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3 Single-link Flexible Manipulator 
 
 
 

3.1 INTRODUCTION 

This chapter deals with the investigation to explore the effect of generic payload on the modal 
parameters, nonlinear behavior, and dynamic performance of single-link flexible manipulator 
under Cartesian and revolute motions mounted on a planar bidirectional moving platform. 
Two dynamic models of manipulator with an arbitrarily oriented sizeable payload having iner-
tia whose center of gravity doesn’t coincide with the point of attachment have been developed, 
to determine the modal parameters i.e., natural frequency and corresponding mode-shape. 
There have been previous literature regarding the modal analysis of single-link manipulator 
with a payload having mass as well as inertia. However, the studies lacks in demonstrating the 
effect of other system parameters on the eigenspectrums of single-link manipulator. Therefore, 
in this chapter the extensive and rigorous study of influence of system parameters and payload 
attributes has been conducted. In first case, the small deformation model of a rotating planar 
Cartesian motion at the roller supported end with a pulsating constraint asymmetric force imi-
tating its working environment has been considered, while in second case, the manipulator is 
assumed to have harmonic revolute joint. These modal parameters are then illustrated graph-
ically upon varying parameters like offset parameters (i.e., offset mass, offset inertia, offset 
length), mass and stiffness of actuator and hub. Initially, modal analysis has been studied to 
demonstrate graphically the eigenfrequencies and corresponding eigenspectrums while it is 
being noted that the system possesses distinct and different vibration characteristics as com-
pared to that of a system without offset payload. A smooth sinusoidal torque as input has been 
introduced to assess the time dependency factors and parameters which can describes its posi-
tion inaccuracy over the time. 

Further, an investigation into the nonlinear dynamics of the Cartesian manipulator sys-
tem accounting of geometric nonlinearity and a large deflection model of a flexible rotating 
manipulator considering both transverse and axial deformation has been carried out. The pri-
mary and secondary resonance conditions arising respectively due to transverse harmonic mo-
tion and direct forcing conditions in first case while in second case, parametric excitations due 
to the harmonic motion of the hub have been examined thoroughly. Current research further 
investigates the influences of offset parameters, mass and stiffness of the actuator, frequency 
and amplitude of axial force on the steady-state responses for the primary and sub-harmonic 
resonance conditions to reveal the built-in saddle-node and pitchfork bifurcation due to which 
the system losses its structural stability. The obtained results have been validated numerically 
within the permissible error at the assorted critical points in frequency characteristic curves. 
This work provides an insight into the modal characteristics, and nonlinear behavior of two 
different models of single-link flexible manipulator with a generic payload. The present results 
offer specific guidelines towards the designing and control aspects of such manipulators based 
on the selection of offset parameters. 

3.2 MATHEMATICAL MODELING 
 
Fig. 3.1 shows a schematic diagram of a deformed single-link flexible rotating Cartesian ma-
nipulator incorporating payload with a general offset where an asymmetric harmonic 

force   0 1 2F F cos t  is applied to the paylaod. One end of the link has a roller supported ac-
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tuator, while at the other end, an offset payload having mass and inertia is attached. The link is 
theoretically modeled based on Euler-Bernoulli beam element and the elastic deformation is 

assumed to be small as compared to the length of the link, i.e.,  ,w x t L= . The manipulator is 

given a planar general motion     ,t t   through a moving platform at the roller supported 

end, av  is the vertical displacement of actuator from the equilibrium position and manipulator 

is assumed to rotate (Ω) about an axis perpendicular to the plane. The rotation of end point of 

link can be regarded as  1tan L Lw w     .  

 
Fig. 3.1: Schematic diagram of (a) rotating Cartesian manipulator with generic payload and (b) flexible actua-

tor. 

The position and velocity vectors of a general point on the link and center of gravity of payload 
are respectively expressed as 

      ˆˆˆ ˆ ,aq u x x w y y X v Y       
r

  

        cos ˆsinˆ ˆ .ˆ
C L L L L aP u L c w x w c w y X v Y           
r

  (3.1) 

Here, γ is the offset angle, c is the distance of centroid of payload from the point of attachment 
with the link  and θ is the angle of rotation of moving reference frame (x,y) with respect to iner-
tial reference frame (X,Y). 

The total energy of the system is composed of kinetic energy  totalT due to the mass of link, ac-

tuator and the rotational energy of payload; the potential energy  totalU consists of strain ener-

gy due to elastic bending in link, axial stretching and elastic stain in actuator stiffness, are ex-
pressed as: 
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3.3 CARTESIAN SINGLE-LINK FLEXIBLE MANIPULATOR WITH GENERIC PAYLOAD  

Using extended Hamilton’s principle       
2

1

1 2, ;

t

nc

t

T U dt W W t t        here W is zero 

and  ncW  is the non-conservative word done by structural damping  dc  .and Substituting the 

equations Eqs. (3.1)-(3.3), one may obtain the following governing equations of motion with 
associated boundary conditions for non-rotating manipulator as:  
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3.3.1 Modal analysis: free vibration  

The equation of motion and boundary conditions can further be reduced to that obtained by 
[Coleman and McSweeney, 2004], by neglecting the actuator motion and putting the offset 
equal to zero. Neglecting coupled nonlinear terms and the rotary motion of the motor from Eqs. 
(3.4)-(3.7), resulting equations of motion and boundary conditions can be used for modal analy-

sis. Deflection functions  ,r x t  and  ,s x t  are written 

       , , ar x t w x t t v t   and      , ,s x t u x t t  . The solutions of r(x,t) and s(x,t) are ex-

plicit functions of space and time, and they can be written as      , nr x t U x T t  

and      , ns x t W x T t , where  nU x , and  nW x  represent the admissible functions in lon-

gitudinal and transverse directions of a Cartesian manipulator and  T t  denotes time modula-

tion. The solution of the resulting equations of motion can be expressed: 

