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Aspects of non-Markovian Open

Quantum Systems

This chapter deals with non-Markovian aspects in Open Quantum Systems. The study of
quantum systems interacting with the ambient environment helps in characterizing the dynamics
of system and is useful in many application of quantum mechanics where system-environment
interactions cannot be avoided.

4.1 Introduction

In many practical situations, the system-environment interaction brings in pronounced
memory effects leading to the emergence of non-Markovian dynamics [59–63, 65, 268]. Recently,
non-Markovianity has been a subject matter of various studies from quantum cryptography [66,
67], quantum biology [68–70], quantum metrology [71, 72] and quantum control [73]. It has been
shown with ample evidence that non-Markovian channels can be advantageous over Markovian
ones. In [74], it was reported that the non-Markovianity can enhance the channel capacity in
comparison to the Markovian case. Non-Markovian behavior is a multifaceted phenomenon which
can not be attributed to a unique feature of the system-environment interaction. Consequently,
several different measures were introduced in order to quantify the non-Markovian behavior, viz.,
trace distance [59], fidelity [75], semigroup property [76] or divisibility [60] of the dynamical
map, quantum Fisher information (QFI) [77], quantum mutual information [78]. In general, these
measures are inequivalent and different predictions by these measures have been reported in [79].

The non-Markovian aspects become pertinent while dealing with quantum channels sub-
jected to different types of environment. Another aspect of the system-environment interactions is
the loss of the coherence and entanglement which is undesirable from the perspective of carrying
out the tasks of quantum information. Therefore, this calls for the characterization of the quantum
channels under the influence of different environments. Efforts have been made in this direction
[80, 81]. Quantum coherence can be thought of as a resource [82–84] bringing out the utility of the
quantum behavior in various tasks [85, 86]. As the system evolves under ambient conditions, mod-
eled by the noisy channel under consideration, it has a tendency of getting mixed [87]. A pertinent
question then to ask is the trade-off between the mixedness and coherence [88, 89]. The interplay
between coherence and mixing in the context of non-Markovian evolution, has been studied [90].
Gate fidelity [91], which tell us about the efficiency of the gate’s performance and channel fidelity
[80], a measure of how well a gate preserves the distinguishability of states, and is thus connected
to the Holevo bound of the channel, are two useful channel performance parameters. The per-
formance of Lindbladian channels, such as the squeezed generalized amplitude damping (SGAD)
channel [92] and the Unruh channel [93] have been studied using these parameters [80].
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The rest of chapter is divided into six sections. Section 4.2, discusses various facets of
quantum information under non-Markovian evolution [98]. In Sec. 4.3, LGI is studied in a two
level atom interacting with a squeezed thermal bath [269]. Section 4.4 is devoted to the study of
a coherence based measure of quantumness of (non) Markovian channels [107]. In Sec. 4.5, a
measure of quantumness of channels based on the incompatibility of operators is proposed and
studied for some well known channels, both Markovian as well as non-Markovian [108]. Section
4.9 brings out the subtitles arising in formulating the LGI for systems undergoing non-Markovian
evolution [99]. In Sec. ??, a formalism is developed for probing non-Markovian dynamics via
generalized measurements [270].

4.2 Facets of quantum information under non-Markovian evolution

Here, we briefly describe various facets of quantum information studied in a qubit sub-
jected to non-Markovian evolution, in particular, random telegraph noise (RTN) and non-Markovian
dephasing (NMD) channels based on [98].

Quantum Fisher Information (QFI): Consider a d-dimensional quantum (qudit) state ρα
depending on parameter α. The QFI [271, 272] is a measure of the information with respect to the
precision of estimating the inference parameter. For the state parameter α, the Fisher information
is defined as

Fα =

[
~ζ(α) · ∂α~ζ(α)

]2

1− |~ζ(α)|2
+
∣∣∣~ζα(α)

∣∣∣2 . (4.1)

Here, ~ζ(α) = [ζ1(α), ζ2(α), ζ3(α)] is the Bloch vector for the general qubit state ρ = 1
21+~ζ(α)·~σ,

with ~σ denoting the Pauli spin matrix triplet (σx, σy, σz). One can define the QFI-flow as the time
rate of change of the QFI as

Fα =
dFα
dt

. (4.2)

In [77], it was proposed that a positive QFI-flow at time t implies that the QFI flows back
into the system from the environment, generating a non-Markovian dynamics. Therefore, we have

Fα =


< 0 Markovian dynamics,

> 0 non−Markovian dynamics.

(4.3)

The back flow of QFI is linked to the divisibility property of the underlying dynamical map.

Quantum coherence: Quantum coherence is a consequence of quantum superposition and
is necessary for existence of entanglement and other quantum correlations. The degree of quantum
coherence in a state described by density matrix ρ is given by its off-diagonal elements. Specifi-
cally, the sum of the absolute values of the off-diagonal elements of ρ serves as a measure of the
coherence

C =
∑
i 6=j
|ρij |. (4.4)

The coherence parameter C tends to zero with increase in mixing.

Purity and Mixedness of quantum states: For a normalized state ρ, the purity is a scalar
quantity Tr

[
ρ2
]

which is a measure of how much mixed a state is. Alternatively, one can define
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Figure 4.1: Behavior of decoherence rate with respect to time t (unit of t is second throughout this section)
for RTN (left) and with respect to p, a dimensionless parameter, for NMD (right) channels,
respectively. The non-Markovian dynamics is implied by dΛ/dt > 0 (δ < 0). In case of RTN,
the solid (blue) and dashed (red) curves correspond to non-Markovian (a = 0.05, γ = 0.001)
and Markovian (a = 0.05, γ = 1) cases, respectively. Further, for RTN, the magnitude of
the dashed (red) curve is increased ten times. The Markovian and non-Markovian regimes are
separated by a singularity (vertical line) for the NMD channel.

the mixedness parameter

M = 2

(
1− Tr

[
ρ2
])
, (4.5)

such that M = 0 for pure state and M = 2(1 − 1
d) for maximally mixed state. The interplay

between coherence and mixedness was studied in [88]. For an arbitrary quantum state (ρ), in
d-dimensional Hilbert space, the trade-off between coherence and mixing is quantified by the
parameter β given as:

β =
C2

(d− 1)2
+M≤ 1. (4.6)

Average gate fidelity: One of the important tasks in quantum computation and quantum
information is characterization of the quantum gates and quantum channels. In this direction, the
average gate fidelity is a useful tool to quantify the quality of the quantum gates and is given by
the compact expression

Gav =
1

d(d+ 1)

(
d+

∑
k

Tr
[
Ek
])
. (4.7)

Here, d is the dimension of the system and Ek are the Kraus operators characterizing the quantum
channel. It gives some idea of how well a quantum gate performs an operation it is supposed to
implement.

Holevo information: Given any measurement described by the positive operator valued
measure (POVM) {Ek} performed on state ρ =

∑
i piρi, we define the Holevo quantity as

χH = S(ρ)−
∑
i

piS(ρi). (4.8)

Holevo quantity represents the maximum amount of classical information that can be transmitted
over a quantum channel.

We now study the above mentioned information theoretic quantities in some well known
quantum channels.
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Figure 4.2: RTN noise model: Fisher information flow corresponding to the parameters θ (left) and φ
(right), as defined in Eqs. (4.23) and (4.24), respectively, are plotted with respect to time.
Solid (blue) and dashed (red) curves correspond to the non-Markovian (a = 0.07, γ = 0.001)
and Markovian (a = 0.07, γ = 1) cases, respectively. The state variable θ is chosen to be π/4.
The magnitude of the dashed (red) curve is increased five times.

Random Telegraph Noise: The Random Telegraph Noise (RTN) is characterized by the
autocorrelation function given as

〈X (t)X (s)〉 = a2e−γ|t−s|, (4.9)

with X being the stochastic variable. The parameter a is proportional to the system environment
coupling strength and γ controls the fluctuation rate of the RTN. The map, E , governing the time
evolution under RTN has the following Kraus representation

E [ρ] = K1ρK
†
1 +K2ρK

†
2, (4.10)

with

K1(ν) =

√
1 + Λ(ν)

2
I, and K2(ν) =

√
1− Λ(ν)

2
σz. (4.11)

Here, Λ(ν) = e−ν [cos(νµ) + 1
µ sin(νµ)], with µ =

√
(2a
γ )2 − 1 and ν = γt. The dynamics is

Markovian or non-Markovian depending on whether (2a
γ )2 > 1 or (2a

γ )2 < 1, respectively.

Consider a general qubit state at time t0 given as

ρ =

[
cos2 θ

2
1
2e
−iφ sin θ

1
2e
iφ sin θ sin2 θ

2

]
. (4.12)

Under RTN noise, the state at some late time t is given by

ρ′ = Et←t0 [ρ] = K1ρK
†
1 +K2ρK

†
2 =

1 + Λ(t)

2
ρ+

1− Λ(t)

2
σ3ρσ

†
3

=

[
cos2 θ

2
1
2e
−iφ sin θΛ(t)

1
2e
iφ sin θΛ(t) sin2 θ

2

]
.

(4.13)

Now, the dephasing master equation in its canonical form is given by

ρ̇ = ξ(−ρ+ σzρσz), (4.14)

where ξ is the decoherence rate. The necessary and sufficient condition for a map to be CP-
divisible is that the decoherence rate must be non-negative [217]. Using Eqs. (4.13) and (4.14),
the decoherence rate for the dephasing RTN map turns out to be

ξ = − 1

2Λ

dΛ

dt
. (4.15)
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Figure 4.3: Fisher information flow Fα (α = θ, φ), as defined in Eqs.(4.25) and (4.26), for non-Markovian
dephasing dynamics. Non-Markovian dynamics is implied by Fα > 0. The parameters used
are θ = π/4 and α = 0.7.
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Figure 4.4: Coherence parameter C (left panel) and mixedness parameterM (right panel) for a qubit under
RTN evolution. The solid (blue) and dashed (red) curves correspond to non-Markovian and
Markovian cases, respectively. Here, we have used θ = π/2. The values of a and γ are the
same as used in Fig. 4.2.

Since Λ > 0, the decoherence rate is negative when dΛ
dt is positive. The negative decoherence rate is

a signature of non-Markovian dynamics. As shown in Fig. 4.1, RTN shown negative decoherence
rates for certain ranges of time t. This is consistent with the non-Markovian behavior studied using
the QFI-flow, detailed below.

Non-Markovianian dephasing: The non-Markovina dephasing (NMD) is governed by the
following Kraus operators

KI =
√

[1− αp](1− p) I =
√

1− κ I,

Kz =
√

[1 + α(1− p)]p σz =
√
κ σz.

(4.16)

Here, 0 ≤ α ≤ 1 and p is a monotonically increasing function of time such that 0 ≤ p ≤ 1/2. The
above map reduces to conventional dephasing in the limit α → 0. The action of the map, ENMD,
given by Kraus operators in Eq. (4.16), on a general qubit state in Eq. (4.12) is

ρ′ = ENMD
t←t0 [ρ] =

[
cos2 θ

2
1
2e
−iφ sin(θ)Ω

1
2e
iφ sin(θ)Ω sin2 θ

2

]
. (4.17)

Here, Ω = 1 − 2p + 2pα(p − 1) = 1 − 2κ. Corresponding to the Kraus operators in Eq. (4.16),
the canonical master equation is

ρ̇ = δ(−ρ+ σzρσz). (4.18)
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Figure 4.5: Average gate fedility Gav parameter (left) and Holevo quantity χH (right) in RTN case. The
solid (blue) and dashed (red) curves correspond to non-Markovian and Markovian cases, re-
spectively. The parameters a and γ are as given in Fig. 4.2. The state parameter θ = π/2.

