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Nonclassicality in a cavity quantum

optical system

This chapter is based on [12] and is devoted to the investigation of nonclassical features
in a physical system comprised of a cavity with two ensembles of two-level atoms has been in-
vestigated by considering different configurations of the ensembles with respect to the node and
antinode of the cavity field under the framework of open quantum systems. The study reveals
the strong presence of nonclassical characters in the physical system by establishing the existence
of many facets of nonclassicality, such as the sub-Poissonian Boson statistics and squeezing in
single modes, intermodal squeezing, intermodal entanglement, antibunching, and steering. The
effect of a number of parameters, characterizing the physical system, on the different aspects of
nonclassicality is also investigated. Specifically, it is observed that the depth of the nonclassicality
witnessing parameters can be enhanced by externally driving one of the ensembles with an opti-
cal field. The work is done in the presence of open system effects, in particular, use is made of
Langevin equations along with a suitable perturbative technique.

5.1 Introduction

Quantum mechanics has emerged as the best known model of nature, thanks to the spec-
tacular success achieved over the last hundred years. However, only in the last few decades, it
is understood that quantum mechanics can even be used to design devices that can outperform
their classical counterparts. This quantum power of devices is obtained by exploiting nonclassical
states, i.e., states having no classical analogue and more technically, the quantum states having
negative values of Glauber-Sudarshan P -function [2, 131]. Such states are not rare in nature, and
entangled and steering states [132], squeezed states [133], antibunched states [134] are typical
examples of nonclassical states. The existence of such states were known (at least theoretically)
since a long time. In fact, squeezing [135], entanglement [3], and steering [136] were studied
even before the pioneering work of Sudarshan [2] that provided a necessary and sufficient criterion
of nonclassicality in terms of negativity of P -function. However, various interesting applications
of these nonclassical states were realized only recently with the advent of quantum information
processing [137–142] and various facets of atom optics and quantum optics [143, 144]. For ex-
ample, squeezed vacuum state has been used successfully in detecting gravitational waves in the
well known LIGO experiment [145, 146]; squeezed states are also used in continuous variable
quantum secure and insecure communication [137, 138]; entanglement is established to be useful
in both continuous and discrete variable quantum cryptography [137, 140], and in the realization
of schemes for teleportation [141] and dense coding [142]. Additionally, the steerable states pro-
vide one-side device independent quantum cryptography [147]. Furthermore, powerful quantum
algorithms for unsorted database search [148] to factorization [149], discrete logarithm problem
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[149] to machine learning [150] have repeatedly established that quantum computers (which nat-
urally use nonclassical states) can outperform classical computers. In brief, in the last few years,
on one hand, we have seen various applications of nonclassical states, and on the other hand, non-
classical features have been reported in a variety of physical systems [151–154], including but not
restricted to two-mode Bose-Einstein condensates [153, 155], optical couplers [156, 157], optome-
chanical [154, 158] and optomechanics-like systems [154, 159], atoms and quantum dot in a cavity
[160, 161]. Many of these systems involve different types of cavity which can be produced and
manipulated experimentally [162–164]. Naturally, interest in such systems has been considerably
enhanced in the recent past. Apart from the applicability of the nonclassical states, and the possi-
bilities of generation and manipulation of these states, another interesting factor that has enhanced
the interest on the nonclassical features present in these systems, is the fact that in contrast to the
traditional view that quantum mechanics is the science of the microscopic world, these systems
having nonclassical properties are often macroscopic [165].

Above facts have provided the motivation for this work which involves the study of non-
classical features of a particular macroscopic system shown in Fig. 5.1. To be specific, we aim to
investigate the possibility of observing signatures of various types of nonclassicality in a physical
system comprised of a cavity with two ensembles of two-level atoms, placed in different configu-
rations with respect to the Node and Antinode of the cavity field, like, Antinode-Antinode (AA),
Antinode-Node (AN), Node-Antinode (NA) and Node-Node (NN). To clearly visualize these con-
figurations, we may note that in AN configuration, one of the ensembles is placed in the Node
position of the cavity field and the other one is placed in the Antinode position of the cavity field.
Similarly, one can visualize the other configurations studied. Previously, this system was used
to study electromagnetically-induced-transparency-like (EIT-like) phenomenon in [323], where an
EIT-like phenomenon was observed to appear (disappear) for the NA (AN) configuration. In what
follows, we will study the possibilities of observing various types of single mode (e.g., squeezing,
sub-Poissonian boson statistics) and intermodal nonclassicality (e.g., intermodal squeezing, anti-
bunching, two and three mode entanglement, steering) in this system by considering that one of
the atomic ensembles is driven by an external optical field, and will establish that this external field
can be used to control the amount of nonclassicality.

We have already noted that the negativity of P -function provides us a necessary and suf-
ficient criterion of nonclassicality. However, the P -function is not always well behaved, and there
does not exist any general procedure that can be adapted to experimentally measure it. As a con-
sequence, a set of operational criteria for nonclassicality have been developed over the years. The
majority of these nonclassical criteria (in fact, all the criteria used in this work) do not provide
any quantitative measure of nonclassicality. Of course, there are some measure of nonclassicality,
but each of them have some issues [324], and we have not used any of them in the present study.
and they are only sufficient criteria. In fact, there exists an infinite set of nonclassicality criteria
involving moments of annihilation and creation operators that are equivalent to the P -function,
but any finite subset of that would be sufficient only. We have used a few such moment-based
criteria of nonclassicality [166, 167], each of which is a sufficient criterion only. As none of these
criteria provides any quantitative measure of nonclassicality (i.e., as they only provide signatures
of nonclassicality), in what follows, these sufficient criteria are frequently referred to as witnesses
of nonclassicality. In what follows, through these criteria, different features of nonclassicality are
witnessed under the influence of open quantum system evolution.