       2 2
1 2cos .sin

n n
n n nU x R x R x          (3.8) 

         1 2 3 4cos cosh sin sinh .n n n n n n n n nW x S x S x S x S x          (3.9) 
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The unknowns  L1 4 1 2, , ,
n

S S R R  can be evaluated from a set of six algebraic equations derived 

from the boundary conditions and expressed in the following matrix form with the nondimen-

sional terms:  
1/22 / ,m A EI     / ,mC Cm AL   3/ ,I CI AL   α = m ρAL ,ma a  
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The elements of the matrix followed are illustrated as: 
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            (3.12) 
The condition for a non-trivial solution yields in a characteristic frequency equation which can 

be solved numerically to obtain the eigenfrequencies of respective modes of vibration. There-
fore, determinant of coefficient of matrix of Eq. (3.11) leads to a transcendental polynomial 

equation of   in the form of design parameters.  

  , , 0.n n ndet N S R            (3.13) 
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Here    , ,n n nN S R   represent the coefficient matrix. For a given set of values of various system 

parameters defined above, the roots of the Eq. (3.13) provide the frequency parameters     

which can be further used to depict the corresponding mode shapes. In terms of unit magni-

tude of 1 S , the expressions of L2 4 1,2,S S R   are given below: 
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3.3.2 Nonlinear forced vibration analysis 

In this sub-section, the effect of parameters associated with general payload and linear actuator 
on the dynamic responses under asymmetric pulsating tip force and harmonic base motion are 
highlighted. The source of nonlinearity is mainly due to the link flexibility accounting of geo-
metric stretching effect. From the available literature, it is established that the effect of mass of 
payload on the nonlinear dynamics of the manipulator with geometric/inertial nonlinearities 
have been studied significantly. Hence, here we additionally explore theThe inherent role of 
offset payload well as actuator parameters onto the structural stability. An appropriate motion 
has further been imparted at the roller-supported end as base motion. A complex and complete 
equation of motion is expressed as below: 
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Henceforth,  '  and (·) represent the differentiation with respect to the nondimensional space x  

and time  , respectively. The first mode of any vibratory system is found to be most vulnerable 
one as most of the excitation energy is being injected into the first mode of vibration when the 
system is being excited with a broadband signal. 

To discretize the governing equation of motion Eq. (3.15), one may use the following as-
sumed mode expression: 

     , .q x r x p           (3.16) 

Here,  p  is the time modulation, scaling factor is represented by r in above equation and 

(x)  is the eigenfunction of cantilevered link with offset-payload expressed as: 

         1 2 3 4cos cosh si si hn n .x S x S x S x S x            (3.17) 

Here,   is the absolute value of the smallest possible root of the transcendental equation Eq. 

(3.13) & the constants, 1 4  ....S S , can be calculated as explained in previous section. The harmonic 

Cartesianp motion of manipulator is expressed as.    0 1cos .x     Now Eq. (3.15) is 

withwritten in terms of dimensionless variables: w = w ,r / ,x x L  dc c L AEI 2 / ,   

 4/ ,t EI AL   4AL / EI ,     / ,r I A   2
0 0 / 4 ,cF F F    2

1 1 / .F F L EI  Here, cF  is 

the critical buckling load of the link, and using Eq. (3.16) along with the orthogonal property of 
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the mode shapes and dropping the bar for the sake of simplicity, the following dimensionless 
equation of motion can  be found. 

             

     

2 2 3
1 1 1 4 2 2

3 2

cos sin cos

cos cos 0.

p cp pp

p

          

   

        

 

&& &
    (3.18) 

Here, 

             

         

1 1 1 1

2 2 2 2

0 0 0 02

1 1

2 2 2
0

0 0

/ 1 /

,

1 /cosmC c

x x dx x dx x x x dx x dx

F x x dx x dx

     



     

    
      

       

 

 
  
        
   



   

 

 

     
1 1

2
1 0

0 0

/ ,x dx x dx   
 
 
 
 
           

1 1

2 2
2

0 0

3 /2 / ,x x x dx x dx    
 
 
 


 



    

     
1 1

2
3 1

0 0

/ ,F x x dx x dx   
 








 


    and      

1 1

2
14

0 0

/ .F x x dx x dx   
 








 


      (3.19) 

The frequency ω in Eq. (3.19) is not the actual frequency but instead a normalized one. 
Now, a small dimensionless parameter, ε is introduced to order the terms in Eq. (3.18) and the 
resulting equation is expressed as: 

            
   

   

2 2
1 1 1 22 2

3 2

4 2

cos
2 cos co

si
s

cosn

p
p p p p

   
          

  

     
      

  

& &&   (3.20) 

Here, 2 2 2
1 1 2 2 3 3 4 4, , , ,               and 2 .c   Since the nondimensional temporal 

equation contains many nonlinear terms, the approximate solution of the above equation is car-
ried out using  method of multiple scales as one of the perturbation method. The displacement 

is expressed in term of various times scales such as 0 1 2, ,T T T  and can be written in the follow-

ing form:   

     2
1 0 1 2 2 0 1 2 3 0 1 2, , , , , , .p p T T T p T T T p T T T           (3.21) 