Here, ρ̇ = dρ
dp and the decoherence rate δ = δ(p) as well as the state ρ = ρ(p) are functions of the

parameter p. Using Eqs. (4.17) and (4.18), the decoherence rate turns out to be

δ =
1
2(r+ + r−)− p

(p− r−)(p− r+)
, (4.19)

with r± = (1+α±
√

1 + α2)/2α. The regimes p < r− and p > r− correspond to Markovian and
non-Markovian dynamics, respectively. The behavior of δ as a function of parameter p is shown
in Fig. 4.1. The singularity occurs at p = r−, which, in turn, depends on the value of parameter α.

Table 4.1: Analytic expressions for various quantities studied in RTN and NMD models.
Facets ↓Models→ RTN NMD

Coherence (C)
∣∣Λ sin θ

∣∣ ∣∣(1− 2κ) sin(θ)
∣∣

Mixedness (M) (1− Λ2) sin2 θ (1− (1− 2κ)2) sin2 θ

Coherence-Mixing
balance (β) sin2 θ sin2 θ

Average gate
fidelity

(1 + |1 + Λ|)/3 (1 + |1 + (1− 2κ)|)/3

Holevo informa-
tion

−λ+Log2λ+ − λ−Log2λ−
4p(1−3α(p−1)) tanh−1(X)−3 ln(2α(p−1)p− 2p

3
+1)

ln(8)

Here λ± = 1
4

(
2±
√

2
√

1 + Λ2 + (1− Λ2+) cos 2θ
)

, Λ = e−ν [cos(νµ) + 1
µ sin(νµ)],

κ = p[1 + α(1− p)], and X = 4α(p− 1)p− 4p
3 + 1. Also, θ is the state parameter, Eq. (4.12).

4.2.1 Quantum Fisher infomation flow and non-Markovianity
In this section, we discuss the interplay between QFI-flow and non-Markovianity in the

context of RTN and NMD channels by using the dynamics sketched in the previous section.

For RTN channel: We will use the time evolved state given in Eq. (4.13) and compute the
QFI and QFI-flow. The Bloch vector corresponding to ρ′ in Eq. (4.13) turns out to be

~ζ(θ, φ) =

(
1

2
Λ(ν) sin θ cosφ,

1

2
Λ(ν) sin θ sinφ,

1

2
cos θ

)
. (4.20)
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Therefore,

∂θ~ζ(θ, φ) =

(
1

2
Λ(ν) cos θ cosφ,

1

2
Λ(ν) cos θ sinφ,−1

2
sin θ

)
,

∂φ~ζ(θ, φ) =

(
−1

2
Λ(ν) sin θ sinφ,

1

2
Λ(ν) sin θ cosφ, 0

)
.

Also,

~ζ(θ, φ) · ∂φ~ζ(θ, φ) = 0,

~ζ(θ, φ) · ∂θ~ζ(θ, φ) =
1

4
((Λ(ν))2 − 1) sin θ cos θ,

|~ζ(θ, φ)|2 =
1

4
(Λ(ν))2 sin2(θ) +

1

4
cos2 θ. (4.21)

With above setting, the QFI corresponding to the parameters θ and φ becomes

Fθ = 1 +
3(−4 + Λ2)

2(7− Λ2 + (−1 + Λ2) cos 2θ)
,

Fφ =
1

4
Λ2 sin2 θ.

(4.22)

The corresponding QFI-flows are given by the following expressions

Fθ =
dFθ
dt

= −
18γµ2

(
µ2 + 1

)
cos2(θ)e2γt sin(γµt)µΛ(t)[

µ2(cos(2θ)− 7)e2γt + 2 sin2(θ)µ2Λ2(t)
]2 , (4.23)

Fφ =
dFφ
dt

=
1

2
sin2 θ

dΛ

dt
=
γ
(
µ2 + 1

)
sin2(θ)e−2γt sin2(γµt)(µ cot(γµt) + 1)

2µ2
. (4.24)

These quantities are depicted in the Fig. 4.2 both for the Markovian as well as the non-
Markvoian cases.

For NMD channel: The analytic expressions for the QFI-flow in this case are given as

Fθ =
9 cos2(θ)(2α(p− 1)p− 2p+ 1)(α(2p− 1)− 1)

(2(p− 1)p cos(2θ)(α(p− 1)− 1)(αp− 1)− 2(p− 1)p(α(p− 1)− 1)(αp− 1) + 3)2
,

(4.25)

Fφ = sin2(θ)(2α(p− 1)p− 2p+ 1)(α(2p− 1)− 1). (4.26)

These quantities are plotted in Fig. 4.3. The various facets studied in RTN and NMD
models are listed in Table (4.1) with their compact analytic expressions.

4.2.2 Results and discussion
The nature of the dynamics is governed by the decoherence rate, which is positive (neg-

ative) for Markovian (non-Markovian) dynamics. In the specific models considered in this work,
namely RTN and NMD, the behavior of the respective decoherence rates is depicted in Fig. 4.1.
This behavior is in concord with that seen with the QFI-flow. The non-Markovian behavior in case
of RTN is controlled by the channel parameters, while the NMD is non-Markoviann for all values
of the parameter α. Figure 4.2 depicts the QFI-flow corresponding to the state parameters θ and
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Figure 4.7: Non-Markovina Dephasing (NMD) channel. Showing (a) coherence parameter (b) mixedness
parameter (c) average gate fidelity and (d) Holevo quantity. The state parameters used are
θ = π/4 and φ = 0, and the channel parameter α = 0.5.
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φ as a function of time. The positive QFI-flow is a signature of non-Markovianity and is linked
with the divisibility of the underlying dynamical map. It is well known that the non-Markovianity
emerges in the RTN governed dynamics under the condition 2a > γ. In this regime, QFI-flow
is found to oscillate symmetrically about zero, thereby confirming the non-Markovian nature of
the dynamics. The behavior of the coherence and mixedness under RTN evolution is shown in
Fig. 4.4. The coherence parameter C and the mixedness parameterM decrease (increase) mono-
tonically in the Markovian regime unlike the non-Markovian case. In the non-Markovian regime,
these parameters shown recurrent behavior with time with an envelope of damped oscillation. The
interplay between coherence and mixedness is symmetric in RTN model, Fig. 4.6, such that the
increase in one is accompanied with the decrease in other. The parameter β, Eq. (4.6), depends
only on the state parameter θ, as given in Table (4.1). Similar observations are made for the av-
erage gate fidelity (Gav) and Holevo quantity and are depicted in Fig. 4.5 where the monotonic
decrease with respect to time in Markovian case is contrasted with the oscillating behavior of these
quantities in the non-Markovian scenario.

The decoherence rate in non-Markovian dephasing (NMD) model shows a negative branch
separated from the positive branch by a singularity. However, the recurrent behavior observed in
RTN is missing. The QIF-flow is positive for certain range of the time like parameter p, as depicted
in Fig. 4.3, demonstrating the non-Markovian nature of this model. The complementary behavior
of coherence and mixedness is observed, that is, the decrease in the coherence is accompanied by
an increase in the mixedness, Fig. 4.6, such that the β parameter, defined in Eq. (4.6), is a func-
tion of the state variable θ, see Table (4.1). The average gate fidelity decreases, while the Holevo
quantity shows an increase with p in the range 0 ≤ p ≤ 1/2.

4.3 Violation of Leggett-Garg type inequalities in a driven two level
atom interacting with a squeezed thermal reservoir

In this section, which is based on [269], we discuss the violation of Leggett-Garg type
inequalities (LGtIs) in a two level atom, driven by an external field in the presence of a squeezed
thermal reservoir. The violations are observed in the underdamped regime where the spontaneous
transition rate is much smaller compared to the Rabi frequency. Increase in thermal effects is
found to decrease the extent of violation as well as the time over which the violation lasts. With
increase in the value of squeezing parameter the extent of violation of LGtIs is seen to reduce.
The violation of LGtIs is favored by increase in the driving frequency. Further, the interplay of
the degree of violation and strength of the measurements is studied. It is found that the maximum
violation occurs for ideal projective measurements.

Here, we study the stationarity form of LGI as defined in Eq. (2.25) with

C(ti, tj) =
∑

m,n=±
mnTr

[
ΠmEtj←ti

[
Πnρ(ti)Π

n
]]
. (4.27)

The map Etb←ta governs the time evolution of the state, i.e., ρ(tb) = Etb←ta [ρ(ta)]. Assuming that
the measurements are made at time t2 > t1 > t0, we have

K± = ±2C(t0, t)− C(t0, 2t) ≤ 1. (4.28)

Here, t = t2 − t1 = t1 − t0, is the time between two successive measurements. From here on, we
will call K± as LG parameter. Though the assumption of stationarity helps to put the inequalities
into easily testable forms, it reduces the class of macrorealist theories which are put to the test
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[38]. The stationarity condition holds provided the system can be prepared in a well-defined state
and the system evolves under Markovian dynamics. These conditions are satisfied in the model
considered in this work. Therefore, for a suitable experimental setup, inequalities (4.28) provide a
tool to quantitatively probe the coherence effects in this system.

Here we study the violation of LGtIs in a driven two-level atom interacting with a squeezed
thermal reservoir. Such studies are motivated by the fact that LGtIs provide a way to probe the
degree of coherence in a system. Interestingly, the two time correlation functions can be written in
terms of experimentally observable quantities. In recent times, the studies of LGtIs has increased
considerably leading, for example, to the possible applications of LGtIs violation for ensuring
security in quantum key distribution schemes. Further, LGtIs also serve to probe the applicability
of the models of unsharp measurements pertaining to non-ideal measurement set ups [273]. These
studies become even more pertinent from a practical perspective when one takes into account open
system effects. Thus, for example, the effect of temperature, squeezing and driving frequencies, as
well as the role of the strength of measurement on LGtI violation in a paradigm model of quantum
optics, as done here, should pave the way for developing our understanding of the multifaceted role
of various parameters on the inherent quantumness of the system, thereby helping in characterizing
the quantumness. This would be particularly relevant from the point of view of applying such
systems towards quantum technologies.

4.3.1 Model: A driven two level system
Here, we sketch the essential details of a driven two-level system in contact with a squeezed

thermal bath [57, 58, 80, 92, 113]. The model consists of a two level system whose Hilbert space
is spanned by two states, the ground state |g〉 and the excited state |e〉, Fig. 4.8. The description of
such a system is analogous to that of a spin -1

2 system. The Pauli operators in terms of these basis
vectors are σ1 = |e〉〈g|+ |g〉〈e|, σ2 = −i|e〉〈g|+ i|g〉〈e| and σ3 = |e〉〈e| − |g〉〈g|, and satisfy the
usual commutation [σi, σj ] = 2iεijkσk and the anticommutation {σi, σj} = 2δij . The raising and
lowering operators can be defined as

σ+ = |e〉〈g| = 1

2
(σ1 + iσ2), σ− = |g〉〈e| = 1

2
(σ1 − iσ2). (4.29)

With this setting, we can define the system Hamiltonian HS to be diagonal in basis {|e〉 , |g〉}.
With ω0 denoting the transition frequency between the two levels (setting ~ = 1), we have

HS =
1

2
ω0σ3. (4.30)

A detailed account of two level systems and their application can be found in [274].

