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3.6 Three flavor scenario in vacuum. Information deficit D[3]
νx (φ)(x = e, µ, τ) plot-

ted against dimensionless parameter φ(= (∆21L
2~cE ). The various neutrino param-

eters used are as: θ12 = 33.48o, θ13 = 8.50o, θ23 = 42.3o, ∆21 = 7.5 ×
10−5 eV 2, ∆32 = ∆31 = 2.457 × 10−3 eV 2. Left, middle and right figures
correspond to the cases with initial state νe, νµ and ντ , respectively. The maxi-
mum negative value of the information difference is a measure of the strength of
the entropic violation and in this case, turn out to be Min[D[3]

e (φ)] ≈ −0.2196

at φ ≈ 5.7527 radians, Min[D[3]
µ (φ)] ≈ −0.2151 at φ ≈ 5.7527 radians,

Min[D[3]
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3.12 The left, middle and right panels of the figure depict the LG function K3 plotted
w.r.t the dimensionless quantity ∆t/τ for the K, Bd and Bs mesons, respectively.
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of respective mesons. Dashed and solid curves correspond to the cases with and
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1.7889 × 10−10s. Also, Γ = 5.59 × 109 s−1, ∆Γ = 1.1174 × 1010 s−1, λ =
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∆Γ = 0.086 × 1012 s−1, λ = 0.012 × 1012 s−1 and ∆m = 17.757 × 1012 s−1

[267]. The value of the CP violating parameter here is q
p = 1.003 [267]. As we

do not have any experimental bound on the decoherence parameter λ for the Bs
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and (d) correspond to the AA, AN, NA and NN. Steering is confirmed if Sαβ < 0,
for modes α and β. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.11 Biseparability criteria as a function of ∆t. Top and bottom panels correspond to
AN and NA configurations, respectively. The nonseperability of modes α, β and
γ is implied by the satisfaction of either or both of the inequalities Eαβ|γ < 0 and
E′αβ|γ < 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1 The model. Two cavities bearing modes a1 and a2 coupled through coupling con-
stant g are also interacting with baths B1 and B2, respectively. The baths cause
gain γ1 and loss γ2 in the first and second cavity, respectively. . . . . . . . . . . . 98

6.2 The real part of the eigenvalues λ± is plotted as a function of the coupling strength
g and the gain (loss) rate γ. The points where the two eigenvalues coalesce are
called as exceptional points. In (a), the blue (solid) and red (dashed) curves corre-
spond to λ+ and λ−, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3 Average photon number na1 = 〈a†1(t)a1(t)〉 (solid blue curve) and na2 = 〈a†2(t)a2(t)〉
(dashed red curve) with respect to the dimensionless parameter gt for PTS (left
panel) and PTSB (right panel) cases. The value of γ is 0.5g and 1.1g correspond-
ing to the PTS and PTSB regimes, respectively. The input states are: (a)-(b) Vac-
uum state |00〉; (c)-(d) Coherent state |α1α2〉, with αk = rke

iθk for k = 1, 2 and
coherent state parameters r1 = r2 = 1, θ1 = θ2 = π/4; (e)-(f) NOON state
(|10〉 + |01〉)/

√
2; (g)-(h) Thermal state ρ0 = (1 − eβ)2 exp[−β(a†1a1 + a†2a2)]

with β = ~ω/kT . Here, we have chosen β = 1. . . . . . . . . . . . . . . . . . . . 102

6.4 Zeno parameter as defined in Eq. (6.22), ζa1 (blue surface) and ζa2 (red surface)
with input state as vacuum (a), NOON state (|10〉 + |01〉)/