Here, 0 1  , ,T T     and 2
2T    are different time scales and hence, p is determined as a 

function of these time scales instead of τ. Using chain rule, time derivatives in terms of 0 1, ,T T  

and 2T   become;  
2

0 1 2/ / / / ,d d T T T           and 

    2 2 2 2 2 2 2 2 2
0 0 1 0 2 1/ / 2 / 2 / / .d d T T T T T T                    (3.22) 

Substituting Eqs. (3.21)-(3.22) into Eq. (3.20) and equating the coefficients of the same 
powers of ε and yields the following equations:    

 0 :O   2 2 2
1 0 1/ 0.p T p             (3.23) 

 1O ε :        2 2 2 2
2 0 1 0 1 2 3 1 2 1 0/ 2 / cos cos 2 / 0.p T p T T p p p T                   (3.24) 

 O ε2 :  
   

       

2 2 2 2 2 2 2
3 0 3 2 0 1 1 1 1 0 2

3 2
2 1 1 1 2 2 1 1 1 0 4 2 0

/ 2 / / 2 /

2 / / cos sin cos 0.

p T p p T T p T p T T

p p T p T T T



    

              

           
   (3.35) 
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The general solution of Eq. (3.23) can be expressed as:  

       1 1 2 0 1 2 0, exp , exp .p A T T i T A T T i T           (3.26)  

Here,  1 2T ,TA  is the complex conjugate of  1 2,A T T . Putting Eq. (3.26) into Eq. (3.24) 

gives:
     

        

2 2 2
2 0 2 1 0 0

3 2 0 2 0

/ T + = 2i / T exp i T 2i exp i T

e i T exp i T cos .

p p A A

A A cc

    

   

      

    
    (3.27) 

Here, cc stands for the complex conjugate.  

3.3.3 Case I: subharmonic resonance   2 2   

Using similar procedures as explained in [Hamed et al., 2018] & [Pratiher and Dwivedy, 2011], 

and substituting 2 12     into Eq. (3.25), and eliminating the terms proportional 

to  0exp i T and  0 exp i T  , that leads to the secular terms, one may obtain the following 

equation: 

      1 2 1 12 / 2 cos /2 exp .i A T i A A i T              (3.28) 

Therefore, the particular solution of Eq. (3.25) yields: 

       2 2 2
2 2 2 2= cos /2 exp .p A i       

  
      (3.29) 

Similarly, for the response 3p , the following expression is obtained: 

     

      

         

2 2 2 2 3
3 0 3 1 1 1 0 2 0

2 2 2
2 1 1 1 0

2 2 2
3 2 2 2 0

/ T + = Ω /2 exp +α exp 3i T

2i / T + / T 3 A 2 / exp i T

cos /2 exp +cc.

p p i T A

A A A A T

A T

  

   

     

   

        

     
 

     (3.30) 

On elimination of the secular terms, one may obtain the following expression: 

        
22 2 2 2

2 3 3 1 1 1 22 / /16 /4 exp 3 .i A T A A cos A i T A A               
  

  (3.31) 

Now, expressing the governing equation in terms of original time variable   by substituting 

Eq. (3.28) and Eq. (3.31) in 2
0 1 2/ / / /dA d A T A T A T           , one can obtain:  

     
        

22 2 2 2 2
3

2 2 2
3 3 1 1 1 2

2 / 2 cos /16

cos /2 cos /4 exp 3 0.

i A i A

A i T A A

       

        

       

   

    (3.32) 

Now,  A   is expressed in polar form equal to      1i
11 /2 a e

 
 , where  1a   and 

 1   are the amplitudes and phase angle of the response. With substitution of  A into Eq. 

(3.32) and separating real and imaginary parts, one may obtain the following autonomous 
equations as below.  

        2
1 1 3 3 1 1 1/ /4 /8 sin 0,a a cos cos a                  1 1 1 12 2 ,T      

 
   

      

22 3 2 2 2 2 2
1 1 2 1 3 1

1 1
2

3 3 1 1 1

/2 3 /8 cos /16 /2
/ .

cos /4 cos /8 cos

a a a
a

a

         
  

       

 
   

 
    

 
 

   (3.33) 

Eq. (3.33) describes the modulation of the amplitude and phase of the free oscillation term. The 
first order solution in terms of original time variable  can be expressed as 

            2 2 2
1 2 2 2 1 2 2 21/2 cos /2 cos /4 cos 3 /2 .p a a O                

  
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For obtaining steady-state response, 1 /a    and 1 /    are set to zero. By eliminating 1   

from the resultant equations yieldrenders a frequency response equation in terms of 1a  and 1 . 

The stability of the steady-state solutions  10 10a ,  is determined by superposing a perturba-

tion  11 11a ,  on the fixed points as 1 10 11 ,a a a    1 10 11    and investigating the eigenval-

ues of the Jacobian of the resultant linearized equations.  

 
   

   
    

1 10 1 10 10

2
0 0 2 0 1 10 0 1 10

sin / cos /

/ 9 /8 / cos / sin /

Q Q a
X X J X

a a Q a Q a Q

    

       

  
  

     

&   

Here,  

    2
1 3 3 1cos /4 cos /8Q          , and    22 2 2 2 2

2 3/2 cos /32 .Q           (3.34) 

The elements of the Jacobian [ J ] are functions of equilibrium points  10 10a , which satisfy the 

steady-state equations. It may be noted that the steady-state solutions of Eq. (3.33) are stable 
only if the real part of the eigenvalues of Jacobian matrix [ J ]are negative. 