The effect of the ambient environment is a permanent fixture of nature and needs to be
taken into account, especially in experiments related to nonclassical features which are known to
be influenced appreciably by the environmental effects. As the present work aims to reveal the
nonclassical features present in the system of interest, it would be apt to consider the effect of
the environment in our calculations. Such effects are taken into account systematically by using

78



the framework of open quantum systems [57]. Specifically, decoherence and dissipation are well
known open system effects [87] and have been studied on myriad aspects of quantum information,
such as in holonomic quantum computation [113], environmental deletion [168], noisy quantum
walks [169], quantum cryptography [170] and the effect of squeezing on channel capacity [92]. A
precursor of the present theme of nonclassical correlations in the presence of open system effects
can be found in [11]. Here, we adapt open system effects on our system of interest by using the
formalism of Langevin equations, which is basically the stochastic equations of motion approach
[144]. Specifically, the equations of motion for each system mode in the Heisenberg picture are
obtained by eliminating the environmental degrees of freedom. The obtained equations of motion
for different system modes are usually coupled differential equations and are solved using various
peturbative techniques. Here, we have used a perturbative technique that approximates all the
higher-order correlations in terms of second-order correlations [171]. The technique has been
recently used to study nonclassicality in Raman amplifier [172] and optomechanical oscillator
[173].

The rest of the chapter is organized as follows. In Sec. 5.2, we describe the model used
in this work in the context of open quantum systems. gives a brief introduction to the various
witnesses of nonclassicality used in this work. Subsequently, in Sec. 5.3, we present temporal
variation of various witnesses of nonclassicality, introduced in Sec. 2.7.1 of chapter (2), and dis-
cuss the significance of the results obtained in this work. Finally, the chapter is concluded in Sec.
5.4.

5.2 Cavity containing two ensembles of two-level atoms

The physical system of our interest is briefly described in the previous section and it is
schematically shown in Fig. 5.1. In this section, we wish to describe the system in more detail.
To begin with, we note that the model physical system of our interest is considered to be made
of a single mode cavity (Scavity) which contains two ensembles (SA−left ensemble and SB−right
ensemble) of two level atoms [323]. The left ensemble is driven by a classical optical field having
frequency ωf .

The Hamiltonian for the total system S ≡ SA + SB + Scavity, can be expressed in terms
of collective excitation operators Â and B̂ in the following form [323]:

Ĥ = ωcĈ
†Ĉ + ωaÂ

†Â+ ωbB̂
†B̂ +

{
GAĈÂ

† +GBĈB̂
† + χÂ†e−iωf t + H.c.

}
, (5.1)

with

Â =
1√
NA

NA∑
i=1

σi+,A and B̂ =
1√
NB

NB∑
j=1

σj+,B,

where H.c., stands for Hermitian conjugate, and σl+,x = |e(l)
x 〉 〈g(l)

x | and σl−,x = |g(l)
x 〉 〈e(l)

x | are the
quasispin operators for the l-th atom in ensemble Sx (x ∈ {A,B}). The operator Ĉ (Ĉ†) represents
the annihilation (creation) operator for the cavity mode. Also,GA = gA

√
NA,GB = gB

√
NB and

χ = Ω
√
NA, where gA (gB) is the strength with which the atoms in left (right) ensemble couple

with the cavity field. Similarly, Ω (or equivalently χ) corresponds to the coupling strength between
the atoms in the driven ensemble and the driving field. In the limit of low excitation and large num-
ber of atoms (NA and NB), the operators Â and B̂ satisfy the bosonic commutation relations, i.e.,
[Â, Â†] ≈ [B̂, B̂†] ≈ 1, and [Â, B̂] ≈ [Â, B̂†] ≈ 0. Therefore, under these conditions, Â and B̂
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Figure 5.1: The schematic representation of the model consisting of a cavity embedded with two ensem-
bles of two-level atoms. The left ensemble SA, with the excitation mode Â, is driven by an
external field of frequency ωf . The system is studied in configurations: Antinode-Antinode
(AA), Antinode-Node (AN), Node-Antinode (NA) and Node-Node (NN). The left ensemble
(the driven ensemble), the right ensemble (the undriven ensemble), and the cavity field inter-
act with their independent reservoirs R1, R2 and R3 with modes represented by corresponding
annihilation operators m̂, n̂, and f̂ , respectively.

can be treated as the annihilation operators for the collective excitation modes corresponding to
ensembles SA and SB , respectively [323].

In a frame rotating at frequency ωf , governed by the transformation ρ→ S(t)ρS†(t), with
S(t) = exp

[
i(Ĉ†Ĉ + Â†Â+ B̂†B̂)ωf t

]
, the Hamiltonian given by Eq. (5.1) can be expressed in

terms of the photonic cavity mode Ĉ and the ensemble excitation modes Â and B̂, in the following
simplified form [323]

ĤS = ∆cĈ
†Ĉ + ∆aÂ

†Â+ ∆bB̂
†B̂ + {GAĈÂ† +GBĈB̂

† + χÂ† + H.c.},

where ∆r = ωf − ωr (r ∈ {a, b, c}) represents the frequency detuning of the driven ensemble
frequency (ωa), the un-driven ensemble frequency (ωb) and the cavity field frequency (ωc), with
respect to the driving frequency ωf .