√
2 (b), and thermal

state (c). In all the cases, the lossy mode (a2) shows the QAZE while the gain
mode (a1) shows the QZE. Here, we have chosen coupling strength g = 1, so that
γ < 1 and γ > 1 correspond to PTS and PTSB regimes, respectively. . . . . . . . . 104

xvi



6.5 Zeno parameter as defined in Eq. (6.22) with input state as coherent state |r1e
iθ1 , r2e

iθ2〉
for r1 = r2 = 1. In (a), θ1 = π, θ2 = −π/4. The blue and red surfaces corre-
spond to ζa1 and ζa2 , respectively. Here, the coupling strength between the cavities
g = 1. (b) Variation with respect to the relative phase parameter ∆θ = θ1 − θ2.
The color scheme is as follows: blue for ζa1 , red for ζa2 with γ = 0.5g, that is, PTS
regime; green for ζa1 and gray for ζa2 with γ = 1.5g, PTSB regime. The param-
eter ∆θ decides which of the two modes (a1 or a2) would show the QZE/QAZE.
The maxima and minima in the plot occur at ∆θ = π/2, 3π/2. . . . . . . . . . . . 105

6.6 Intermodal antibunching with input state as coherent state |α1, α2〉 (a) and NOON
state (|10〉+|01〉)/

√
2 (b). In the former α1 = r1e

iθ1 and α2 = r2e
iθ2 with r1 = 1,

r2 = 2, θ1 = θ2 = π/2. The nonclassical behavior corresponds to A(a1a2) < 0.
The behavior in PTS regime (γ < g) is very different from the PTSB regime (γ > g).105

6.7 Sum squeezing parameter V (a1, a2) (a) and difference squeezing parameterW (a1, a2)
(b), as defined in Eqs. (6.25) and (6.26), plotted against dimensionless param-
eter γt with vacuum as the initial state. A state is sum (difference) squeezed if
V (a1, a2) < 0 (W (a1, a2) < 0). Here, we used φ = π/4. . . . . . . . . . . . . . . 106

6.8 Schematic illustration of three-level atom. . . . . . . . . . . . . . . . . . . . . . . 110
6.9 Top plot depicts the real (lined-blue surface) and imaginary (plane-red surface)

parts of the eigenvalues. Both real and imaginary eigenvalues occur in pairs sym-
metrically about Re[E±] = Im[E±] = 0. Bottom panel, presented here for clarity,
depicts the real eigenvalues with respect to the parameters γ and Ω for different
values of parameter φ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.10 MID (Q(ρout)), Concurrence (C(ρout)) and Negativity (N(ρout)) of the output
state given in Eq. (6.29). The effective coupling between two levels is J = |1 −
Ωeiφ| and the gain/loss rate is γ. The conditions J > γ and J < γ correspond
to PTS and PTB regimes, respectively. The non-classical features are enhanced in
PTS regime, that is, when system coupling dominates the gain/loss rate. This is in
consonance with the results of our previous work [129]. . . . . . . . . . . . . . . . 112

6.11 Beam-splitter (BS) with input states ρin and ρvac(= |0〉〈0|). The output ports
are subjected to a channel, leading to the final output state ρout. The channel
parameters are, in general different, unless stated otherwise. . . . . . . . . . . . . 113

6.12 Showing concurrence with respect to time when the state parameter p = 1 which
corresponds to the input state |1〉 at the beam-splitter. Left, middle and right
plots correspond to RTN, PD and AD channels, respectively. The solid (blue)
and dashed (red) curves in the left plot pertain to non-Markovian and Markovian
processes, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.13 MID (Q(ρout)), as defined in Eq. (6.32), is plotted as a function of time when
the output ports of the beam-splitter are subjected to RTN noise in non-Markovian
(top-left) and Markovian (top-right) regimes, respectively. Same quantity is shown
for PD channel (bottom-left) and AD channel (bottom-right). Solid-thin (blue)
and dashed (red) curves correspond to PTS and PTB phases, respectively; with
the input state given in Eq. (6.41). Dot-dashed (green) curve depicts the behavior
at exceptional points with the input state given in Eq. (6.42). Solid-thick (black)
curve corresponds to the case when the state evolves under Hermitian Hamiltonian.
The input state in this case is given in Eq. (6.45). . . . . . . . . . . . . . . . . . . 116