3.3.4 Case II: combined resonance  2 12 ,      

Considering similar procedures explained in the previous sub-section, one may obtain the fol-
lowing autonomous equations. 

            2 2
2 2 3 3 2 2 2 1 1 2/ cos /4 cos /8 sin 2 /2 sin 0,a a a                      

  

 
   

        

22 3 2 2 2 2 2
2 2 2 3 2

2 2
2 2 2

3 3 1 2 2 1 1 2

3 /8 cos /16 /2
/ .

cos /4 cos /8 cos 0.5 cos

a a a
a

a

         
  

           

 
   

 
    

    
 

(3.35) 

Here, 2 2 1 2 .T     The stability of the steady-state solutions of Eq. (3.35) can be determined 

by understanding the nature of eigenvalues of Jacobian matrix [ J ] following a similar proce-
dure as explained in section 3.1.3. If all the eigenvalues are found to be negative, the steady-
state solutions are stable. 

3.3.5 Numerical results and discussion 

a) Modal analysis: eigenspectrums 

First, the effect of decision variables on the determination of eigenfrequencies and asso-
ciated eigenfunctions have been critically studied and graphically demonstrated. First five ei-

genfrequencies with actuator mass  ma  has been computed and shown in Table 3-1 while 

other parameters are kept constant. Eigenfrequency without actuator mass ma  has been com-

puted and compared with the others. The comparison has further been made with the eigen-
frequencies calculated by considering zero actuator mass. It is noticed that the eigenfrequency 
decreases as the actuator mass parameter increases. Adding actuator mass to that ofwith the 
flexible link, increases the overall inertia of the moving components gets increased and as a re-
sult, the eigenfrequency is found to be decreased. 

In next section of table, the 1st column  a 0   represents the rigid actuator condition 

and has been calculated by [Coleman and McSweeney, 2004] for the rollerR-free (R-F) beam 
condition and similarly, other parameters in the reference can be evaluated by actuator mass 

variation keeping a   and offset (c) equal to zero. The increase in actuator frequency parame-
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ter  a , indicates the increase in stiffness of the actuator. It is evident from the table that the 

eigenfrequencies increase with the addition of stiffness to the system. Hence, the eigenfrequen-
cy varies with the condition of actuator whether it is rigid or flexible. 

 

 

  Table 3-1 : Variation of eigenfrequencies with system parameters 

The variation of eigenfrequencies with actuator mass parameter 

 ma 0   
 a 0.5  ,  0  ,  I 0.5  ,  c 0.5  , mC 0.5    

 ma 0.5    ma 1.0    ma 5.0   

1.0717 1.0505 1.0372 1.0030 

2.9493 2.6548 2.5337 2.3262 

5.8357 5.3959 5.2830 5.1434 

8.8772 8.3422 8.2453 8.1413 

11.9644 11.3751 11.2938 11.2131 

The variation of eigenfrequencies with joint frequency parameter 

  ma 0.5  ,  mC 0.5  ,  I 0.5  ,  c 0.5  ,  0   

 a 0.0    a 0.5    a 1.0    a 2.0   

2.3650 1.0505 1.0718 1.1636 

5.4978 2.6548 2.9493 4.6519 

8.6393 5.3959 5.8357 7.8669 

11.7809 8.3422 8.8772 11.0246 

14.9225 11.3751 11.9644 14.1684 

The variation of eigenfrequencies with offset mass and offset moment of inertia parameters 

 c 0.0  ,  ma 1.0  ,  a 0.5 ,  0    

mC   

0.1 0.5 1.0 5.0 

I  =0.1 

1.5872 1.4669 1.3924 1.2567 

2.8399 2.7479 2.7082 2.6572 

5.5223 5.2547 5.1593 5.0503 

8.4970 8.2038 8.1216 8.0386 

11.5388 11.2577 11.1906 11.1272 

I  =0.5 

1.1603 1.1345 1.1144 1.0668 

2.6182 2.4052 2.2947 2.1265 

5.4893 5.2038 5.1019 4.9856 

8.4872 8.1900 8.1069 8.0232 

11.5346 11.2523 11.1850 11.1214 

I  =1.0 

0.9877 0.9763 0.9669 0.9436 

2.5890 2.3540 2.2276 2.0257 

5.4852 5.1975 5.0949 4.9777 

8.4859 8.1883 8.1051 8.0213 

11.5341 11.2516 11.1843 11.1206 

The variation of nondimensional eigenfrequencies with offset ratio 

 mC 0.5  ,   ma 0.5  ,  a 0.5  ,  0   

c   

I  =0.0 I  =0.5 

0 0.25 0.5 0.0 0.25 0.5 

1.7394 1.4981 1.3152 1.1427 1.1008 1.0504 

4.4625 3.71372 3.3810 2.5315 2.5942 2.6548 
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7.4444 6.3882 6.1239 5.3183 5.3499 5.3958 

10.4968 9.2827 9.0843 8.2878 8.3074 8.3421 

13.5828 12.2802 12.1250 11.3340 11.3477 11.3750 

The computation of eigenfrequencies with respect to payload mass  mC  and inertia 

 I  are also shown where the payload mass and inertia parameters are varied from {0.1 to 5}, 

and {0.1 to 1}, respectively. It is noteworthy that, as the payload mass increases  mC , the ei-

genfrequencies decrease. Similarly, with increase in payload inertia  I , the decrease in eigen-

frequencies is observed. This is due to fact that with increase in payload mass or inertia, overall 
effective inertia gets increased which in turn decreases the eigenfrequencies. In last section, the 

effect of offset length  c  on eigenfrequencies with and without payload inertia has been 

demonstrated. Without payload inertia  I , all the eigenfrequencies decrease with offset 

length  c . With payload inertia  I , lower eigenfrequencies are found to be decreasing while 

higher eigenfrequencies tend to increase with increase in offset length. The first column of this 
section represents the point payload condition. The eigenfrequencies tend to decrease with off-
set length if the payload inertia parameter is considered as zero. However, as soon as the pay-
load inertia is included in the system, only the lower eigenfrequencies tend to decrease and 
higher eigenfrequencies tend to increase with offset parameter. It is owing to the fact that the 
inertia parameter has a tremendous effect on the higher eigenfrequencies and hence the fun-
damental mode should be controlled in order to achieve more accurate positioning of a heavy 
payload.  