We now consider the case when a two level atomic transition |e〉 ↔ |g〉 is driven by an
external source. The source is assumed to be a coherent single mode field on resonance. Under
dipole approximation, the Hamiltonian (in the interaction picture) is given byHL = − ~EL(t). ~D(t).
Here, ~EL(t) = ~εe−iω0t + ~ε∗e+iω0t is the electric field strength of the driving mode. Also, ~D(t) =
~dσ−e

−iω0t + ~d∗σ+e
+iω0t is the atomic dipole operator in the interaction picture and ~d = 〈g| ~D|e〉

is the transition matrix element of the dipole operator. The atom-field interaction can be written in
the rotating wave approximation as follows,

HL = −Ω

2
(σ+ + σ−). (4.31)

Here, Ω = 2~ε.~d∗, is referred to as the Rabi frequency. Now coupling the system to a thermal
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Figure 4.8: Schematic diagram for (a) Two level atom interacting with a squeezed thermal bath at temper-
ature T with squeezing parameter s. The transition frequency between the two levels is ω0. (b)
Testing the LGtIs using the statistics of two experiments, with the same preparation state, |g〉,
at time t0 = 0. The dichotomic observable M̂ = |g〉 〈g| − |e〉 〈e| would lead to +1 if the atom
is found in ground state and −1 otherwise. For example, at t0, we have 〈M̂〉 = +1.

reservoir leads to the quantum master equation

dρ(t)

dt
=
iΩ

2

[
σ+ + σ−, ρ(t)

]
+ γ0n

(
σ+ρ(t)σ− −

1

2
σ−σ+ρ(t)− 1

2
ρ(t)σ−σ+

)
+ γ0(n+ 1)

(
σ−ρ(t)σ+ −

1

2
σ+σ−ρ(t)− 1

2
ρ(t)σ+σ−

)
− γ0Mσ+ρ(t)σ+ − γ0M

∗σ−ρ(t)σ−. (4.32)

Here, γ = γ0(2n + 1) is the total transition rate with γ0 being the spontaneous emission rate.
Further,

n = nth(cosh2(s) + sinh2(s)) + sinh2(s),

and M = − cosh(s) sinh(s)eiθ(2nth + 1). (4.33)

where s and θ are the squeezing parameters and nth = 1/(exp[βω0]− 1) is the Plank distribution
at transition frequency. In what follows, we will set θ = 0 for the purpose of calculations.

In order to solve Eq. (4.32), we write the density matrix as

ρ(t) =
1

2
(I + ~v(t).~σ) =

(
1
2(1 + 〈σ3〉) 〈σ−〉
〈σ+〉 1

2(1− 〈σ3〉)

)
, (4.34)

with ~v(t) = 〈~σ(t)〉 = Tr[~σρ(t)], is known as the Bloch vector. With this notation, the master
equation, Eq. (4.32), becomes

d

dt
〈~σ(t)〉 = G〈~σ(t)〉+ ~m. (4.35)
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Figure 4.9: Probability of finding the atom in ground state at time t, in the units with ~ = kB = 1. Here,
R = γ0/Ω is the ratio of the spontaneous emission to the Rabi frequency. With squeezing
parameter s = 0 and transition frequency ω0 = 0.5, the values R = 0, 0.05 and 5 correspond
to µs = 1, 0.9 (underdamped) and 0.7i (overdamped), respectively.
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Figure 4.10: Evolution of the LG parameters K+ (left), K− (middle) and coherence parameter C (right).
Here, β = 10, ω0 = 0.5, s = 0, such that R = 0, 0.05 and 5 correspond to µs = 1,
0.9 (underdamped) and 0.7i (overdamped) cases, respectively. The violation of LGtIs occur
predominantly in underdamped regime such that K± reach their quantum bound 3/2 as R →
0. The coherence parameter shows exponentially damped oscillations in underdamped regime,
while in overdamped case, it monotonically saturates to it stationary value.

Here,

G =


−γ

2 − γ0M 0 0

0 −γ
2 + γ0M Ω

0 −Ω −γ

 , (4.36)

and ~m = [0 0 − γ0]T , T being the transpose operation.

The differential equation (4.35) has the stationary solution given by

〈σ3〉s = − γ0(γ − 2γ0M)

γ2 − 2γγ0M + 2Ω2
,

〈σ+〉s = − iγ0Ω

γ2 − 2γγ0M + 2Ω2
. (4.37)

Consequently, the stationary population of the excited state pse = 1
2(1 + 〈σ3〉s) = 1

2

[
1 −

γ0(γ−2γ0M)
γ2−2γγ0M+2Ω2

]
.
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In the strong driving limit, Ω� γs, we have pse = 1/2 and 〈σ+〉s = −iγ0/2Ω.

In order to solve the time dependent Bloch equation, Eq. (4.35), it is convenient to intro-
duce the vector

〈~Σ(t)〉 = 〈~σ(t)〉 − 〈~σ〉s. (4.38)

This vector satisfies the homogeneous equation

d

dt
〈~Σ(t)〉 = G〈~Σ(t)〉. (4.39)

This equation can be easily solved by diagonalizing G, which has the eigenvalues

λ1 = −γ
2
− γ0M,

λ2,3 =
γ0M

2
− 3γ

4
± iµs, (4.40)

where,

µs =

√
Ω2 −

(γs
4

)2
with γs = γ + 2γ0M. (4.41)

Assuming the atom to be initially in the ground state ρ(0) = |g〉 〈g|, we have

〈σ3(0)〉 = −1 or 〈Σ3(0)〉 = −1− 〈σ3〉s, (4.42)

and
〈σ±(0)〉 = 0 or 〈Σ±(0)〉 = −〈σ±〉s. (4.43)

With these initial conditions, the solution of Eq. (4.39) is given by

〈~Σ(t)〉 =


e−(γ+2γ0M)t/2〈Σ1(0)〉

e(−3γ+2γ0M)t/4
[(

cos(µst) +
γ+3γ0M

4µs
sin(µst)

)
〈Σ2(0)〉 + Ω

µs
sin(µst)〈Σ3(0)〉

]
e(−3γ+2γ0M)t/4

[(
1− γ0M

2µs

)
cos(µst)− γ

4µs
sin(µst)

]
〈Σ3(0)〉 + iΩ

µs
e(−3γ+2γ0M)t/4 sin(µst)

[
〈Σ+(0)〉 − 〈Σ−(0)〉

]

 .
(4.44)

Having obtained the solution, one can calculate the survival probability of the atom being
in the ground state |g〉, as

pg(t) =
1− [〈Σ3(t)〉+ 〈σ3〉s]

2
. (4.45)

Further, the degree of coherence is proportional to the off-diagonal element

〈σ+(t)〉 =
〈σ1(t)〉+ i〈σ2(t)〉

2
+ 〈σ+〉s. (4.46)

The dynamics is underdamped or overdamped depending on whether µs, defined in Eq. (4.41), is
real or imaginary. As a result, in underdamped regime, the probabilities as well as the coherence
exhibit exponentially damped oscillations, while in the over damped case, they monotonically
approach their stationary values, Fig. 4.9. Throughout this work, we adopt the units ~ = kB = 1.

4.3.2 Leggett-Garg type inequality for the two level driven system
Let Etj←ti be the map corresponding to the evolution given by Eq. (4.32), such that the

system in state ρ(ti) at time ti evolves to state ρ(tj) at some later time tj > ti

ρ(tj) = Etj←ti [ρ(ti)]. (4.47)

53



K+ K-

0 2 4 6 8 10

-3

-2

-1

0

1

t

Figure 4.11: Complementary behavior of LG parameters K± in the strong driving limit. The various pa-
rameters used are β = 10, ω0 = 0.5, s = 0, R = 0.005, pertaining to the underdamped
regime.

Let at time t0 the system be in the ground state |g〉. We define the dichotomic observable M̂ =
|g〉〈g| − |e〉〈e|. Thus a measurement of this observable leads to +1 or −1 depending to whether
the system is in the ground or excited state, respectively, Fig. 4.8. We introduce the projectors
Π+ = |g〉〈g| and Π− = |e〉〈e|, such that O = Π+ − Π−. Using Eq. (4.27), with the notation
t1 − t0 = t, the two time correlation C(t0, t1) is

C(t0, t1) = Tr[Π+ρ(t0)] Tr
[
Π+Et1←t0

[Π+ρ(t0)Π+

Tr[Π+ρ(t0)]

]]
− Tr[Π+ρ(t0)] Tr

[
Π−Et1←t0

[Π+ρ(t0)Π+

Tr[Π+ρ(t0)]

]]
− Tr[Π−ρ(t0)] Tr

[
Π+Et1←t0

[Π−ρ(t0)Π−

Tr[Π−ρ(t0)]

]]
+ Tr[Π−ρ(t0)] Tr

[
Π−Et1←t0

[Π−ρ(t0)Π−

Tr[Π−ρ(t0)]

]]
,

= pg(t)− pe(t) = 2pg(t)− 1. (4.48)

Plugging in the expressions of probabilities, we have

K± = ±2F(t)−F(2t)∓ 1. (4.49)

Here,
F(t) = A

[
B + Ce−(3γ−2γ0M)t/4 cos(µst) +D sin(µst)

]
− 1, (4.50)

with coefficients given by

A =
[
4µs(γ

2 − 2γγ0M + 2Ω2)
]−1

,

B = 4(γ + γ0)(γ − 2γ0M)µs + 8µsΩ
2,

C = −2(γ0M − 2µs)
[
(γ − γ0)(γ − 2γ0M) + 2Ω2

]
,

D = −γ(γ − γ0)(γ − 2γ0M)− 2(γ − 4γ0)Ω2. (4.51)

In the strong driving limit, Ω � γs, the coefficients can be approximated as A ≈ Ω−3, B ≈ C ≈
Ω3 and D ≈ Ω2, such that in this limit, F(t) ∝ cos(Ωt) and therefore

K± ≈ ±2 cos(Ωt)− cos(2Ωt). (4.52)
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Figure 4.12: Temperature dependence of LG parameter K+. With ω0 = 0.5, s = 0 and R = 0.005, the
values β = 10, 1 and 10−3 correspond to µs = 1, 0.9 (underdamped) and 4.8i (overdamped),
respectively.

Effect of weak measurement: The two time correlation function C(t0, t), Eq. (4.48), was
obtained by assuming that the measurements are ideal or projective. However, it would be in-
teresting to see how weak measurements affect the behavior of C(t0, t) and thereby of the LG
parameters K±. The weak measurements are characterized by invoking a parameter ξ [275, 276],
such that the ideal projectors Π± are replaced by the “weak projectors” W± defined as

W± =
(1± ξ

2

)
Π+ +

(1∓ ξ
2

)
Π−. (4.53)

Here, 0 < ξ ≤ 1, such that when ξ = 1,W± reduce to the ideal projection operators Π±. Invoking
weak projectors leads to the following form of the two time correlation function C(t0, t)|weak =
ξ2C(t0, t), and consequently

K±|weak = ξ2K±. (4.54)

Therefore, the maximum violation of LGtI occurs for an ideal projective measurement.