Open quantum system effects are now taken into consideration by allowing the interaction
of the photonic cavity mode Ĉ and the collective excitation modes of the ensembles (i.e., modes
Â and B̂) with their respective reservoirs R1, R2, R3, Fig. 5.1. This interaction is modeled, under
the Markovian white noise approximation, by coupling each mode to a reservoir made up of a
collection of harmonic oscillators [57]. As a result, the total Hamiltonian is modified to

Ĥ = ĤS + ĤR + ĤSR, (5.2)

such that,

ĤR =
∑
k

ωkm̂
†
km̂k +

∑
k′

ωk′ n̂
†
k′ n̂k′ +

∑
k′′

ωk′′ f̂
†
k′′ f̂k′′ , (5.3)
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ĤSR =
∑
k

gk(m̂
†
kÂ+ Â†m̂k) +

∑
k′

gk′(n̂
†
k′B̂ + B̂†n̂k′) +

∑
k′′

gk′′(f̂
†
k′′Ĉ + Ĉ†f̂k′′),

where m̂(m̂†), n̂(n̂†) and f̂(f̂ †) are the annihilation (creation) operators corresponding to the
reservoirs which interact with and damp the driven ensemble mode Â, the un-driven ensemble
mode B̂ and the cavity mode Ĉ, respectively. Here, and in what follows, S and R in the subscript
correspond to the system and reservoir, respectively. The resulting (Langevin) equations, for the
system operators should include, in addition to the damping terms, the noise operators which would
produce fluctuations [144]. We can now explicitly write the Langevin equations for the cavity and
atomic ensemble modes. Specifically, the Langevin equations for the cavity mode can be written
as

dĈ

dt
= −i∆cĈ − iGAÂ− iGBB̂ −

Γc
2
Ĉ + F̂c, (5.4)

where Γc is the decay constant and F̂c is the noise operator. For the initially uncorrelated sub-
systems, the initial density matrix can be considered as separable and thus in the tensor product
form ρ = ρS ⊗ ρR, and similarly it may be considered that the expectation value of operator
M = MS ⊗MR factors as 〈MS〉〈MR〉. Eq. (5.4) is an operator equation and it is not easy to
obtain an analytic solution of this type of equations. Keeping this in mind, here we adapt a strat-
egy used in Refs. [171–173]. Following this strategy, we begin our solution scheme by taking
an average of each term appearing in this equation with respect to the state ρ. This step yields a
differential equation of the average of Ĉ in terms of averages of Â and B̂. Note that this step trans-
forms the operator differential equation into a c-number differential equation which is much easier
to handle. Assuming each reservoir to be in thermal equilibrium at temperature T, we can average
over the system and reservoir degrees of freedom and using the fact that the reservoir average of
the noise operator vanishes 〈F̂c〉R = 0 [144], we end up with the following equation of motion for
the average cavity photon number:

d 〈Ĉ〉
dt

= −i∆c 〈Ĉ〉−iGA 〈Â〉−iGB 〈B̂〉−
Γc
2
〈Ĉ〉 . (5.5)

Similarly, we can obtain the Langevin equations for modes Â and B̂, and for all the second or-
der terms in creation and annihilation operators. Averaging each term present in these operator
differential equations would lead to a set of coupled ordinary differential equations involving var-
ious statistical quantities of interest. In analogy of Eq. (5.5), we obtained Langevin equations for
different single and compound modes as follows:

d 〈Â〉
dt

= −i∆a 〈Â〉−iGA 〈Ĉ〉−iχ−
ΓA
2
〈Â〉, (5.6)

d 〈B̂〉
dt

= −i∆b 〈B̂〉−iGB 〈Ĉ〉−
ΓB
2
〈B̂〉, (5.7)

d 〈Ĉ〉
dt

= −i∆c 〈Ĉ〉−iGA 〈Â〉−iGB 〈B̂〉−
Γc
2
〈Ĉ〉, (5.8)

d 〈Â2〉
dt

= −2i∆a 〈Â2〉−2iGA 〈ÂĈ〉−2iχ 〈Â〉−Γa 〈Â2〉, (5.9)

d 〈B̂2〉
dt

= −2i∆b 〈B̂2〉−2iGB 〈B̂Ĉ〉−ΓB 〈B̂2〉, (5.10)

d 〈Ĉ2〉
dt

= −2i∆c 〈Ĉ2〉−2iGA 〈ÂĈ〉−2iGB 〈B̂Ĉ〉−Γc 〈Ĉ2〉, (5.11)

d 〈Â†〉
dt

= i∆a 〈Â†〉+iGA 〈Ĉ†〉+iχ−
ΓA
2
〈Â†〉, (5.12)

d 〈B̂†〉
dt

= i∆b 〈B̂†〉+iGB 〈Ĉ†〉−
ΓB
2
〈B̂†〉, (5.13)
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d 〈Ĉ†〉
dt