     

Fig. 3.2: Variation of first four mode shapes of Cartesian manipulator with payload mass  mC (a) mode 1 (b) 

mode 2 (c) mode 3 (d) mode 4. 
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The normalized eigenfunctions corresponding to the eigenfrequencies have been plot-

ted showing the influence of the offset payload mass  mC  in Fig. 3.2. The comparison has 

been made with the zero payload condition    0mC . With increase in payload mass  mC , 

the mode shapes tend to spread out along its length while a little effect on the amplitude is 
found at the roller supported end. The shifting of node points towards the payload end is no-

ticed as the payload mass parameter  mC is increased. 

 

The effect of actuator mass  ma  and payload inertia  I  on the system mode shapes 

is seen through the Fig. 3.3. With increase in actuator mass, displacement at the roller-
supported end decreases while at the payload end, amplitude tends to clutter together. It has 
been observed that for higher modes of vibration, the link tends to behave like a beam clamped 
at the roller supported end. It is also evident that, there is negligible effect of payload inertia on 
the lower modes of vibration. However, for higher modes of vibration, the increase in payload 
inertia increases the amplitude of the manipulatorshifts the node towards the free end of the 
manipulator. 

  
Fig. 3.3: Variation of mode shapes of Cartesian manipulator with (a) actuator mass  ma and (b) payload iner-

tia  I .  

An actuator frequency parameter  a equal to zero represents the case when the actua-

tor is assumed to be rigid. The mode shapes corresponding to the non-zero value of a   is 

compared with it in Fig. 3.4. As The amplitude increases as the actuator frequency parameter 

 a increases until unit magnitude   a 1.0 , i.e., when the actuator mass–spring frequency 

equals the system frequency and hence, the actuator dynamics gets decoupled from the manip-

ulator the node shifts to the payload end. If the frequency parameter  a  increases further,  

actuator end experiences a large deflectionthe amplitude suddenly.  
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Fig. 3.4: Variation of mode shapes of Cartesian manipulator with (a) actuator frequency parameter  a   and 

(b) offset ratioc .  

The influence of offset ratio  c , i.e., ratio between the offset length and the length of 

the link on the eigenfunctions has also been shown in Fig. 3.4. The manipulator deflection de-
creases as tends to decrease as the offset ratio  increases for the lower vibration modes. Howev-
er, for the higher modes of vibration the node shifts towards the actuator end as the payload 
offset  is increased. The influence of axial motion on the mode shapes of the manipulator has 
been shown in Fig. 3.5 . The effect of axial motion is observed to be significant on the mode 
shapes when the large mass parameter is considered on either ends of the link. 

 

Fig. 3.5: Influence of axial motion on the mode shapes of Cartesian manipulator. 

b) Nonlinear analysis: bifurcation and stability 

In previous section, the influence of various system parameters on the eigenfrequencies and 
subsequent eigenfunctions prior to the investigation of the dynamic behavior of the flexible 
manipulator is demonstrated. The computation of modal parameters always guides the design 
engineer to select the appropriate operating conditions in order to avoid resonance condition 
that causes the unwanted excessive vibration and noise. The system here undergoes primary 
resonance condition when the frequency of the harmonic base motion becomes nearly equal to 
the system’ normalized natural frequency. In addition, the manipulator experiences subhar-
monic resonance condition when the frequency of the pulsating constraint axial force becomes 
nearly double of the manipulator frequency. A pictorial representation has been developed to 
study the effect of offset parameters onto the system dynamics and associated vibrations. For 
this simulation, the beam element with length L= 0.35 m0.3m, width b = 0.3 m, thickness h 
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=0.003 m, mass-density ρ = 7800 kg/m3, Young’s modulus E=2E =.1x1011 N/m2210 GPa, 

damping parameter    as 0.01, amplitude ratio  0  as 0.05, small dimensionless parame-

ter as 0.1, force parameters 0F  and 1F   as 0.001 have been considered. Fig. 3.6 depicts a fre-

quency response curves for the subharmonic (I) and combined resonance (II) cases showing the 
vibration amplitudes with forcing frequency. In all the figures solid and dashed lines represent 
stable and unstable solutions, respectively. In both the cases, due to the presence of nonlineari-
ties, multiples solutions are observed resulting in jump phenomenon. Here multiple solutions 
are observed with an existence of pitchfork bifurcation for sub-harmonic resonance case while 
saddle-node bifurcation for combined resonance case. For sub-harmonic condition, the system 
experiences the sudden jump phenomena at sub-critical pitchfork bifurcation (G). For the fre-
quencies beyond point G, the system exhibits multiple solutions where the actual response is 
decided by the initial conditions. Below the super-critical pitchfork bifurcation (D), the system 
always vibrates with negligible amplitude. The system only undergoes trivial responses when 
it is operated at points A and F, while at other points, manipulator experiences both trivial and 
nontrivial responses. 