4.3.3 Results and discussion
The LGtIs given by inequality (4.28) are studied in the context of a two level atom with

the ground and excited states labelled as |g〉 and |e〉, respectively. An external field is driving
the transition between the two levels. Further, the atom is allowed to interact with a squeezed
thermal bath. The inequalities thus obtained are in terms of experimentally relevant parameters.
The violation of LGtIs occur predominantly in the underdamped regime which is characterized by
the real values of parameter µs defined in Eq. (4.41), such that

Ω >
γs
4

= γ0
(2n+ 1) + 2M

4
underdamped,

Ω <
γs
4

= γ0
(2n+ 1) + 2M

4
overdamped. (4.55)

Here, the parameter γs = γ0[(2n + 1) + 2M ], as defined in Eq. (4.41). Figure 4.10 depicts the
behavior of LG parameters K± with respect to time t, for different values of the ratio R = γ0/Ω.
The violations of LGtIs are observed mainly in the underdamped regime and fade quickly with
the increase in R. In other words, strong driving favors the violation of LGtIs to their maximum
quantum bound. The right most panel of the figure shows coherence paramter C [8, 90] which is
defined as

C =
∑
i 6=j
|ρij |. (4.56)

The extent of violation of LGtIs can be seen as a signature of the degree of coherence in the system.

55



0 2 4 6 8 10

-2

-1

0

1

t
K

+

s=0

s=1

s=3.5

Figure 4.13: The LG parameter K+ for different values of the squeezing parameter s. Here, β = 100.
ω0 = 0.5, R = 0.05. Further, s = 0, 1 and 3.5 correspond to µs = 1, 0.9 (underdamped) and
6.7i (overdamped), respectively.

In the strong driving limit, i.e., Ω � γs, the LG parameters are given by Eq. (4.52) and
are plotted in Fig. 4.11. The parameters K+ and K− show complementary behavior in the sense
that when one of these parameters does not show a violation, the other does, together covering the
entire parameter range. The interaction with the squeezed thermal reservoir leads to enhancement
in the transition rate which is given by γ = γ0(2n+ 1), where γ0 is the spontaneous emission rate
and γ0n is the squeezed thermal induced emission and absorption rate. The decoherence effects
arising due to interaction with the environment are expected to decrease the quantumness in the
system. This feature is depicted in Fig. 4.12, where K+ shows enhanced violations for larger
values of the parameter β i.e, for smaller temperature, where decoherence is expected to be lesser.
The squeezing parameter as defined in Eq. (4.33), controls the degree of violation of LGtIs, since
it affects the total photon distribution. Figure 4.13 exhibits the variation of the LG parameter K+

for different values of squeezing parameter s. The increase in s is found to decrease the extent
of violation of LGtI. The effect of weak measurement on the LG parameters is depicted in Fig.
4.14. The ideal projective measurements are characterized by ξ = 1, while ξ = 0 corresponds to
no measurement. It is clear from the figure that the maximum violation occurs for ideal projective
measurements.

In [277], general evolution of an atom in squeezed vacuum was analyzed and the exper-
imental studies of two level systems in vacuum were reported in [278, 279]. Here, consideration
of the effect of various parameters such as temperature and external driving on the LGtI violation
helps in developing a better understanding of the quantumness of the system under consideration,
under ambient conditions.
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Figure 4.14: Variation of LG parameter K+ with respect to t and ξ. With β = 5, ω0 = 0.5 and s = 0, we
have R = 0 (µs ≈ 1) depicted by blue plane-surface, R = 0.05 (µs ≈ 0.9) represented by
yellow lined-surface. Both these correspond to underdamped case. The maximum violation
corresponds to ξ = 1, the ideal projective measurement.

4.4 Study of coherence based measure in (non) Markovian channels

This section makes a detailed analysis of quantumness for various quantum noise channels,
both Markovian and non-Markovian, and follows [107]. The noise channels considered include
dephasing channels like random telegraph noise, non-Markovian dephasing and phase damping, as
well as the non-dephasing channels such as generalized amplitude damping and Unruh channels.
We study a recently introduced witness for quantumness based on the square l1 norm of coher-
ence. It is found that the increase in the degree of non-Markovianity increases the quantumness
of the channel. This may be attributed to the fact that the non-Markovian dynamics involves the
generation of entanglement between the system and environment degrees of freedom.

Quantum coherence [84, 280] is central to quantum mechanics, playing a fundamental
role for the manifestations of quantum properties of a system. It is at the heart of the phenomena
such as multi-particle interference and entanglement which are pivotal for carrying out various
quantum information and communication tasks, viz., quantum key distribution [281, 282] and
teleportation [141]. An operational formulation of coherence as a resource theory was recently
developed [283]. The notion of coherence [284] has its roots in quantum optics [2, 285]. Recent
developments have made use of coherence in superconducting systems [286], biological systems
[287], non-Markovian phenomena [288], foundational issues [88, 289] and subatomic physics
[8, 290].

Quantum channels are completely positive (CP) and trace preserving (TP) maps between
the spaces of operators and describe processes like transmission of classical as well as quantum
information. Quantum information protocols are based on the fact that information is transmitted in
the form of quantum states. This is achieved either by directly sending non-orthogonal states or by
using pre-shared entanglement. The channels can reduce the degree of coherence and entanglement
as the information flows from sender to receiver. Interestingly, it was shown in [291] that quantum
channels can have cohering power and that a qubit unitary map has equal cohering and decohering
power in any basis. In general, the extent to which the quantum features are affected depends on
the underlying dynamics and the type of noise. Therefore it is natural to ask to what extent is
coherence preserved by a channel used to transmit quantum information.

The physical foundation of a large number of quantum channels relies on the Born-Markov
approximations [110]. However, in a number of quantum communication tasks, the characteris-
tic time scales of the system of interest become comparable with the reservoir correlation time.
Therefore, a non-Markovian description for such scenarios becomes indispensable [58]. The re-
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liability of a quantum channel is tested by the probability that the output and input states are the
same. A well known measure to quantify the performance of a channel is the average fidelity
[292–295]. The notion of fidelity of two quantum states provides a qualitative measure of their dis-
tinguishability [296]. Recently, a measure based on Fisher information was introduced to quantify
the invasiveness of quantum channels [297]. In [298], a witness of nonclassicality of a channel
was introduced. This is based on average quantum coherence of the state space, using the square
l1 norm of coherence of qubit channels. It was shown that the extent to which quantum correlation
is preserved under local action of the channel cannot exceed the quantumness of the underlying
channel.

We use the definition of quantumness based on the average coherence and apply it to differ-
ent channels, both Markovian and non-Markovian. Being a quantitative measure of the “closeness”
of the output and input states, average channel fidelity is a useful figure of merit when considering
channel transmission [299], particularly in the presence of noise. Accordingly, a corresponding
study is made on these channels. We proceed as follows. In subsection 4.4.1, we briefly review
the definition of nonclasscality of quantum channels. Subsection 4.4.2 is devoted to analyzing the
interplay of quantumness and average fidelity in various noise models. Results and their discussion
is made in Sec. 4.4.3.

4.4.1 A coherence based measure of quantumness of channels
Here, we study a coherence based measure introduced in [298], and given by

QC(Φ) = NC min
|i〉

∫
C(Φ(ρ))dµ(ρ). (4.57)

Here, Φ is the channel under consideration, C denotes the chosen measure of coherence, NC is
a normalization constant and µ(ρ) is the Haar measure. The minimization is performed over all
orthonormal states {|i〉} to ensure the defined measure is a basis independent quantity. To proceed,
we analyze the effect of a qubit channel on a state ρ = 1

2(I + ξσ). The Bloch vector ξ transforms
as

Φ(ρ) = ρ′ =
1

2
(I + ξ′σ). (4.58)

Here, ξ′ = Aξ+B, such that the matrices A3×3 and B3×1 depend on the channel parameters. By
choosing the square l1-norm as the measure of coherence, we compute the coherence with respect
to an arbitrary orthonormal basis. The l1-norm of coherence Cl1 is often used as a coherence
measure, since it is easy to compute and algebraically easy to manipulate [300]. Further, Cl1 links
different coherence and entanglement measures. For example, Cl1 is the upper bound for another
important coherence measure called robustness of coherence for all qubit states [301]. It is also
useful in studying Deutsch-Jozsa algorithm [302, 303] and Grover algorithm [304, 305]. It plays
an important role in quantifying the cohering and decohering powers of quantum operations [306],
and also corresponds to the maximum entanglement generated by incoherent operations acting on
the system and an incoherent ancilla [307].

To make the quantumness witness a basis independent quantity, one performs optimization
over all orthonormal basis, leading to a closed expression for the quantumness witness

QC2
l1

(Φ) = λ2 + λ3. (4.59)

Here, λ1 ≥ λ2 ≥ λ3 are eigenvalues of matrix L = 1
2(AAT + 5BBT ), with T denoting the

transpose operation. Thus, Eq. (4.59) gives an operational definition of the quantumness of a
channel. In what follows, we will drop the subscript C2

l1
and call the quantumness of a map Φ just

as Q(Φ). It is worth mentioning here, that for the unital channels, which map identity to identity,
i.e., Φ(I) = I , the above definition of quantumness coincides with the geometric discord [298].
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4.4.2 Specific channels
A brief account of various quantum channels [299, 308] used in this work is presented

here. The dephasing channels include random telegraph noise (RTN) [95, 309], non-Markovian
dephasing (NMD) [97] and phase damping (PD) [87] channels while in the non-dephasing class,
we consider generalized amplitude damping (GAD) [80, 92] and Unruh channels [310].

Random Telegraph Noise: This channel characterizes the dynamics when the system is
subjected to a bi-fluctuating classical noise, generating RTN with pure dephasing. The dynamical
map acts as follows

ΦRTN (ρ) = R0ρR†0 + R1ρR†1, (4.60)

where the two Kraus operators are given by

R0 =

√
1 + Λ(t)

2
I, R1 =

√
1− Λ(t)

2
σz. (4.61)

Here, Λ(t) is the memory kernel

Λ(t) = e−γt

[
cos
[√(2b

γ

)2 − 1 γt
]

+
sin
[√(

2b
γ

)2 − 1 γt
]

√(
2b
γ

)2 − 1

]
, (4.62)

where b quantifies the system-environment coupling strength and γ is proportional to the fluctu-
ation rate of the RTN. Also, I and σz are the identity and Pauli spin matrices, respectively. The
completeness condition reads R0R†0+R1R†1 = I . The dynamics is Markovian [non-Markovian]
if (4bτ)2 > 1 [(4bτ)2 < 1], where τ = 1/(2γ). Starting with the state ρ = 1

2(I + ξσ), the new
Bloch vector is given by ξ′ = [ξxΛ(t), ξyΛ(t), ξz]

T . This implies A = diag.[Λ(t),Λ(t), 1] and
B = 0, and consequently, L = diag.[1

2 [Λ(t)]2, 1
2 [Λ(t)]2, 1

2 ]. Since, −1 ≤ Λ(t) ≤ 1, we identify
both the small eigenvalues as 1

2 [Λ(t)]2, leading to

Q(ΦRTN ) = [Λ(t)]2. (4.63)

We, next compute the fidelity for the states ρ and ρ′, the initial and final states, respectively. This
will be followed by a study of its interplay with quantumness. The fidelity between qubit states ρ
and ρ′ is [296]

F (ρ,ρ′) = Tr[ρρ′] + 2
√
Det[ρ]Det[ρ′]. (4.64)

Using a general qubit parametrization

ρ =

[
cos2(θ/2) 1

2e
−iφ sin(θ)

1
2e
iφ sin(θ) sin2(θ/2)

]
, (4.65)

the fidelity for RTN model turns out to be

FRTN =
1

4

[
3 + cos(2θ) + 2 sin2(θ)Λ(t)

]
. (4.66)

In order to make this quantity state independent, we calculate the average fidelityF = 1
4π

∫ 2π
0

∫ π
0 F sin(θ)dθdφ.