= i∆c 〈Ĉ†〉+iGA 〈Â†〉+iGB 〈B̂†〉−
Γc
2
〈Ĉ†〉, (5.14)

d 〈(Â†)2〉
dt

= 2i∆a 〈(Â†)2〉+2iGA 〈Â†Ĉ†〉+2iχ 〈Â†〉− ΓA 〈(Â†)2〉, (5.15)

d 〈(B̂†)2〉
dt

= 2i∆b 〈(B̂†)2〉+2iGB 〈B̂†Ĉ†〉−ΓB 〈(B̂†)2〉, (5.16)

d 〈(Ĉ†)2〉
dt

= 2i∆c 〈(Ĉ†)2〉+2iGA 〈Â†Ĉ†〉+2iGB 〈B̂†Ĉ†〉−Γc 〈(Ĉ†)2〉, (5.17)

d 〈Â†Â〉
dt

= iGA[〈ÂĈ†〉− 〈Â†Ĉ〉] + iχ[〈Â〉− 〈Â†〉] + ΓAnA − ΓA 〈Â†Â〉, (5.18)

d 〈B̂†B̂〉
dt

= iGB[〈B̂Ĉ†〉− 〈B̂†Ĉ〉] + ΓBnB − ΓB 〈B̂†B̂〉, (5.19)

d 〈Ĉ†Ĉ〉
dt

= iGA[〈Â†Ĉ〉− 〈ÂĈ†〉] + iGB[〈B̂†Ĉ〉− 〈B̂Ĉ†〉]− Γc 〈Ĉ†Ĉ〉+Γcnc, (5.20)

d 〈ÂB̂〉
dt

= −i(∆a + ∆b) 〈ÂB̂〉−iGA 〈B̂Ĉ〉−iGB 〈ÂĈ〉−iχ 〈B̂〉−ΓA + ΓB
2

〈ÂB̂〉,
(5.21)

d 〈ÂB̂†〉
dt

= i[∆b −∆a] 〈ÂB̂†〉−iGB 〈B̂†Ĉ〉+iGB 〈ÂĈ†〉−iχ 〈B̂†〉−ΓA + ΓB
2

〈ÂB̂†〉,
(5.22)

d 〈Â†B̂〉
dt

= i(∆a −∆b) 〈Â†B̂〉+iGA 〈B̂Ĉ†〉−iGB 〈Â†Ĉ〉+iχ 〈B̂〉−
ΓA + ΓB

2
〈Â†B̂〉,

(5.23)

d 〈Â†B̂†〉
dt

= i(∆a + ∆b) 〈Â†B̂†〉+iGA 〈B̂†Ĉ†〉+iGB 〈Â†Ĉ†〉+iχ 〈B̂†〉−
ΓA + ΓB

2
〈Â†B̂†〉,
(5.24)

d 〈B̂Ĉ〉
dt

= −i(∆b + ∆c) 〈B̂Ĉ〉−iGB(〈Ĉ2〉+ 〈B̂2〉)− iGA 〈ÂB̂〉−ΓB + Γc
2

〈B̂Ĉ〉,
(5.25)

d 〈B̂Ĉ†〉
dt

= −i(∆b −∆c) 〈B̂Ĉ†〉+iGB(〈B̂†B̂〉− 〈Ĉ†Ĉ〉) + iGA 〈Â†B̂〉−
ΓB + Γc

2
〈B̂Ĉ†〉,
(5.26)

d 〈B̂†Ĉ〉
dt

= i(∆b −∆c) 〈B̂†Ĉ〉+iGB[〈Ĉ†Ĉ〉− 〈B̂†B̂〉]− iGA 〈ÂB̂†〉−ΓB + Γc
2

〈B̂†Ĉ〉,
(5.27)

d 〈B̂†Ĉ†〉
dt

= −i(∆b + ∆c) 〈B̂†Ĉ†〉+iGB[〈(Ĉ†)2〉+ 〈(B̂†)2〉] + iGA 〈Â†B̂†〉−
ΓB + Γc

2
〈B̂†Ĉ†〉,

(5.28)

d 〈ÂĈ〉
dt

= −i(∆a + ∆c) 〈ÂĈ〉−iGA[〈Ĉ2〉+ 〈Â2〉]− iGB 〈ÂB̂〉−iχ 〈Ĉ〉−ΓA + Γc
2

〈ÂĈ〉,
(5.29)

d 〈ÂĈ†〉
dt

= i(∆c −∆a) 〈ÂĈ†〉+iGA[〈Â†Â〉− 〈Ĉ†Ĉ〉] + iGB 〈ÂB̂†〉−iχ 〈Ĉ†〉−ΓA + Γc
2

〈ÂĈ†〉,
(5.30)

d 〈Â†Ĉ〉
dt

= i(∆a −∆c) 〈Â†Ĉ〉+iGA[〈Ĉ†Ĉ〉− 〈Â†Â〉]− iGB 〈Â†B̂〉+iχ 〈Ĉ〉−
ΓA + Γc

2
〈Â†Ĉ〉,

(5.31)

d 〈Â†Ĉ†〉
dt

= i(∆a + ∆c) 〈Â†Ĉ†〉+iGA[〈(Ĉ†)2〉+ 〈(Â†)2〉] + iGB 〈Â†B̂†〉−
ΓA + Γc

2
〈Â†Ĉ†〉 .

(5.32)
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Here, nA, nB and nC represent the thermal photon numbers corresponding to mode A, B
and C, respectively. Also, it would be apt to note that one can express the various witnesses of
nonclassicality described in Sec. 2.7.1 in terms of the solutions of the above set of coupled dif-
ferential equations, which can be obtained using Mathematica or similar programs or by using
conventional methods of obtaining analytic solutions of the coupled differential equations. Partic-
ularly, in this work, we have used Mathematica to obtain simultaneous numerical solution of these
coupled differential equations.

