,µ(t) =
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e−iνktα~k(0) of normal modes as:

~E(~r, t) =
∑
~k

E~k α~k,µ(t) ~u~k,µ(~r) + c.c., (2.38)

Here, c.c. denotes the complex conjugate, E~k =
√

~νk/2ε0 is a normalization constant, and ε̂~k,µ is
a unit polarization vector where µ labels two orthogonal polarization directions in plane perpendic-
ular to ~k. The sum is taken over an infinite discrete set of values of wave vector ~k = (kx, ky, kz),
such that the periodic boundary conditions require ki = 2πni/L, (i = x, y, z). Each triplet
(nx, ny, nz) defines a mode of the electromagnetic field.

The quantized field is achieved by identifying α~k and α∗~k with the harmonic oscillator

operators a~k and a†~k, respectively. The quantized electric field takes the form [144]

Ê(~r, t) =
∑
~k,µ

ε̂~kE~k â~k e
−iνkt+i~k.~r + h.c. (2.39)

The operator â~k (â†~k) annihilates (creates) a photon - an excitation in the plane wave mode ε̂~k e
−iνkt+i~k.~r.

The commutation relation [â~k, â
†
~k′

] = δ~k,~k′δµ,µ′ assures that different modes commute with each
other. A useful picture to look at fields is in terms of Fock spaceHFock = ⊗∞n=0hnk spanned by

{|n1, n2, . . . , nk, . . .〉 : nk = 0, 1, 2, . . .∞},

such that nk number of particles are in the mode labeled by (composite) index k = (~k, µ) =
0, 1, 2, . . . . This “discrete variable” description is intimately related to the particle picture, i.e.,
associates particle degrees of freedom to the field. Each constituent space hnk , which is “simple
harmonic oscillator” Hilbert space, is spanned by {|nk〉 : nk = 0, 1, 2 . . .∞} with

|nk〉 =
a†nk√
nk!
|0〉 . (2.40)

It follows from the above equation that a single photon is not necessarily in one mode, e.g., a single
photon at the input of a beam-splitter leads to the output which is a superposition of two plane
waves e−i~ka.~r and e−i~kb.~r, |ψout〉 = (tâ†~ka

+ râ†~kb
) |0〉, where t (r) is the transmission (reflection)

coefficient. Let us now revisit various witnesses of nonclassicality of electromagnetic field in terms
of the field creation and annihilation operators discussed above.

2.7.1 Criteria for nonclassicality of light

Nonclassicality is a multifaceted entity. From the perspective of quantum optics there are
different witnesses of nonclassicality of the radiation field. For example, the Mandel parameter
QM < 0, gives a sufficient condition for the field to be nonclassical [143]; single and multimode
squeezing conditions reveal the nonclassical character of a state arising due to the field fluctuation
[133]; Hillery-Zubairy criteria provide sufficient conditions in the form of a family of inequalities
for detecting entanglement [245]. These criteria can be casted in terms of the bosonic creation
and annihilation operators as discussed below.

• The Mandel QM parameter: Defined as the normalized variance of the boson distribution,
this measure characterizes the nonclassicality of a radiation field in the context of the photon
number distribution. Quantitatively,

QM =
〈(a†a)2〉 − 〈a†a〉2 − 〈a†a〉

〈a†a〉
. (2.41)
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Since the minimum value of 〈(a†a)2〉 − 〈a†a〉2 is zero, the Mandel parameter has a lower
bound of−1, and it provides the criterion for observing different photon statistics as follows:

QM


< 0 sub− Poissonian field,

= 0 coherent (Poissonian) field,

> 0 super− Poissonian field.

(2.42)

• Antibunching: A closely related phenomena is photon antibunching, given usually in terms
of the two-time light intensity correlation function [246],
g(2)(τ) = 〈n1(t)n2(t + τ)〉/〈n1(t)〉〈n2(t + τ)〉, where ni(t) is the number of counts
registered on ith detector at time t. A quantum state is referred to as an antibunched if
g(2)(0) < g(2)(τ). Interestingly, it was shown in the past to be closely related to the Mandel
parameter [247]. The correlation g(2)(0) characterizes the antibunched, the coherent and the
bunched fields as:

g(2)(0)


< 1 antibunched,

= 1 coherent,

> 1 bunched.