We have
FRTN =

1

3
[2 + Λ(t)]. (4.67)

Since −1 ≤ Λ(t) ≤ 1, the average fidelity is symmetric about its classical value 2/3.

Non-Markovian dephasing: This channel is an extension of the dephasing channel to non-
Markovian class. The non-Markovianity is identified with the appearance of a not completely
positive (NCP) intermediate map [97]. The Kraus operators are given by

N 0 =
√

(1− αp)(1− p) I,

N 1 =
√
p+ αp(1− p) σz. (4.68)
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Figure 4.15: RTN channel: The quantumness Q(ΦRTN ) Eq. (4.63) and average fidelity FRTN Eq. (4.67),
plotted with respect to time t (sec.), for a qubit subjected to RTN. The solid (blue) and
dashed (red) curves correspond to non-Markovian (b = 0.05, γ = 0.001) and Markovian
(b = 0.07, γ = 1) cases, respectively. The fidelity oscillates symmetrically about 2/3 in
non-Markovian case, while in Markovian case, it decreases monotonically and saturates to
this value.
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Figure 4.16: NMD channel: The quantumness Q(ΦNMD) Eq. (4.69) and average fidelity FNMD Eq.
(4.70), plotted with respect to the dimensionless parameter κt, for a qubit subjected to NMD,
for different values of parameter α.

Here, the parameter α quantifies the degree of non-Markovianity of the channel, such that α = 0
corresponds to conventional dephasing, while as α increases, the non-Markovian behavior corre-
spondingly increases. Further, p is a time-like parameter such that 0 ≤ p ≤ 1/2. In this case, the
quantumness parameter turns out to be

Q(ΦNMD) = Ω2(p), (4.69)

where Ω = 1− 2p− 2αp(1− p). The average fidelity, in this case, is given by

FNMD =
1

3
[2 + Ω(p)]. (4.70)

We use the parametrization p = 1
2(1− e−κt), such that as t : 0→∞, p : 0→ 1/2.

Phase damping (PD) channel: PD channel models the phenomena where decoherence
occurs without dissipation (loss of energy). The dynamical map, in this case has the Kraus repre-
sentation

P0 =

[
1 0

0
√

1− S

]
, P1 =

[
0 0

0
√
S

]
. (4.71)

The parameter S can be modeled by the following time dependence S = 1 − cos2(χt), for 0 ≤
χt ≤ π/2. The quantumness parameter, in this case, is given by

Q(ΦPD) = 1− S = cos2(χt). (4.72)
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Figure 4.17: PD channel: The quantumness Q(ΦPD) Eq. (4.72) and average fidelity FPD Eq. (4.73),
plotted with respect to the dimensionless quantity χt, for a qubit subjected to PD noise.
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Figure 4.18: GAD channel: The quantumness Q(ΦGAD) Eq. (4.75) and fidelity FGAD Eq. (4.76), plotted
with respect to time t (sec.), for a qubit subjected to GAD noise. With γ = 1, the left and right
panels correspond to the cases when n = 50 and 0, respectively. Here, τ ≈ 0.1246 and 0.3646
in the former and later case, respectively . The n = 0 case corresponds to the zero temperature
limit, such that GAD reduces to AD noise.

The average fidelity turns out to be

FPD =
1

3
[2 + cos(χt)]. (4.73)

Generalized Amplitude Damping (GAD) channel: GAD is a generalization of the AD
channel to finite temperatures [58]. The later models processes like spontaneous emission from
an atom and is pertinent to the problem of quantum erasure [168]. The dynamics, in this case, is
governed by the following Kraus operators

A0 =

[√
Θ 0

0
√
sΘ

]
, A1 =

[
0
√
pΘ

0 0

]
,

A2 =

[√
s(1−Θ) 0

0
√

(1−Θ)

]
, A3 =

[
0 0√

p(1−Θ) 0

]
. (4.74)

Here, Θ = n+1
2n+1 , and s = exp[−γt

2 (2n+1)]. Also, n is the mean number of excitations in the bath
and γ represents the spontaneous emission rate. In the zero temperature limit, n = 0, implying
Θ = 1, thereby recovering the AD channel. The quantumness parameter for GAD channel comes
out to be

Q(ΦGAD) =


1
2s+ s̃ for t ≤ τ,

s for t > τ.

(4.75)
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Figure 4.19: Unruh channel: The behavior of quantumness and average fidelity depicted with respect to the
acceleration a (in units ~ = c = 1).

with,

s̃ =
5

2
(2Θ− 1)2(1− s)2,

τ = − 2

γ(2n+ 1)
ln

[
5

6 + 4n+ n2

]
.

The average fidelity in this case is given by

FGAD =
1

6
[3 + 2

√
s+ s]. (4.76)

Here s = exp[−γt2 (2n+ 1)].

Unruh channel: To an observer undergoing acceleration a, the Minkowski vacuum appears
as a warm gas emitting black-body radiation at temperature given by T = ~a

2πcKB
, called the Unruh

temperature and the effect is known as the Unruh effect. The Unruh effect has been described as a
noisy quantum channel with the following Kraus operators

U0 =

[
cos(r) 0

0 1

]
and U1 =

[
0 0

sin(r) 0

]
. (4.77)

Here, cos(r) = [1 + exp(−2πcω/a)]−1/2. The quantumness parameter for the Unruh channel
turns out to be

Q(ΦUnruh) = cos2(r). (4.78)

The average fidelity here is

FUnruh =
1

12
(4 cos(r) + cos(2r) + 7). (4.79)

4.4.3 Results and discussion
The quantumness of noisy channels is quantified by the coherence measure given by Eq.

(4.57). For specific case of a two level system (qubit), using square l1 norm as a measure of
coherence, one obtains a simple working rule for computing the quantumness of a channel, given
in Eq. (4.59).

For RTN channel, the quantumness measure turns out to be the square of the memory
kernel Λ(t), defined in Eq. (4.62). In the non-Markovian regime, both the quantumness as well as
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fidelity are seen to sustain much longer in time as compared with the Markovian case, Fig. 4.15.
In the limit t→∞, Λ(t)→ 0, consequently, we have

Q(ΦRTN ) = Λ2(t)→ 0, and FRTN =
1

3
(2 + Λ(t))→ 2

3
. (4.80)

This is consistent with our notion of fidelity less than or equal to 2/3 for a processes that can
be simulated by a classical theory. The NMD channel shows non-zero quantumness within the
allowed range, i.e., [0, 1/2], of time like parameter p, for 0 < α ≤ 1. In this case, the parameter
α quantifies the degree of non-Markovianity, which increases as α goes from 0 to 1. At p = 1/2,
i.e., for t→∞, Ω(p) = −α/2, we have

Q(ΦNMD) = α2/4 and FNMD =
2

3
(1− α/2) (4.81)

That is, the quantumness parameter is always positive but the average fidelity goes below its clas-
sical limit. This is consistent with [298] that a nonzero value of the coherence based measure
of quantumness is a necessary but not sufficient criterion for quantum advantage in teleportation
fidelity. This is also consonant with the use of fidelity as a tool to assess quantumness [311]. How-
ever, in the Markovian limit, i.e., α → 0, Ω → 1 − 2p. Since p ∈ [0, 1/2], implies Ω ∈ [0, 1].
Therefore, Q(ΦNMD) = (1 − 2p)2 and FNMD = 1

3 [2 + (1 − 2p)], both the quantities lead to
similar predictions in this limit. These features are depicted in Fig. 4.16.

One of the purely quantum noise channels is the PD channel which characterizes the pro-
cesses accompanied with the loss of coherence without loss of energy. The behavior of quantum-
ness and average fidelity, in this case, is depicted in Fig 4.17. The parameter Q(ΦPD) becomes
zero as FPD reaches 2/3.

Next we analyzed non-dephasing models such as GAD and Unruh channels. From the
GAD channel, one can recover the AD channel in the zero temperature limit, i.e., when n = 0, see
Eq. (4.74). In this case Θ = 1 and the quantumness parameter, with ξ = 1− s, becomes

Q(ΦAD) =


1
2 [6ξ2 − 3ξ + 2] for ξ ≤ 1/6,

1− ξ for ξ > 1/6.

(4.82)

This is consistent with the results given in [298]. In the case of GAD channel, the quantumness
parameter is nonzero even though the average fidelity goes below its classical limit 2/3. This
reiterates the statement made earlier regarding quantumness and average teleportation fidelity, Fig.
4.18. In the high temperature regime, both the measures, i.e., quantumness as well as average
fidelity seem to lead to similar predictions at the same time. For Unruh channel, the quantumness
and average fidelity are studied with respect to the acceleration a. Both the measures show a
saturation at values which are well above their classical limits, Fig 4.19. This is in consonance
with [310], where it was shown that the Unruh channel, though structurally similar to the AD
channel, is different from it.

4.5 A proposed measure of quantumness of channels

In this section, we discuss a measure of quantumness of channels based on an intuitive
approach, proposed in [108]. It is easy to compute and amenable to experimental verification.

Quantifying the degree of quantumness of a channel has both theoretical and practical
significance in quantum information science [4]. The quantum channels are completely positive
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and trace preserving maps which describe processes like information transfer in a given environ-
ment [109]. Since quantum information is transmitted in the form of quantum states, it is impor-
tant to quantify the degree to which a quantum state gets affected while subjected to a quantum
channel [110]. The classical states are usually identified as those whose correlations can be de-
scribed in terms of classical probabilities. This approach has lead to the quantification of some
well known nonclassical correlations such as entanglement, discord and related quantities [111].
Alternatively, a different way of quantifying the quantumness of a single system is by exploiting
the non-commutative algebra of observables, such that the mutual commutation of all the acces-
sible states of the system identify with a classical system. This approach has advantages in that
it make no reference to the correlations and no complicated optimization procedures are needed
[112].

Noise is usually known for its negative role in reducing the degree of coherence in a sys-
tem. However, they can show enhancement in nonclassical correlations for some states [92, 113,
114]. In [115–117], it was shown that local environments can enhance the average fidelity of quan-
tum teleportation for certain entangled states. Enhancement in quantum discord by local Marko-
vian (i.e., memoryless) noise channels was reported in [118, 119]. Quantum channels provide a
platform for studying the interplay between quantumness of states and the underlying dynamics in
presence of an ambient environment [58]. This has lead to several interesting observations. For
example, in [120] it was shown that the quantum channels need not be decohering, but could have
cohering power as well. The cohering power, that is, the ability of quantum operations to produce
coherence, was given an operational interpretation in [121]. It was further shown that the cohering
power of any quantum operation is upper bounded by the corresponding unitary operation. The
entangling capabilities of unitary operations acting on bipartite systems was reported in [122], with
the maximum entanglement being created with product input states [123]. The deteriorating effect
of the environment on a quantum state has been studied in the context of coherence-breaking chan-
nels and coherence sudden death [124]. An interesting class of channels known as semi-classical
channels ΛSC map all the input states ρ to ΛSC(ρ), such that the later are diagonal in the same
basis. Such channels are realized by complete decoherence after which only diagonal elements of
the density matrix are non-zero [125]. Another well studied class of quantum channels are those
based on Lindbladian evolution which focus on the dynamics at time scales well separated from
that of the reservoir correlations. However, in a number of practical applications, this assumption
is not true and one has to take into account the non-Markovian aspects of the underlying dynam-
ics [95, 97]. In [126–128], coherence of quantum channels was analyzed using Choi-Jamiolwski
isomorphism.