To illustrate the method adapted in this work to obtain the expressions for nonclassicality
witnesses using the solution of the above equations, we may consider the computation of Mandel
parameter as an example. Mandel parameter defined by Eq. (5.3) contains the term 〈(Â†Â)2〉.
This quantity is not among the variables appearing in the above equations. So the solution of the
above set of coupled equations would not provide us an expression for 〈(Â†Â)2〉. To circumvent
this problem, we have adapted a technique that allows us to simplify this term after writing it in
normal-ordered form 〈(Â†Â)2〉 = 〈Â†Â†ÂÂ〉 + 〈Â†Â〉 and subsequently using the decoupling
relation [171] 〈ABCD〉 ≈ 〈AB〉〈CD〉 + 〈AC〉〈BD〉 + 〈AD〉〈BC〉 − 2〈A〉〈B〉〈C〉〈D〉. Using
this decoupling relation we can write

〈Â†Â†ÂÂ〉 ≈ 〈Â†Â†〉〈ÂÂ〉+ 〈Â†Â〉〈Â†Â〉+ 〈Â†Â〉〈Â†Â〉 − 2〈Â†〉〈Â†〉〈Â〉〈Â〉,
= 〈(Â†)2〉〈Â2〉+ 2〈Â†Â〉2 − 2〈Â†〉2〈Â〉2. (5.33)

Interestingly, the Mandel parameter can now be expressed in terms of the variables, time evolution
of which is obtained as the solution of the above set of differential equation and we can express
Mandel parameter (2.41) as

QM ≈
〈(Â†)2〉〈Â2〉+ 〈Â†Â〉2 − 2〈Â†〉2〈Â〉2

〈Â†Â〉
. (5.34)

Clearly, the solution of the coupled differential equation listed above would now allow us to study
the temporal evolution of the Mandel parameter and thus to investigate the presence of nonclassi-
cality in our system of interest under the framework of open quantum system. Similar strategy is
adapted in the study of all other witnesses of nonclassicality mentioned above and this is how the
interesting results related to the temporal evolution of nonclassicality witnesses illustrated in Figs.
5.3-5.11, and summarized in Table 5.1, are obtained.

In general, these coupled differential equations are required to be decoupled using an ap-
propriate approximation scheme. Now, we may move to the next section, where we study various
measurable criteria of nonclassicality, discussed in Sec. 2.7.1 of chapter 2, to investigate the pres-
ence of nonclassicality in the physical system of our interest.

5.3 Results and Discussion

In this section, we study the nonclassical properties of our system. The analysis is carried
out by placing the ensembles in the four configurations, viz., AA, AN, NA, and NN configura-
tions. The investigation performed for all the configurations is summarized in Table 5.1. It clearly
emerges that the AA configuration is more suited for observing the various facets of nonclassi-
cality in the system. In some cases, other configurations may be preferred due to sufficient depth
of the nonclassciality witness, which is desired in some particular applications having practical
relevance. The effect of external driving field on the various nonclassical witnesses is studied with
respect to ∆t, where ∆ is the common detuning for the three modes Â, B̂ and Ĉ. The various
parameters used for AN configuration are GA = 0.2∆, GB = 0.02∆, ΓA = 2∆, ΓB = 0.2∆,
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and ΓC = 0.2∆. For NA configuration, GA = 0.02∆, GB = 0.2∆, ΓA = 0.2∆, ΓB = 2∆,
and ΓC = 0.2∆. For AA configuration, GA = 0.2∆, GB = 0.2∆, ΓA = 2∆, ΓB = 2∆,
and ΓC = 0.2∆. And finally, for NN configuration GA = 0.02∆, GB = 0.02∆, ΓA = 0.2∆,
ΓB = 0.2∆, and ΓC = 0.2∆. In all the cases, we have considered here vacuum bath.

The initial conditions (at t = 0) are chosen in such a way that the average number of
photons in the cavity field and the average number of excitations in the two ensembles are all
equal to 1. Figure 5.2 shows the evolution of the average number of bosons corresponding to the
driven ensemble mode (〈Â†Â〉), the undriven ensemble mode (〈B̂†B̂〉) and the average number of
the cavity photons (〈Ĉ†Ĉ〉). The average number of excitations is found to drop quickly for the
ensemble placed at the Antinode of the cavity field, compared to the ensemble placed at the Node
of the cavity field. One can also see vivid variations in the average excitation number of the driven
ensemble, when placed at the Node of the cavity field. In other words, placing the ensemble at the
Antinode of the cavity field, shadows the effect of the external field. We have not shown similar
variation in the boson number for remaining two configurations as it is quite similar to what is
observed here.
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Figure 5.2: Average number of cavity photons and excitations corresponding to the two ensembles, studied
with respect to the dimensionless parameter ∆t. (a) and (b) correspond to AN (left ensemble at
Antinode and the right ensemble at Node) and NA (left ensemble at Node and the right ensemble
at Antinode) configurations, respectively. The average number of excitations corresponding to
the driven ensemble (〈A†A〉), the undriven ensemble (〈B†B〉) and the average cavity photon
number (〈C†C〉) is depicted for χ = 0 and χ = 0.2∆. All the quantities shown in the plots are
dimensionless.
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Evolution of the average boson number discussed above gives us a feeling of the system
dynamics, but does not provide us any information about the nonclassical nature of the system. To
obtain the nonclassical characteristics of the system, we begin with the study of variation of a single
mode nonclassicality witness known as Mandel parameter QM , defied in Eq. (5.2). Variation of
QM with respect to rescaled time ∆t is plotted in Fig. 5.3 for all three modes of the system in
AN and NA configurations. The condition for nonclassicality is implied by the negative values of
QM (i.e., QM < 0) and can be interpreted as the sub-Poissonian statistics of the corresponding
field. Further, it is observed that the application of the external field to the driven ensemble makes
QM more negative, and thus the driving optical field may be used to enhance the amplitude of
the nonclassiclaity witness in both the driven ensemble and cavity mode. Negative values of QM
are also observed for AA and NN configurations and similar inferences can be drawn from it as
mentioned in Table 5.1. Specifically, we found nonclassicality in the driven (undriven) ensemble
in the absence of the external drive. Although in the absence of the driving term, the Hamiltonian
given by Eq. (5.1) is symmetric for both the ensembles, the observed behavior can be attributed to
different values of decay constants for the modes under consideration. Note that the nonclassicality
observed in the driven ensemble for higher intensity of the driving field establishes that driving field
can be used to control the amount of nonclassicality in the system.
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Figure 5.3: Mandel parameter with respect to the dimensionless parameter ∆t. Figures (a) and (b) corre-
spond to AN and NA configurations, respectively. The nonclassical nature of the field corre-
sponding to the mode α is confirmed by QM (α) < 0.