In the unstable region (D-G), i.e., sub-critical and super-critical pitchfork bifurcation, the 
manipulator vibrates with amplitude lying on the upper branch of frequency response curve 
since the trivial solution is found to be unstable. In the second case of combined resonance, 
both jump down and jump up phenomena have been observed respectively from J or M, based 
on the condition of sweeping up and down from the respective starting points. The amplitude 
of the system between the unstable region, i.e., between J and M shall be decided by initial con-
ditions. Hence, repeated occurrence of this jump phenomenon may often lead to fatigue failure 
for the present system or similar ones. 

  

Fig. 3.6: Frequency response characteristics of Cartesian manipulator (a) Subharmonic resonance (b) Com-
bined primary-subharmonic resonance. 
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Fig. 3.7: Analytical (a) numerical (b) time response and phase portrait , FFT (c) of critical points A, B, and C 
identified in Fig. 3.6. 

Numerical simulation to compute time responses, phase portraits, and Fourier spectrum 
at critical points are carried out by numerically solving Eq. (3.18) and are compared with the 
findings depicted in Fig. 3.7 using method of multiple scales. These results are found to be in 
good agreement.  

For the no payload condition, the effect of offset payload  mC  on the frequency re-

sponse curves has been demonstrated in Fig. 3.8. The behavior of the manipulator is observed 
to suddenly shift from spring softening to hardening with the payload mass in both cases up to 
0.5. With further increase in payload mass from 0.5 to 1.5, the amplitude starts increasing for a 
specific forcing frequency. The unstable region of sub-harmonic case also suddenly increases 
with increase in payload mass. 

  
Fig. 3.8: Effect of payload mass parameter  mC  on the frequency response curves (a) Subharmonic reso-

nance (b) Combined primary-subharmonic resonance. 

(a) (a) (b) (b) 
(c) 
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The behavior of nonlinear responses has been noticed to shift from spring hardening to soften-

ing with the actuator mass parameter  ma  in both the resonance cases as shown in Fig. 3.9. 

For a small actuator mass  ma , the maximum amplitude increases for a specific excitation fre-

quency with a negligible change in unstable regions. Influences of payload inertia  I  on fre-

quency response curves have been shown in Fig. 3.10. It is evident that the amplitude of vibra-
tion increases with payload inertia for a fixed forcing frequency. Actuator frequency parameter 

 a represents the stiffness of actuator and has been varied to investigate its significance on 

dynamic behavior as depicted in Fig. 3.11. The vibration amplitude decreases significantly with 
increase in stiffness of the actuator and also affecting the unstable region in both the cases.  

  

Fig. 3.9: Effect of actuator mass parameter  ma  on the frequency response curves (a) Subharmonic reso-

nance (b) Combined primary-subharmonic resonance. 

  
Fig. 3.10: Effect of payload inertia parameter  I on the frequency response curves (a) Subharmonic reso-

nance (b) Combined primary-subharmonic resonance. 

(a) 
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Fig. 3.11: Effect of actuator frequency parameter  a on the frequency response curves (a) Subharmonic res-

onance (b) Combined primary-subharmonic resonance. 

It is observed in Fig. 3.12, the system exhibits a typical softening behavior for point pay-

load    0c . It is noteworthy that the behavior changes to spring hardening from the spring 

softening when the center of gravity of the payload is moved further away from the point of 

attachment. Amplitude of vibration is found to be decreased with increase in offset ratio  c   

for a specific forcing frequency. 

   
Fig. 3.12: Effect of offset ratio  c on the frequency response curves (a) Subharmonic resonance (b) Com-

bined primary-subharmonic resonance. 
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Fig. 3.13: Effect of rotating frequency     on the frequency response curves (a) Subharmonic resonance (b) 

Combined primary-subharmonic resonance. 

   
Fig. 3.14: Effect of amplitude of axial force and base motion on the frequency response curves (a) Subharmon-

ic resonance (b) Combined primary-subharmonic resonance. 

It is noticed in Fig. 3.13 that the jump length and unstable region of the system has been 

started increasing with the increase in rotating frequency   resulting in the increase of maxi-

mum amplitude of the system. The influence of the amplitude of harmonic force  1F and base 

motion  0  on the respective frequency response curves for subharmonic and combined reso-

nance condition is described in Fig. 3.14. In both the cases, the unstable regions and vibration 
amplitudes increase significantly with the forcing amplitudes. 

3.4 SINGLE-LINK FLEXIBLE MANIPULATOR WITH REVOLUTE HUB 

A deflected configuration of a flexible robotic manipulator modeled as Euler-Bernoulli beam 
with revolute hub incorporating a generic offset payload mounted on a moving platform 

    t , t  is shown in Fig. 3.15. The manipulator is subjected to a harmonic revolute motion at 

the hub end and generic payload has been attached at the distal end. The hub is modeled as a 
linear spring-inertia system. In this section, the large deformation model of the flexible single-
link manipulator with rotary joint is considered. Further, eigenespectrums are calculated to fur-
ther facilitate the nonlinear analysis of the manipulator with harmonic revolute joint motion to 
investigate the influence of payload and hub parameters. 
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Fig. 3.15: Schematic diagram of (a) flexible manipulator with (b) revolute hub incorporating a generic payload 
mounted on moving base. 