Recently, a coherence based measure of quantumness of channel was proposed in [298],
by defining the measure as the average quantum coherence of the state after the quantum channel
acts on it, and minimized over all orthonormal basis sets of the state space. This measure was
studied in the context of various (non) Markovian channels [107]. Further, this measure connects
different coherence and entanglement measures, and is also the upper bound for another important
coherence measure called robustness of coherence for all qubit states [301].

Here, we discuss a simple measure for quantumness of channels, based on commutation
properties of the states evolving under the relevant channels proposed in [108]. A necessary and
sufficient condition for the creation of quantum correlations via local channels in finite dimen-
sions is that they should not be commutativity preserving [312]. Commutative quantum chan-
nels preserve the commutation relation of any two compatible states, i.e., if [ρ, σ] = 0, then
[E(ρ), E(σ)] = 0. It is clear that the semiclassical channels, defined above, are commutativity
preserving, implying that a departure from semiclassicality is necessary to create quantum corre-
lations.
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This section is organized as follows: In subsection 4.5.1 we introduce a measure of quan-
tumness of channels. Subsection 4.6 is devoted to applying this measure to various well known
quantum channels. The experimental relevance of this measure is discussed in subsection 4.7.
Results and their discussion are presented in Sec. 4.8.

4.5.1 Measure of quantumness of channels
Given two arbitrary states ρ and σ, one can quantify their mutual incompatibility by the

Hilbert-Schmidt (HS) norm of their commutatorM(ρ, σ) = 2||C ||HS = 2 Tr[C†C]. The mea-
sure is defined in terms of the HS norm of their commutator C = ρσ − σρ. The HS norm for
an operator O is defined as ||O ||2HS = Tr[O†O]. This measure was motivated in [112] with the
aim of identifying nonclassicality with the incompatibility of states. Consider two qubit states
ρa = 1

2(1+~a · ~σ) and ρb = 1
2(1+~b · ~σ), with ~a,~b ∈ R3 and ~σ = (σx, σy, σz) represents the three

Pauli spin matrices. We have ρaρb − ρbρa = i1
2(~a×~b) · ~σ, and

M(ρa, ρb) = 2 Tr{(ρaρb − ρbρa)†(ρaρb − ρbρa)} = |~a×~b|2. (4.83)

This quantify vanishes for orthogonal ~a and~b and attains its maximum value of one when ~a and~b
are parallel, 0 ≤M(ρ, σ) ≤ 1.

Here we try to exploit this approach to probe the quantumness of a channel. Consider a
channel described by a linear, completely positive and trace preserving map Φ : L(HA)→ L(HB)
[280, 308]. The action of this map on an input state ρ leads to an output state ρ′ and can be
summarized as

ρ′ = Φ[ρ]. (4.84)

In the context of quantum channels, we start with two states ρa and ρb which are maximally
noncommuting in the sense thatM(ρa, ρb) = 1. By subjecting these states to a quantum channel,
the quantumness of the channel can be attributed to the extent to which ρ′a and ρ′b (the outputs) are
incompatible

M(ρ′a, ρ
′
b) = 2||C ||2HS = 2 Tr[C†C], (4.85)

with C = ρ′aρ
′
b − ρ′bρ′a. This quantity when maximized over all input states serves as a measure

for the quantumness of the channel

µ = max
ρa,ρb
M(ρ′a = Φ[ρa], ρ

′
b = Φ[ρb]). (4.86)

As an example, consider the states |a〉 = cos(x/2) |0〉+e−iφ sin(x/2) |1〉 and |b〉 = cos(y/2) |0〉+
e−iξ sin(y/2) |1〉, with the respective density matrix representations

ρa =
1

2
(1 + ~a · ~σ) =

(
cos2(x/2) eiφ sin(x)

2

e−iφ sin(x)
2 sin2(x/2)

)
,

ρb =
1

2
(1 +~b · ~σ) =

(
cos2(y/2) eiφ sin(y)

2

e−iξ sin(y)
2 sin2(y/2)

)
. (4.87)

Here, ~a,~b ∈ R3 are the Bloch vectors and ~σ = (σx, σy, σz) represents the Pauli matrix triplet. The
states ρa and ρb are maximally non-commuting for y = x + π/2 and ξ = φ, as can be seen by
calculating the commutator

C = ρaρb − ρbρa =

(
0 eiφ

2

− e−iφ

2 0

)
. (4.88)
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ThereforeM(ρa, ρb) = 2 Tr[C†C] = 1. Thus the states are maximally noncommuting and in this
sense share maximum nonclassicality. In this example, no optimization is required since the quan-
tityM(ρa, ρb) is independent of input state parameters. However, as discussed ahead, subjecting
these states to quantum channels can makeM(ρa, ρb) dependent on input state parameters. In such
cases, we need to maximize over all such parameters to compute the degree of incompatibility of
the output states.

4.6 Application to quantum channels
We will now apply the above definition to some well known quantum channels. We con-

sider the dephasing channels like random telegraph noise (RTN) [309], non-Markovian dephasing
(NMD) [313], phase damping (PD) [87] and generalized depolarizing channel (GDC) [314]. The
generalized amplitude damping channel (GAD) [80, 92], which represents a dissipative channel is
also studied. The Kraus operators for these channels are given in Table (4.2).

Example 1. Random Telegraph Noise (RTN): The dynamical map is represented by the

Kraus operators K0(t) = k+ I and K1(t) = k− σz , where k± =

√
1±Λ(t)

2 , such that the action on
a general qubit state

ρ =

(
1− p x
x∗ p

)
, (4.89)

is given by

ρ′ = ΦRTN

(
1− p x
x∗ p

)
=

(
1− p xΛ(t)
x∗Λ(t) p

)
. (4.90)

Let us use the maximally nonclassical pair of states given in Eq. (4.87). The states ρa and ρb,
defined in Eq. (4.87) are subjected to RTN evolution

ρ′a =

(
cos2

(
x
2

)
1
2e
iφ sin(x)Λ(t)

1
2e
−iφ sin(x)Λ(t) sin2

(
x
2

) )
,

ρ′b =

(
cos2

(
1
4(2x+ π)

)
1
2e
iφ cos(x)Λ(t)

1
2e
−iφ cos(x)Λ(t) sin2

(
1
4(2x+ π)

) ) . (4.91)

The pertinent commutator in this case becomes

C =

(
0 1

2e
iφΛ(t)

−1
2e
−iφΛ(t) 0

)
. (4.92)

Therefore, the quantumness measure for the RTN channel turns out to be µ = maxρ1,ρ2M(ρ′a, ρ
′
b) =

2 Tr[C†C] = [Λ(t)]2.

Example 2. Generalized depolarizing channel (GDC): The generalized depolarizing chan-
nel is represented by the following Kraus operators Mi =

√
piσi with i = 0, 1, 2, 3, where σi are

the Pauli matrices. The states ρa and ρb given by Eq. (4.87) evolve under the action of this channel
such that the new Bloch vectors are given by

~a =

 (p0 + p1 − p2 − p3) sinx cosφ
(−p0 + p1 − p2 + p3) sinx sinφ

(p0 − p1 − p2 + p3) cosx


~b =

 (p0 + p1 − p2 − p3) cosx cosφ
(−p0 + p1 − p2 + p3) cosx sinφ

(−p0 + p1 + p2 − p3) sinx

 (4.93)
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Therefore,

M(ρ′a, ρ
′
b) = |~a×~b|,

= (p0 − p1 − p2 + p3)2[2(p0 − p3)(p1 − p2) cos(2φ) + (p0 − p3)2 + (p1 − p2)2].
(4.94)

This is maximum for φ = 0, i.e., µ =M(ρ′a, ρ
′
b)|φ=0 = (p0 +p1−p2−p3)2(p0−p1−p2 +p3)2.

4.7 Experimental relevance of the measure
It is important to note that the quantityM(ρ′a, ρ

′
b) can be given an experimental interpre-

tation using an interferometric setup [315]. This useful technique can be easily incorporated to our
purpose of quantifying quantumness of channels. One can write

µ = max
ρa,ρb
M(ρ′a, ρ

′
b) = 4 max

ρa,ρb
Tr[(ρ′a)

2(ρ′b)
2 − (ρ′aρ

′
b)

2]. (4.95)

The two quantities Tr[(ρ′a)
2(ρ′b)

2] and Tr[(ρ′aρ
′
b)

2] can be obtained from two separate measure-
ments. The input state ρ = |0〉〈0| ⊗ ρ′a ⊗ ρ′a ⊗ ρ′b ⊗ ρ′b, where |0〉 is the control qubit, is subjected
to the controlled unitary gate U . This modifies the interference of the controlled qubit by the fac-
tor Tr[ρU ] = veiα, with v and α being the visibility and phase shift of the interference fringes,
respectively [316–319]. Two such schemes (corresponding to Tr[(ρ′a)

2(ρ′b)
2] and Tr[(ρ′aρ

′
b)

2] )
lead to the quantumnessM(ρ′a, ρ

′
b) = 4(v1 − v2), where v1 and v2 correspond to the respective

visibilities obtained by the action of relevant unitary gates. We motivate the present discussion by
illustrating this notion on some of the channels discussed above.

(a) For RTN, the two visibilities (with x = φ = 0) correspond to

Tr[(ρ′aρ
′
b)

2] =
1

4
, Tr[(ρ′a)

2(ρ′b)
2] =

1

4
(1 + [Λ(t)]2). (4.96)

Making use of these in Eq. (4.95), we obtainM(ρ′a, ρ
′
b) = [Λ(t)]2, consistent with the definition

in Eq. (4.85), see below Eq. (4.92).

(b) For GDC, the two visibilities (with x = φ = 0) turn out to be

Tr[(ρaρ
′
b)

2] = 1/4− 2(−1 + p1 + p2)(p1 + p2)(−1 + p2 + p3)(p2 + p3),

Tr[(ρ′a)
2(ρ′b)

2] = 1/2(1 + 2p2
1 + 2(−1 + p2)p2 + p1(−2 + 4p2))(1 + 2p2

2

+ 2(−1 + p3)p3 + p2(−2 + 4p3)). (4.97)

These lead to the expression µ =M(ρ′a, ρ
′
b)|φ=0 = (p0 + p1 − p2 − p3)2(p0 − p1 − p2 + p3)2 in

accord with the definition in Eq. (4.85), see Eq. (4.94).

What makes this approach particularly attractive is that here the quantumness of the chan-
nel can be experimentally determined.