Motivated by the presence of single mode nonclassicality in the boson number distribution
also illustrating the presence of single mode antibunching, we also study the possibilities of com-
pound mode antibunching using Eq. (2.45). Fig. 5.4 shows the variation of nonclassicality param-
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eter for the intermodal antibunching as defined by Eq. (2.45) for all possible compound modes in
AN and NA configuration. The criterion Aαβ < 0 is satisfied for all the modes α/β ∈ {Â, B̂, Ĉ}.
One can see the enhancement in the depth of intermodal antibunching parameter by the action of
the external field driving the ensemble A. Similar studies in the case of AA and NN configurations
also show intermodal antibunching as summarized in Table 5.1.
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Figure 5.4: Showing intermodal antibunching parameterAαβ for modes α and β, plotted with respect to the
parameter ∆t. (a) and (b) correspond to AN and NA configurations, respectively. The existence
of intermodal antibunching is confirmed if Aαβ < 0.

After witnessing the signatures of nonclassicality in all three modes of the system through
the negative values of the Mandel QM parameter, we turn our attention towards single mode
squeezing; criterion for which is defined in Eq. (2.47) and Eq. (2.48). Fig. 5.5 illustrates the pres-
ence of the quadrature squeezing in all the individual modes, both in AN and NA configurations.
A similar study for AA and NN configurations is carried out and the results (not displayed here)
are summarized in Table 5.1. The field mode Â, corresponding to the driven ensemble, shows an
appreciable enhancement in the magnitude of squeezing illustrated by the decrease of the variance
in one quadrature with respect to the coherent state level as soon as the external field is applied.
This enhancement is also observed in the undriven mode B̂ and the cavity mode Ĉ, but with rela-
tively lesser magnitude in AN configuration, while as in NA configuration, the enhancement in the
nonclassicality of field modes B̂ and Ĉ is quite meager. This can be attributed to the fact that in
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Figure 5.5: Single mode squeezing, as defined in Eqs. (2.47) and (2.48), plotted with respect to the dimen-
sionless parameter ∆t. Sub-figures (a)-(d), (b)-(e) and (c)-(f) correspond to modes Â, B̂ and
Ĉ, respectively. The top and bottom panels pertain to the AN and NA configurations, respec-
tively. It is clear that the application of the external field to the driven ensemble (Â), that is, the
non-zero value of χ, enhances the squeezing in the respective quadratures of a particular mode.

NA configuration, the driven ensemble, being at the node of the cavity field, is weakly coupled to
it. Therefore, we conclude that the amount of nonclassicality in the driven ensemble can be con-
trolled by the strength of the driving field, however, the driven ensemble should be placed at the
Antinode of the cavity field (AN or AA configurations) for this control to be effective on the cavity
field mode (Ĉ) and the undriven ensemble excitation mode (B̂), as well. However, in some cases
(as in Fig. 5.5 (b)), with an increase in the strength of the external field nonclassicality present in
the absence of external field decreases initially for a small period of time before increasing there-
after. This behavior could not be explained by the present study and may be attempted in the near
future. The role of external driving field strength as a control parameter can be further established
using Fig. 5.6, which illustrates the variation of (∆Xa)

2 with respect to the external driving field
strength and time. The enhancing effect of the external field on the quadrature squeezing is clearly
visible in this case.

Motivated by the observation for the single mode squeezing, we investigate the presence
of intermodal squeezing using the criterion given in Eqs. (2.49a) and (2.49b). The outcome of the
investigation is plotted in Fig. 5.7, which clearly shows the existence of intermodal squeezing in
the compound mode ÂB̂. One can observe the amplification in the squeezing parameters as a con-
sequence of an increase in the external field driving the atomic ensemble SA (cf. Fig. 5.7 (b)). A
similar study for NN and AA configuration is also carried out with compound modes B̂Ĉ and ÂĈ
in all four configurations. The presence of squeezing in different possible compound ensemble-
ensemble and ensemble-cavity modes in all the four configurations is observed and is summarized
in Table 5.1. It is worth mentioning here that the enhancement in the values of the witness of the
intermodal squeezing is found to be more prominent in the compound mode ÂĈ when compared
with ÂB̂ or B̂Ĉ. This can be attributed to the fact that the amount of nonclassicality in mode B̂ is
less susceptible to the driving field.