The kinetic energy  totalT of the overall system due to inertia of the link, payload, actua-

tor, and joint is expressed as:  
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Similarly, the total potential energy of the manipulator  totalU is composed of the elastic bend-

ing for large deformation, axial deformation, and torsional spring deformation are given as: 
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The rotation speed (Ω) is neglected from Eq. (3.33) to obtain the general point and center of 
gravity of payload.  

3.4.1 Governing equations 

Substituting Eqs. (3.36)-(3.37) into       
2
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the work done by torque applied at the joint and  ncW  is the non-conservative word done by 

structural damping  dc , to further derive the equations of motions and corresponding bounda-

ry conditions in axial and transverse directions along with rotational motion of the hub as:  
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  (3.42) 

The derived equations of motion and boundary conditions represent a flexible mobile 
robotic manipulator consisting of a flexible link, flexible rotating hub, a generic payload, mov-
ing platform and geometric nonlinearity. In the modal analysis, the coupled nonlinear and 
damping terms from Eqs. (3.38)-(3.42) are neglected. It can be observed that the linear bounda-
ry conditions in transverse and axial direction are coupled if the offset becomes non-axial to the 
axis of manipulator. Now, the transverse and longitudinal deflections of the manipulator in 

terms of a new function in space and time are established as,  ,r x t  and    ,s x t  

as      , ,r x t w x t t x      and        , ,s x t u x t t  , respectively. Here   ,w x t ,  ,u x t , and 

θ represent transverse, longitudinal,  and joint motion, respectively imparted as harmonic func-
tion of system frequency.  

     , cos ,n
ms x t U x t       , cos ,n

mr x t W x t     0 cos .mt t       (3.43) 

Here,  nU x  and  nW x   represent the longitudinal and transverse eigenfunction, respective-

ly, 0  as angular rotational amplitude and m  is unknown eigenfrequency of the whole sys-

tem. By substituting Eqs. (3.43) into equations of motion in longitudinal and transverse direc-
tions; after solving the equation, the nth longitudinal and transverse mode shapes of the manip-
ulator similar to those given in Eq. (3.10) are obtained. Six algebraic equations in terms of inte-

gration constants  1 4 1 2.... , ,
n

S S R R  by following the procedure explained in section 3.1.1 are 

obtained and the resulting equations are expressed in matrix form whose coefficients are given 
as:  
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mC c IN                   

              
2 3

2
23 cos cossi cn sin ,osn n n n n n

m c c
n

C IN                   
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              
2 3

2
24 sinh sinh ,cosh cos coshn n n n

c
n n n

mC c IN                  

         
2 2 2

25 26cos , sisin sin n ,n n n n
mC mc C cN N           

   
    

   
 

31 32 ,n
mhN N        34 1,N     

        

          

2

41 cos sin 1 / sin

cos sin 1 cos cos ,

n n n n n n
I

n n n
m c c cC

N       

        

    

  

  

          

          

2
2

43 sin cos / cos 1

cos cos 1 cos sin ,

n n n n n n n
I Ih h

n n
m c cC c

N         

        

     

  

 

          

          

2
2

44 cosh sinh / cosh 1

cos cosh 1 cos sinh ,

n n n n n n n
I Ih h

n n n
mC c c c

N         

        

     

  

  

       
2 2

45 46sin cos , sin sin ,n n
c cmC mCN N        

   
      

   
  

           
3 3

51 52sin sin , sin sinh ,n n n n
m cC c mCN N                 

           
3 3

53 54sin cos , sin cosh ,n n n n
mC cmCcN N               

     
2 2 2

55 sin cos ,n n n
mCN       

   
     

   
 

     
2 2 2

56 cos sin ,n n n
mCN       

   
    

   
 

 
2

65 ,n
mhN    15 16 35 36 61 62 63 64 0,N N N N N N N N         33 66 1.N N     (3.44)                                         

The above elements have been expressed using the nondimensional parameters given in 

Eq. (3.11) along with 3/ ,Ih hI AL   / ,mh hm AL    and   2/ / .h h mk I   The determi-

nant of the coefficient matrix i.e.,   0,ndet N    yields a transcendental equation known as 

eigenfrequency equation in terms of known dimensionless parameters. The mode shapes of 

manipulator are obtained by using the constants  2 4 1 2.... , ,
n

S S R R  in Eq. (3.10) which are re-

structured by expressing the coefficients in term of 1
nS of unit magnitude. 

3.4.2 Position analysis  

Rotational flexible robot has been assumed to have a smooth sinusoidal torque input of unit 
amplitude with a duty cycle of 2 seconds for a simulation period of 3 seconds to investigate the 
effect of offset parameters on its responses. The objective is to compute performance parame-
ters i.e., overshoot and settling time that are effectively used to understand the controllability 
issues of flexible manipulators. It is essential to examine the influence of system parameters on 
the tip position to further develop effective control algorithms for a desired output. Hence, us-

ing assumed mode method       1,w x W x q t    and Eqs. (3.38) & (3.42), the dynamics of the 

link-hub system can be expressed in the form of matrices   ,M    ,C   ,K  and  F t   , respec-

tively representing the inertia, Coriolis and centripetal components, stiffness matrix and force 
vector as: 

https://en.wikipedia.org/wiki/Overshoot_(signal)
https://en.wikipedia.org/wiki/Settling_time
https://en.wikipedia.org/wiki/Stability_theory
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       , , , , , .M q q C q q q K q q F t                  
& && &&&          (3.45) 

3.4.3 Nonlinear forced vibration analysis 

Similar to the linear analysis, here also the task to depict the effect of offset parameters on the 
system dynamics of a large deflection model of flexible manipulator with revolute joint is un-
dertakenis examined. Considering the harmonic motion being imparted at the hub along with 
in-extensibility condition to highlight the longitudinal deformation as 

     
2

0

, 1 /2 /

x

u x t w x d    , one may obtain the following equation of motion: 

   

 

  

2 2
1 1 2

0 0 0

2 2 2 2 2

0 0 0

2
1 2

0

[ 2 2

0.5 0.5 (

)]

x L x x

x

x x x

L x

d

x

A w w w x w w d w w w w d d w w d

w d w w w w d x w w w d

w w d d EI w w w w c w

     

    



        

      

 

 



 
        
 
 

     

   



    
  

 

  

  



&& & & && & &&& &&

&& && && & &

&

&

0.