(2.43)

Therefore, for a single field with annihilation operator a, the criterion for antibunching can
also be written as [248]

Aa = 〈a†2a2〉 − 〈a†a〉2 < 0, (2.44)

i.e., the negative values of Mandel parameter also establish antibunching. Further, the inter-
modal antibunching is witnessed by using the following criterion [157]

Aab = 〈a†b†ba〉 − 〈a†a〉〈b†b〉 < 0. (2.45)

• Squeezing: This measure delineates the nonclassicality of a field in the context of the fluctu-
ations in the quadratures Xa and Ya of the field (with annihilation operator a), defined as

Xa =
a+ a†

2
Ya =

a− a†

2i
. (2.46)

The criteria for the nonclassical signature in the field is given, in terms of the variances in
the quadratures, as follows [133]

〈X2
a〉 − 〈Xa〉2 = (∆Xa)

2 <
1

4
(2.47)

or

〈Y 2
a 〉 − 〈Ya〉2 = (∆Ya)

2 <
1

4
. (2.48)

We can also define the intermodal quadrature operators Xab = (a+ a† + b+ b†)/2
√

2 and
Yab = (a− a† + b− b†)/2i

√
2, such that the intermodal squeezing criterion is given by

(∆Xab)
2 <

1

4
(2.49a)

or

(∆Yab)
2 <

1

4
. (2.49b)
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• Duan el al.’s criterion of entanglement: For two systems A and B, the non-separability
means the impossibility of factorizing the density matrix of the combined system ρ as ρ =∑

k λkρ
k
Aρ

k
B , with

∑
k λk = 1. In [249], a criterion for inseparability was developed by

Duan et al., which provides a sufficient condition for the entanglement of any two party
continuous variable states [250]. For two radiation fields with annihilation operators a and
b, this criterion translates to

Dab = 4(∆Xab)
2 + 4(∆Yab)

2 − 2 < 0, (2.50)

where (∆Xab)
2 and (∆Yab)

2 are defined in Eq. (2.49). The presence of squeezing does
not ensure the existence of entanglement as at a given time squeezing can happen only in
one quadrature. Thus, this criterion captures the asymmetry in the fluctuations in X and
Y and this is why it’s studied independently. In what follows, we refer to this criterion of
entanglement as Duan’s criterion.

• Hillery-Zubairy(HZ) criteria of entanglement: In [245], it was shown that for two field
modes a and b, two inseparability criteria are

Eab = 〈a†ab†b〉 − |〈ab†〉|2 < 0, (2.51)

and
Ẽab = 〈a†a〉〈b†b〉 − |〈ab〉|2 < 0. (2.52)

• Steering: The notion of steering, as an apparent action at a distance, was introduced by
Schrödinger while discussing the EPR paradox [136], and shares logical differences both
with non-separability and Bell non-locality. While as non-separability and Bell non-locality
are symmetric between two parties, say Alice and Bob, steering is inherently asymmet-
ric, addressing whether Alice can change the state of Bob’s system by applying local mea-
surements. An operational definition of steering was first provided in [242], wherein they
proved that steerable states are a strict subset of the entangled states and a strict superset
of the states that can exhibit Bell non-locality. In the context of field modes a and b, the
EPR− steering entanglement is confirmed if it satisfies [251]

0 < 1 +
〈a†ab†b〉 − |〈ab†〉|2

〈a†a(bb† − b†b)〉
<

1

2
. (2.53)

This result can be proved by the methods given in [252]. The above steering condition (2.53)
can be expressed in terms of the HZ criterion Eq. (2.51), the condition reads:

SAB = Eab +
〈a†a〉

2
< 0. (2.54)

The concept of steering being inherently asymmetric [253], it will be interesting to compare
SAB and SBA = Eab + 〈b†b〉

2 .

• Multimode entanglement: In [254], a class of inequalities was derived for detecting the en-
tanglement in multimode systems. In the case of a tripartite state, viz., the one corresponding
to the three modes a, b, and c, the sufficient conditions for not being bi-separable of the form
ab|c (in which a compound mode ab is entangled with mode c), are given as follows:

Eab|c = 〈a†ab†bc†c〉 − |〈abc†〉|2, (2.55)

E′ab|c = 〈a†ab†bc†c〉 − |〈abc〉|2. (2.56)
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A three-mode quantum state is fully entangled by the satisfaction of either or both of the
following sets of inequalities:

Eab|c < 0, Ebc|a < 0, Eac|b < 0, (2.57)

E′ab|c < 0, E′bc|a < 0, E′ac|b < 0. (2.58)

It is worth mentioning here that the analysis of the above mentioned witnesses of nonclassicality
may involve higher order products of the operators. These higher order correlations can be decor-
related by the prescription given in [171]. For example 〈âb̂ĉ〉 ≈ 〈âb̂〉〈ĉ〉 + 〈â〉〈b̂ĉ〉 + 〈âĉ〉〈b̂〉 −
2〈â〉〈b̂〉〈ĉ〉, which basically makes use of the Bogoliubov theory of linearized quantum corrections
to mean field effects.

We now proceed to investigate in detail various facets of nonclassicality in different sys-
tems and will often refer to the tools developed in this chapter.
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