4.8 Results and discussion
The quantumness of two arbitrary states ρ and σ can be identified with their incompatibil-

ity and quantified by µ = maxρ,σM(ρ, σ) as defined in Sec. (4.5.1). For a mixed initial diagonal
state ρ0 =

∑
i λi|i〉〈i|, which evolves to ρt under some dynamics, the following inequality holds

[288]
M(ρ0, ρt)

4
≤ F (ρ0, ρt) ≤

Cl1(ρ0, ρt)

2
. (4.98)
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Table 4.2: Various quantum channels, introduced at the beginning of Sec. (4.6), with their Kraus operators
and the quantumness using commutation based measure µ = maxρa,ρbM(ρ′a, ρ

′
b). For the sake

of comparision, the corresponding results based on the coherence based measure QCl1 [107] are
also provided. Here, ξ̃ = 5

2 (α− 1)2(1− ξ)2 and τ = −2
γ(2n+1) ln

[
5

6+4n+n2

]
[107].

Channel Kraus operators µ QCl1

RTN K0 = k+

(
1 0
0 1

)
, K1 = k−

(
1 0
0 −1

)
. [Λ(t)]2 [Λ(t)]2

NMD N0 = n+

(
1 0
0 1

)
,N1 = n−

(
1 0
0 −1

)
. [Ω(p)]2 [Ω(p)]2

PD P0 =

(
1 0
0
√

1− γ

)
, P1 =

(
1 0
0
√
γ

)
. 1− γ 1− γ

Unruh U0 =

(
cos(r) 0

0 1

)
, U1 =

(
0 0

sin(r) 0

)
. cos2(r) cos2(r)

AD A0 =

(
1 0
0
√

1− γ

)
, A1 =

(
0
√
γ

0 0

)
1− γ 1 − γ (γ >

1
6 )

1
6(6γ2−3γ+
2) (γ ≤ 1

6 )

GAD G0 =

(√
α 0

0
√
αξ

)
, G1 =(

0
√
αP

0 0

)
, G3 =

(√
βξ 0
0

√
β

)
,

G4 =

(
0 0√
βP 0

)
.

ξ
(
ξ −
√

2(ξ − 1)
)2

(ξ > 1)
ξ(−1 + 2ξ)2

(ξ < 1)

ξ (t > τ )

1
2ξ + ξ̃ (t ≤
τ )

Here, F (ρ0, ρt) is the quantum Fisher information and Cl1(ρ0, ρt) is the l1-norm coherence; both
well known measures of quantumness. The commutator based measure provides a lower bound
and a reliable witness of quantumness.

In this work, we extend the approach of quantifying the quantumness of states, in terms
of their incompatibility, to explore the quantumness of channels. This method involves starting
with two states which are maximally non-commuting and subjecting them to a quantum channel.
The incompatibility of the resulting output states can be attributed to the degree of quantumness of
the channel. We have computed the quantumness of various well known channels and compared
them with the analogous estimation of quantumness from coherence based measure [298]. These
are listed in Table (4.2). It is interesting to note that quantumness from the proposed measure is
in good agreement with that with the coherence based measure [107]. This is consistent with our
intuition as coherence is related to the off-diagonal elements of the density matrix as would be
the cause for noncommutativity between the states. It should be noted that in the case of GDC,
the coherence based measure leads to quantumness (p0 − p1)2 + (p2 − p3)2, different from that
obtained by the commutation based measure adapted here. This is consistent with Eq. (4.98).

However, the attractive feature here is that the measure proposed can be calculated easily
and is also amenable to experimental determination. Further, from the cases of the RTN and NMD
channels, it is evident that quantumness reflects the non-Markovian nature of the channel under
consideration.

68



4.9 Leggett Garg inequality under non-Markovian noise

In this section, which is based on [99], we study the effect of non-Markovianity on tem-
poral correlations, in particular, as part of a test for LGI. That temporal correlations will also be
affected by non-Markovianity, as are general quantum phenomena, is not surprising. Indeed, a
sufficient but not necessary measure for non-Markovianity in terms of a temporal steerable weight
is given in [320]. However, there is an important fact to be recognized here, which is that non-
Markovianity in general involves setting up system-bath correlations, even through the system and
bath may be initially uncorrelated. Therefore, the intervention of measurement that is done to pro-
duce temporal correlations, will in general re-prepare the environment also, just as it re-prepares
the system. Hence, correlations based on a subsequent measurement will be subject, in general, to
a different noisy channel than the first measurement.

From a quantum information theoretic perspective, non-Markovianity has of late been
studied by the (not always equivalent) criteria of (CP) divisibility and distinguishability [101]. In
particular, non-Markovianity according to the former criterion manifests as the fact that the inter-
mediate map (i.e., the dynamical map that propagates an intermediate earlier state to a later state)
acting on the density operator is not-completely-positive (NCP) [95]. As a result, the intermediate
time evolution of the density operator is no longer given by the Kraus operator-sum representa-
tion. Instead, the operator sum-difference representation must be employed [102], wherein the
trace-preserving NCP map is represented as the difference of two CP maps.

The failure of the quantum regression hypothesis (QRH) [103], which deals with multi-
time correlation functions, also captures a traditional idea of quantum non-Markovianity [104]. In
recent times, there have been a number of works that compute the two-time correlation functions
for non-Markovian dynamics. For example, the evolution equations for the two-time correlation
functions for non-Markovain evolution in the case of weak system-environment coupling was stud-
ied in [105], employing the full system-environment Hamiltonian. In particular, with regard to the
question of the LGI violation in the context of non-Markovian noise, building on [105], the LGI
violations for a two-level system under non-Markovian dephasing was studied in [321]. A similar
problem for the Jaynes-Cummings model was discussed in [106]. The common theme in these
works is to start from the full unitary evolution and then derive the evolution equations for the
correlation functions using the appropriate limits.

As noted above, because under non-Markovianity, system measurements can disturb the
bath, and hence care must be exercised in computing two-time correlations if the reduced dynamics
alone is used. Here, we study LGI violation in the non-Markovian regime which, to our knowledge,
is the first instance where this is done using the system’s reduced dynamics. We argue that a purely
reduced dynamics approach can be adopted, with the proviso that the noise is suitably updated after
the first (and subsequent) intervention(s).

Here, we present a description of a simple non-Markovian model and its characterization.
This is followed by investigation of LGI in the context of this model.

4.9.1 A simple model
Given times t2 > t1 > t0 during the evolution of an open system, suppose a projective

measurement is performed at time t1. If the environment is (approximately) stationary during
the interval [t0, t2], then the same channel can be considered as acting in the intervals (t1, t2)
and (t0, t1). Let the Hilbert spaces of the system and environment be denoted by HS and HE ,
respectively; with initial states |ψS〉 ∈ HS and |ψE〉 ∈ HE , respectively. The combined state
|ψS〉 ⊗ |ψE〉 lives in the tensor product space HS ⊗ HE . The total dynamics is given by unitary
(U), and would in general entangle the system and environment degrees of freedom such that
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the reduced dynamics, say from t0 to t1, is described by the Kraus operators Kµ(t1 − t0) =
〈eµ|U(t1 − t0)|ψE〉, where {|eµ〉} is a basis for the environment. An act of measurement at time
t1 would collapse the system in an eigenstate of the projector and simultaneously modify the state
of environment to |ψ′E〉. The new Kraus operators, governing the dynamics from t1 to t2 would be
K ′µ(t2 − t1) = 〈fµ|U(t2 − t1)|ψ′E〉, where |fµ〉 = eiξ |eµ〉 is a new environment basis. Assuming
that the environment state changes only by a global phase eiχ, i.e., |ψ′E〉 = eiχ |ψE〉, we have
K ′µ(t2 − t1) = ei(ξ−χ)Kµ(t1 − t0). Thus the two Kraus operators differ only by a global phase
factor and hence describe the same dynamics, i.e., the reduced dynamics they produce has the same
time dependence.

Here, a crucial assumption made was that the act of measurement changes the state of
environment at most by a global phase. We will now illustrate, using a simple model, that such
an assumption does not hold for non-Markovian dynamics and one needs to update the post mea-
surement map depending upon the measurement outcome. If the system dynamics is indivisible,
then the system-bath interaction would generate entanglement. Clearly, the above argument will
no longer hold, requiring the system dynamics to be modified post-measurement. To see how one
must modify it, we consider a simple model of system-bath interaction.

Consider a single qubit system interacting with a single qubit environment with the initial
states given by

|ψS〉 = (|0S〉+ |1S〉)/
√

2 and |ψE〉 = (|0E〉+ |1E〉)/
√

2, (4.99)

where the subscripts S and E correspond to system and environment, respectively. Let us assume
a separable state at time t = 0, that is, |ψ(0)〉 = |ψS〉 ⊗ |ψE〉. We adopt the Jaynes-Cummings
type Hamiltonian (with ~ = 1)

H = ω
(
|01〉〈10|+ |10〉〈01|

)
, (4.100)

such that the time evolution is generated by unitary operator U(t) = e−iHt and the state at some
later time t is given by |ψ(t)〉 = U(t) |ψ(0)〉. Let us define the density matrices corresponding
to system ρS = |ψS〉 〈ψS |, environment ρE = |ψE〉 〈ψE |, and the composite state ρSE(t) =
|ψ(t)〉 〈ψ(t)|.

Characterization of non-Markovian dynamics: Here, we investigate the non-Markovian
features of the above mentioned model by studying Sudarshan’s A and B dynamical maps [222].
The mapA is constructed by vectorizing the reduced system density matrix ρS , obtained by tracing
over the environment E, such that ρ′S = A.ρS , or ρp,q(t0)→ ρ′p,q(t) = Apq;rs(t, t0)ρr,s(t0).

A(t, 0) =


1
4(cos(2tω) + 3) 1

4 i sin(2tω) −1
2 i sin(tω) cos(tω)

1
2 i sin(tω) cos(tω) 0 −1

2 i sin(tω)
−1

2 i sin(tω) 0 cos(tω) 1
2 i sin(tω)

1
2 sin2(tω) −1

4 i sin(2tω) 1
4 i sin(2tω) 1

4(cos(2tω) + 3)

 . (4.101)

In order to show the CP indivisibility of the map, we divide the time evolution between (0, t) into
interval (0, t/2) and (t/2, t), such that A(t, t/2) = A(t, 0)A−1(t/2, 0). One can then construct
theB(t, t/2) map, which is basically the Choi matrix, by using

Bpr;qs(t, t/2) = Apq;rs(t, t/2). (4.102)

The eigenvalues of this matrix are plotted in Fig. 4.20
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Figure 4.20: Eigenvalues λk (k = 1, 2, 3, 4) of the Choi matrix Bpr;qs(t, t/2). Negative eigenvalues indi-
cate that the map is NCP.

Figure 4.21: A measurement of a dichotomic observable on ρ(t) would be followed by two possible dy-
namics depending on its outcome. The map Φ (Eq. (4.105)) would be replaced by Φ+ and Φ−

(Eq. (4.112)) depending on whether the outcome is +1 or −1, respectively.

In order to verify that the map is P-indivisible, it is enough to show that the evolution
under this map leads to increase in the distinguishability of two states. This can be shown by
looking at the behavior of trace distance function between two orthogonal states subjected to the
map Φ described by Eq. (4.105) below, obtained from the Choi matrix Eq. (4.101). Consider two
orthogonal states ρ0(0) = |0〉 〈0| and ρ1(0) = |1〉 〈1|, evolved under this map to ρ0(t) = Φ[ρ0(0)]
and ρ1(t) = Φ[ρ1(0)], respectively.