Nonclassical features manifested through the negative values of Mandel QM parameter,
intermodal antibunching and the criteria of single mode and compound mode squeezing have been
studied since long using various techniques including short-time approach [325, 326] and Sen-
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Figure 5.6: Showing squeezing parameter (∆XA)2 for mode Â as a function of the driving field strength χ
as well as the dimensionless parameter ∆t. The enhancing effect in quadrature squeezing as a
result of increase in the strength of the driving field is observed.

Mandal approach [156, 327], but most of those studies were limited to closed system configuration.
In the present work, we have reported the existence and dynamics of these nonclassical features
in the backdrop of open quantum systems. To continue the investigation further, we may note that
among various nonclassical features, entanglement has drawn maximum attention of the scientific
community because of its enormous applications in quantum computing and communication and
because of the fact that it may lead to various phenomenon having no classical analogue such
as, dense coding [142] and teleportation [141]. Keeping this in mind, we would now look into
the possibility of observing intermodal entanglement in the system of our interest. To do so, we
will use a set of inseparability criteria, each of which is only sufficient and consequently when
one of the criteria fails, another one may succeed to detect entanglement. We begin with Duan’s
criterion for inseparability defined in Eq. (2.50) and graphically present the obtained results in
Fig. 5.8. It is clear from Fig. 5.8 that the condition for inseparability (i.e., Dαβ < 0) is satisfied
for modes α and β. Irrespective of whether the driven ensemble is placed at Node or Antinode
of the cavity field, the value of the Duan parameters DAB and DBC is very small. In the NA
configuration (shown in Fig. 5.8 (b)), the Duan parameter DAB , DBC as well as DAC become
negative, thereby witnessing the presence of entanglement among all the modes. On the other
hand, in AN configuration, DBC is non-negative (cf. Fig. 5.8 (a)). This implies that transforming
the system from AN to NA configuration enhances the intermodal entanglement, which can also
be viewed in the enhancement of the Duan parameter DAC in NA configuration.

As stated above, moment-based criteria of inseparability are only sufficient. Hence, it
makes sense to look into the possibility of observing entanglement in light of one or more differ-
ent criteria. We study the famous Hillery-Zubariy criteria defined by Eqs. (2.51) and (2.52) and
have illustrated the corresponding results in Fig. 5.9, where negative values of the parameters EAB
and ẼAB confirm the existence of the intermodal entanglement between modes Â and B̂ for all
configurations. At times, weak signatures of entanglement are found through ẼAB criterion, but
relatively stronger signatures are found through EAB criterion (see Fig. 5.9). Similarly, one may
observe in Fig. 5.8-(a) and 5.9-(b) that, at ∆t = 6, Duan’s criterion failed to detect entanglement
but is captured by the Hillery-Zubairy criteria. Further, the study revealed the relevance of place-
ment of ensembles in the cavity for the generation of entanglement between two spatially separated
ensembles interacting with a common cavity field. Also, going from AA to NN configuration, the
effect of external driving field becomes relevant for controlling the amount of entanglement. A
similar study for the remaining two compound modes B̂Ĉ and ÂĈ also established that they are
always entangled in all configurations as summarized in Table 5.1.

As we have already mentioned, entangled states may or may not satisfy steering condition,
but a state satisfying steering condition must be entangled. Thus, a steering criterion can be viewed
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Figure 5.7: Showing inter-modal squeezing, defined by Eq. (2.49a), with respect to ∆t. (a) and (b) show
the squeezing in compound mode ÂB̂, in AN and NA configurations, respectively. One finds
enhancement in the intermodal squeezing as a result of driving ensemble (Â) by the application
of the external field.

as a stronger criterion of nonclassicality in comparison to the criteria of entanglement. Further,
entangled states that are not steered cannot be used for one-way device independent quantum
cryptography, but steered states can be [147]. This motivated us to look into the possibility of
observing steered states in our system. To do so we have used the steering criterion given by Eq.
(2.54) and plotted, for example, for two spatially separated ensembles modes Â and B̂ in Fig.
5.10. The existence of the steered state is observed for modes Â and B̂ (also for B̂ and Ĉ and for
Â and Ĉ as summarized in Table 5.1) for all configurations. Further, in contrast to entanglement
witnesses, here we observe an asymmetric nature of steering which is reflected from Fig. 5.10,
where it can be seen that SAB 6= SBA. For instance, Fig. 5.10-c shows that for non-zero driving
field intensity, Â can steer B̂, while the converse is not observed. The results obtained for the
steering criterion established the same observations as found for the Hillery Zubairy entanglement
criteria. Failure to obtain steering in some of the cases (as highlighted in Table 5.1) establishes
that it is a relatively stronger criterion of nonclassicality, and the presence of steering correlations
in two spatially separated ensembles, mediated by the cavity field and controllable by the external
driving, is an interesting observation.