6.14 Concurrence as a function of time when the output ports of the beam-splitter are
subjected to RTN noise in non-Markovian (top-left) and Markovina (top-right)
regimes, respectively. Same quantity is shown for PD channel (bottom-left) and
AD channel (bottom-right). The nomenclature for various curves is the same as in
Fig. 6.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

xvii



6.15 Negativity as a function of time when the output ports of the beam-splitter are
subjected to RTN noise in non-Markovian (left) and Markovian (right) regimes,
respectively. The nomenclature for various curves is the same as in Fig. 6.13. . . . 117

6.16 Schematic of a three level Λ type atom. The parameters g, G and J correspond
to the coupling strengths between the levels as shown. Levels |ψ1〉 and |ψ3〉 are
assumed to have equal gain and loss rate γ. Level |ψ1〉 and |ψ3〉 are connected by
RF-field and simultaneously to |ψ2〉 by two optical field modes. . . . . . . . . . . 120

6.17 Coherence given in Eq. (6.61) as a function of dimensionless parameters α = γ/J
and τ = Jt. The coherence attains maximum value at the EP, i.e., at α = 1. . . . . 122

6.18 Standard LGIs as defined in Eqs. (6.64), and Wigner (inequality(6.65)) form of
LGI plotted with respect to the dimensionless parameter τ = Jt and α. The plots
in the bottom panel brings out, in a more clear manner, the behavior at the EP, i.e.,
α = 1. At this point all the formulations of LGI achieve their algebraic maximum. . 123

xviii


	Abstract
	List of articles
	Acronyms
	Introduction
	Introduction to various tools
	Dynamics of closed systems
	Dynamics of open systems
	Quantum measurement theory
	Dynamical maps
	Quantum channel

	Markovian and Non-Markovian processes
	Theory of Markovian open quantum systems 
	Theory of non-Markovian open quantum systems 

	Quantum correlations
	 Temporal quantum correlations
	 Spatial quantum correlations

	Nonclassical properties of light
	 Criteria for nonclassicality of light


	Temporal quantum correlations in subatomic systems
	Dynamics of the relevant subatomic systems
	Detailed study of various temporal quantum correlations 

	Aspects of non-Markovian Open Quantum Systems
	Introduction
	Facets of quantum information under non-Markovian evolution
	Quantum Fisher infomation flow and non-Markovianity
	Results and discussion

	Violation of Leggett-Garg type inequalities in a driven two level atom interacting with a squeezed thermal reservoir 
	Model: A driven two level system
	Leggett-Garg type inequality for the two level driven system
	Results and discussion

	Study of coherence based measure in (non) Markovian channels
	A coherence based measure of quantumness of channels
	Specific channels
	Results and discussion

	A proposed measure of quantumness of channels
	Measure of quantumness of channels

	Application to quantum channels
	Experimental relevance of the measure
	Results and discussion
	Leggett Garg inequality under non-Markovian noise
	A simple model
	Leggett-Garg inequality

	Conclusion

	Nonclassicality in a cavity quantum optical system
	Introduction
	Cavity containing two ensembles of two-level atoms
	Results and Discussion
	Conclusion

	Parity-Time (PT) symmetric Open Quantum Systems
	PT symmetry in nutshell
	Quantum Zeno effect and nonclassicality in a PT symmetric system of coupled cavities
	Model and Solution
	Some properties of the output fields

	Interplay between nonclassicality and PT symmetry in an effective two level system with open system effects
	Nonclassicality for a single input state at beam-splitter
	Model
	Effect of different quantum noise channels on nonclassicality
	Results and discussion

	Maximal coherent behavior about exceptional points in a PT symmetric qubit 
	PT symmetric time evolution
	Degree of coherence in terms of l1 norm
	Consequences of the maximal coherent behavior: Violation of LGIs upto the algebraic maximum
	Various formulations of LGIs
	Quantum violation of LGIs

	Conclusion

	Conclusion and future directions