The trace distance between these states is defined as TD = 1
2

∑
k |ηk|, where ηk are the

eigenvalues of matrix ρ0(t)− ρ1(t). We have

TD =

√
7 + cos(ωt)

2
. (4.103)

It is clear that TD is an oscillating function of time. The recurrent behavior of TD is a signature of
P-indivisibility of the map.

Reduced dynamics: The reduced state of the system can be obtained by tracing over the
environment. Denoting the set of basis states of the environment as {|eµ〉}, we have ρS(t) =∑

µKµρSK
†
µ, where Kµ = 〈eµ|U(t)|ψE〉 are the Kraus operators. With the Hamiltonian given by

Eq. (4.100) and the environment state given in Eq. (4.99) (the environment basis states {|eµ〉 =
|0E〉 , |1E〉}), we obtain

K0 =

(
1√
2

0

− i sin(ωt)√
2

cos(ωt)√
2

)
, and K1 =

(
cos(ωt)√

2
− i sin(ωt)√

2

0 1√
2

)
, (4.104)
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satisfying the completeness relation K†0K0 +K†1K1 = 1.

Φ[ρS(0)] =
∑
µ

KµρS(0)K†µ. (4.105)

It is possible to show that the same map can be constructed by directly obtaining the Kraus opera-
tors from the Choi matrix corresponding to map A given in Eq. (4.101).

Let us define the projectors on the system space as Π+ = |0S〉 〈0S | ⊗ 1E and Π− =
|1S〉 〈1S | ⊗ 1E . Here, 1E is the identity operator on the environment Hilbert space. Applying
these projectors on time evolved state of the combined system, the (normalized) post measurement
states in the two cases are given respectively as:

|φo(t)〉 =
1√
2


1

e−iωt

0
0

 =

(
1
0

)
⊗ 1√

2

(
1

e−iωt

)
, (4.106)

|φ1(t)〉 =
1√
2


0
0

e−iωt

1

 =

(
0
1

)
︸︷︷︸
system

⊗ 1√
2

(
e−iωt

1

)
︸ ︷︷ ︸
environment

. (4.107)

Therefore we have two possible evolutions with the following system and environment states

|χS(0)〉 = |0〉 , |χE(0)〉 =
|0〉+ e−iωt |1〉√

2
, post Π+ measurement (4.108)

and

|χS(0)〉 = |1〉 , |χE(0)〉 =
e−iωt |0〉+ |1〉√

2
, post Π− measurement. (4.109)

The corresponding Kraus operators turn out to be

K+
0 (t) =

(
1√
2

0

− ie−iωt sin(ωt)√
2

cos(ωt)√
2

)
, K+

1 (t) =

(
e−iωt cos(ωt)√

2
− i sin(ωt)√

2

0 e−iωt√
2

)
,

(4.110)

and

K−0 (t) =

(
e−iωt√

2
0

− i sin(ωt)√
2

e−iωt cos(ωt)√
2

)
, K−1 (t) =

(
cos(ωt)√

2
− ie−iωt sin(ωt)√

2

0 1√
2

)
.

(4.111)

We denote the corresponding maps by Φ±

Φ±[ρ(0)] =
∑
µ

K±µ ρ(0)(K±µ )† (4.112)

Figure 4.21 summarizes the various steps discussed above.
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4.9.2 Leggett-Garg inequality
Here, we study the violation of the LGI in the above discussed model. The three time LG

parameter is given by

K3 = C(0, t) + C(t, 2t)− C(0, 2t), (4.113)

where C(ti, tj) = p(+ti)q(
+tj |+ti) − p(+ti)q(

−tj |+ti) − p(−ti)q(+tj |−ti) + p(−ti)q(
−tj |−ti),

with

p(ati)q(
btj |ati) = Tr

{
Πb
∑
ν,µ

K̃ν(tj − ti)ΠaKµ(ti)ρ(0)K†µ(ti)Π
aK̃†ν(tj − ti)

}
.

Here, K̃ν is the post measurement Kraus operator K±0,1, given by Eqs. (4.110) and (4.111), which
in general, will be different from Kµ. With a general dichotomic operator

O =

(
cos(θ) eiφ sin(θ)

e−iφ sin(θ) − cos(θ)

)
. (4.114)

parametrized by −π ≤ θ < π; π/2 ≤ φ ≤ π/2 [322], and the general qubit state |ψ(0)〉 =
cos(θs/2) |0〉 + eiφs sin(θs/2), with 0 ≤ θ ≤ π; 0 ≤ φ < 2π, the explicit expressions of the two
time correlation functions turn out to be

C(0, t) = −8 sin(θ) cos(θ) cos(φ) sin4

(
ωt

2

)
cos2

(
ωt

2

)
(sin(θ) sin(θs) cos(φ+ φs)

+ cos(θ) cos(θs)) + cos(ωt)
(
sin2(θ) + cos2(θ) cos(ωt)

)
− 1

4
sin(2θ) sin(φ) sin(2ωt)(cos(ωt)− 1),

C(t, 2t) =
1

2
cos(ωt)[1 + sin(θ)] +

cos(ωt) cos(θ)

2
T1 −

1

4
sin(2θ) cos(φ) sin3(ωt) sin2(

ωt

2
)T2

− (−1 + cos(ωt))

4
sin(2θ) sin(φ) sin(2ωt). (4.115)

where

T1 = cos(θ)(2 cos(ωt)− 1)− 16 sin(θ) cos(φ) sin4

(
ωt

2

)
cos2

(
ωt

2

)
× (sin(θ) sin(θs) cos(φ+ φs) + cos(θ) cos(θs) cos(ωt)),

T2 = sin(θ) cos(θs) sin(φ) + cos(θ) sin(θs) sin(φs) cos(ωt). (4.116)

Note that (θs, φs) and (θ, φ) are the state and measurement variables, respectively. For θ = π/2, the
expressions simplify to C(0, t) = C(t, 2t) = cos(ωt); consequently K3 = 2 cos(ωt)− cos(2ωt).
Figure 4.22 depicts the violations of the LGI for various state and measurement settings. Thus for
example, from the perspective of LGI violations, we see that given fixed measurement settings,
some state preparations are preferable over the others. Also, with fixed state preparation, some
measurements are more favorable for the purpose.
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Figure 4.22: Left: Leggett-Garg parameter as defined in Eq. (4.113), with correlation functions given by
Eq. (4.115) . Solid (blue) and dashed (red) curves correspond to the state variables θs =
π/2, φs = 0 and θs = π, φs = 0, respectively. The measurement parameters used are
θ = π/4, φ = 0. The right plot shows the variation of K3 with respect to time as well as the
measurement variable θ (with φ = 0). The state variables used in this case are θs = π/2, φs =
0.
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4.10 Conclusion

In Sec. 4.2, we considered two quantum channels namely Random Telegraph Noise (RTN)
and non-Markovian dephasing (NMD) and studied the dynamics of a general qubit state in these
models. The dynamics is governed by completely positive and trace preserving Kraus opera-
tors. The quantum Fisher information flow, which has recently been proposed as a witness of the
non-Markovian behavior, is analyzed and is found consistent with the analysis made using the
decoherence rates in these models. Further, various facets of quantum information viz., quantum
coherence, mixedness, average gate fidelity and channel fidelity are studied, their compact analyti-
cal expressions are obtained and their behavior is contrasted in the Markovian and non-Markovian
regimes for the RTN channel. Even though both RTN and NMD show non-Markovian behavior,
there is a distinction between the two. The non-Markovian dynamics for the RTN model has a
characteristic recurrent behavior, not found in the case of NMD. Nevertheless, a symmetric trade-
off between coherence and mixedness, quantified by a coherence-mixedness balance parameter β,
is observed in both the cases, thereby testifying to their basic dephasing nature. Such character-
ization of the quantum channels can be significant from the perspective of carrying out quantum
information and communication tasks.

Section 4.3 was devoted to study the violation of Leggett-Garg type inequalities in a driven
two level atom interacting with a squeezed thermal bath. The effect of various experimentally
relevant parameters on the violation of the inequality were examined carefully. The violations
were seen to be prominent in the underdamped case. The increase in temperature was found to
decrease the degree of violation as well as the time over which the violation is sustained. Squeezing
the thermal state of the reservoir was also found to reduce the violation of LGtIs. Enhanced
violations, reaching to the quantum bound, were witnessed in the strong driving limit. Further,
we studied the effect of the weak measurements on the extent of violation of LGtI. The weak
measurements are characterized by the parameter ξ such that ξ = 0 (ξ = 1) corresponds to no
measurement (ideal projective measurement). The maximum violation was found to occur for
the ideal projective measurements. This study therefore highlights the role of various external
parameters on the quantumness of the system.

We studied, in Sec. 4.4, the quantumness and average fidelity of various channels, both
Markovian as well as non-Markovian. Specifically, we considered the dephasing channels like
RTN, NMD and PD channels and non-dephasing channels such as GAD and Unruh channels. The
non-Markovian dynamics (exhibited by RTN and NMD channels in this case) is found to favor
the nonclassicality. This is explicitly seen from the fact that a nonzero value of parameters con-
trolling the degree of non-Markovianity takes the quantumness beyond the classical value. The
non-Markovianity assisted enhancement of nonclassicality can be of profound importance in car-
rying out quantum information tasks. This can be realized by effectively engineering the system-
reservoir models. The quantumness measure and average fidelity exhibit similar predictions for the
Unruh channel. Similar behavior is observed for the dephasing channels, albeit, in the Markovian
regime. This can bee seen in RTN and NMD channels. In contrast, in the non-dephasing Lind-
bladian channel, considered here, the quantumness witness and average fidelity show qualitatively
similar results. Such a study of the interplay between nonclassicality of the quantum channels
with the underlying dynamics can be useful from the quantum information point of view, and also
brings out the effectiveness of the measure of quantumness under different types of dynamics.

In Sec. 4.5, we proposed a measure to quantify the degree of quantumness of a channel.
The quantum channels provide a way to describe the processes where pure states go over to the
mixed ones. Therefore, it is natural to ask how well a quantum channel preserves the quantumness
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of the states which are subjected to it. Recently, a measure based on the l1-norm coherence was
introduced to quantify the quantumness of channels. We have addressed the problem by using
an intuitive approach based on the incompatibility of the states. The quantumness of a system is
identified with the mutual non-commutation of all its accessible states. We illustrated the approach
developed here by considering various examples of quantum channels, both Markovian as well
as non-Markovian, and found that our results are in good agreement with the coherence based
measure. An added attraction of this method is that it can be probed experimentally.

The violation of the LGI under non-Markovian evolution has been studied in Sec. 4.9 by
using the reduced dynamics. Difficulties in handling the two time correlation functions under non-
Markovian evolution were highlighted and a possible way of handling them was illustrated by a
simple model. The non-Markovian nature of the model was characterized by negative eigenvalues
of the Choi matrix implying CP-indivisibility. The increase in the trace distance function with time
brought out the P-indivisibility of the map. The non-Markovian dynamics involves setting up of
system-bath correlations; and measurements disrupt these correlations. Therefore, a full system-
bath Hamiltonian approach is natural. However, we have pointed out how the problem can be dealt
with from a reduced dynamics perspective. The key point is that the noise superoperator acting on
the system must be suitably updated after a measurement intervention.
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