So far we have seen quantum correlations involving two modes only. However, our system

89



(a)
AB BC AC for χ=0

0 2 4 6 8 10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

Δt


A
B
,

B
C
,

A
C

1.05 1.10 1.15 1.20
Δt

-2

-1

1

2
AB, BC (10-7)

AB BC AC for χ=0.2Δ

(b)

AB BC AC for χ=0

0 2 4 6 8 10

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Δt


A
B
,

B
C
,

A
C

1.05 1.10 1.15 1.20
Δt

-2

-1

1

2
AB, BC (10-7)

AB BC AC for χ=0.2Δ

Figure 5.8: Showing Duan separability parameter against ∆t. Figures (a) and (b) correspond to AN and NA
configurations, respectively. The sufficient condition for inseparability is implied by Dαβ < 0,
for modes α and β.

consists of three modes that are treated quantum mechanically. Hence, we may extend our study
to check nonclassical features of the system through some quantum correlations involving all the
three modes Â, B̂ and Ĉ. To do so, use has been made of the biseperability criteria defined in Eqs.
(2.55) and (2.56), to study multimode entanglement. Corresponding results are plotted in Fig. 5.11.
It is clear that the sufficient condition for the fully entangled state, which is the satisfaction of at
least one of the two sets of inequalities given by (2.57) and (2.58), is satisfied here. Thus, there
exists a nonclassical correlation involving all the three modes in both AN and NA configuration.
Specifically, all possible combinations for the biseparability show almost similar variation in Fig.
5.11. This establishes that the three-mode compound state is fully entangled. The application of the
external field is found to enhance the signature for the existence of the multimode entanglement.
Similar study for other configurations is summarized in Table 5.1.

5.4 Conclusion
In the previous sections, we have performed a detailed investigation on the temporal vari-

ation of various witnesses of nonclassicality present in a model physical system consisting of a
cavity that contains two ensembles of two level atoms which are placed in different configurations
with respect to the Antinode and Node of the cavity field, viz., AA, AN, NA and NN configura-
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Figure 5.9: Hillery Zubairy criteria, as defined in Eqs. (2.51) and (2.52), plotted against the dimensionless
parameter ∆t for modes Â and B̂. The figures (a), (b), (c) and (d) correspond to the AA, AN,
NA and NN configurations, respectively. The negative values of the Hillery Zubairy parameters
(HZPs), viz., EAB and ẼAB provide the sufficient condition for the entanglement between the
corresponding modes. The nonzero value of χ makes HZPs more negative at certain points,
and hence, enhance the entanglement between the corresponding modes.

tions. Further, it is considered that the left ensemble is driven by an external optical field which
has been treated here as classical. The effects of this driving optical-field on various witnesses
of single mode (e.g., squeezing, Mandel’s Q parameter, antibunching) and intermodal (e.g., inter-
modal squeezing, antibunching, two and three mode entanglement, and steering) nonclassicality
have been studied systematically. The study has yielded various interesting results which are sum-
marized in Table 5.1.

The work illustrates how the optical-driving field may be used to control the amount of
nonclassicality. In fact, it can be used to enhance the nonclassicality of the atomic ensemble
modes, cavity modes and their compound modes. Specifically, it is observed that the excitation
mode Â corresponding to the driven ensemble shows amplification in the witness of squeezing of
its quadratures in the presence of the external field (χ 6= 0). Similar enhancement of the negative
values of the nonclassicality witness has also been observed in the cavity photonic mode Ĉ when
the driven ensemble is placed at the Antinode of the cavity field.
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Figure 5.10: Steering criteria as a function of ∆t for modes Â and B̂. The figures (a), (b), (c) and (d)
correspond to the AA, AN, NA and NN. Steering is confirmed if Sαβ < 0, for modes α and β.

Further, the existence of entanglement which is considered to be one of the main resources
for quantum information processing has been observed here using a set of sufficient criteria for
inseparability Specifically, we have used Hillery-Zubairy criterion and Duan’s criterion for two-
mode entanglement and a biseperability criteria for three mode scenario. Since steering can be used
for one-way device independent quantum key distribution ([147] and references therein), we have
also investigated the possibilities of observing steering involving various modes of the system.
The investigation has not only revealed the existence of steering, but has also demonstrated its
asymmetric nature.

The method adapted in this work is quite general and easy to follow. It can be extended
easily to investigate the existence of nonclassicality in similar physical systems of interest, spe-
cially in a set of driven cavity systems. For example, the study can be adapted to a system where
both the ensembles are driven (with the same or different driving frequencies) or to a double cav-
ity optomechanical system [328–333]. In brief, nonclassical features of various optomechanical,
driven- and non-driven cavity and optomechanics-like systems can be studied using the technique
used here. Further, the present system and similar driven-cavity systems can be treated in a com-
pletely quantum mechanical manner (by considering the driving optical field as weak and hence
quantum mechanical) to reveal nonclassicalities involving the mode(s) of the driving field(s). Such
investigations are expected to yield various types of nonclassicality in different physical systems
that can be realized with the present technology and thus provide a wider choice of systems (to
experimentalists) that can be used to build quantum devices that exploit the true power of the
quantum world by producing and manipulating nonclassical states.
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Figure 5.11: Biseparability criteria as a function of ∆t. Top and bottom panels correspond to AN and
NA configurations, respectively. The nonseperability of modes α, β and γ is implied by the
satisfaction of either or both of the inequalities Eαβ|γ < 0 and E′αβ|γ < 0.
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Table 5.1: Various witnesses of nonclassicality that are investigated for different configurations, both in
the absence as well as in the presence of external field characterized by χ. Here, a tick indicates
the presence of a nonclassical feature characterized by the nonclassicality witness mentioned in
the first column of the same row, while a cross is the indicator of failure in the detection of that
nonclassicality feature. It clearly emerges that the AA configuration is more suited for observing
various facets of nonclassicality in the system.

Witnesses of nonclassicality AN configuration NA configuration AA configuration NN configuration
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