  (3.46) 

Here, w  represents the differentiation of w with respect to . Using the dimensionless param-

eters: 4w = w L x = x L, = L τ = t EI ρAL 1 1, , ,  and c = c L ρAEI2
d  , one may obtain the fol-

lowing dimensionless temporal equation of motion as: 

     

 

1

2 2 2
1 2

0 0

2 2
1

0 0 0

1

2 2 2
1 2

0 0

2 2 0.5

0.5 0.

x x

x

x x x

x x

x

w w w w cw w x w w w w w d w w w w d d

w w x w w d w w d w d

w w d w w d d

    

   

 

    

       

   

 
          

 

 
        
 
 

 

    



   
 



 

 

  

 

&& && && & && & &&

&& & & & &&& &

&

 (3.47) 

The spatio-temporal Eq. (3.47) is then discretized into dimensionless temporal equation 

using Galerkin’s method by replacing (x,τ)w  with    rψ x τp  where r,  ψ x  ,  τp  are the scal-

ing factor, admissible function obtained by satisfying associated boundary conditions, and time 
modulation, respectively. Further, applying the orthogonal property of the mode shapes, one 
may obtain the governing temporal equation of motion of manipulator after ordering the terms 
as:  

          
      

p p p p pp pp p pp

p p

          

      

      

   

2 3 2 2
1 2 3 4 5

2 3 2
6 7 8

2 cos sin

sin cos sin 0.

&& && && &
   (3.48)  

The above equation is found to be highly nonlinear, thus, approximate solution is highly antic-
ipated and this closed form approximate solution to the Eq. (3.48) is sought here by exploring 
the method of multiple scales where, the displacement has been expressed in terms of various 

times scales such as T = τ , n
n  (n = 0, 1), in the following form: 

   1 0 1 2 0 1, , .p p T T p T T            (3.49) 

Now, p is determined as a function of these time scales instead of  . After substituting, the co-
efficients of the same powers of ε are equated to obtain the following equations: 
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 1 :O  2 2 2
1 0 1  / 0p T p              (3.50) 

 2O ε :

     

         

   

22 2 2 2 3
2 0 1 0 1 2 1 0 1 1 2 1 1 0

2 2 2 2 2
3 1 1 0 4 1 0 5 1 1 0 0 6 1 0

3 2
7 0 8 1 0

/ 2 / 2 / /

/ cos / sin sin

cos sin 0.

p T p T T p p T p p p T

p p T p T p p T T p T

T p T

  

      

   

             

       

  

  (3.51) 

The general solution of Eq. (3.50) can be expected as:  

       1 1 0 1 0exp exp .p B T i T B T i T             (3.52) 

Substituting Eq. (3.52) into Eq. (3.51) gives: 

       

         
        

 

2 2 2 3
2 0 2 1 0 0 1 0

2 3 2 2 3 2
2 0 0 3 0 0

2 2
7 0 4 0 0 0

2 2
5 0

/ T + Ω  2i Ω / T exp 2 i Ω  Bexp exp 3

Ω  exp 3 exp Ω exp 3 3 exp

0.5 exp 0.5 exp 2 exp 2 2 exp

0.5 Ω  exp 2 exp

p p B i T i T B i T

B i T B B i T B i T B B i T

i T B i T B i T BB i T

B i T B i

 

 

     

  

         

        

       

          

       
         

3 2
0 8 0 0

3 3 2
0 0 0

2
1 0 6 0 0 0

2 exp 3 3 exp

0.5 exp 3 2 exp 2 3 3 exp 2

3 exp 0.5 exp 0.5 exp 2 exp 2 0.

T B i T B B i T

B i T B i T B B i T

B B i T B i T B i T B i T cc



  

   

      

        

         

            (3.53) 

Any solution from the above equation may lead to an unbounded solution when the 
small divisor and secular terms are being included in the solution. The terms associated 

with  0exp i T   ,   0 exp 2 3i T   , and   0exp 2i T    are known as small divisor and 

secular terms. These terms needed have to be eliminated in order to obtain any bounded or fi-

nite solution. It may be observed that these terms exist when ω nearly equals either to  ,   i.e., 

simple resonance condition, or 3 , i.e., sub-harmonic condition. These two cases are studied in 
the following sub-sections in detail. 

3.4.4 Primary resonance case:      

Nearness of   to   is expressed as 1  by using detuning parameter σ1  for primary reso-

nance condition, i.e., rotating frequency    becomes nearly equal to normalized natural fre-

quency of the system   . Replacing ω with 1   into Eq. 

Error! Reference source not found., yields an equation involving both secular and non-secular 
terms. In order to obtain the bounded solution of the Eq. (3.53), the terms proportional to 

 0exp i T   leading to secular terms in the particular solution are eliminated as: 

   
       

       

2 2 2
1 1 2 3 8 6

2
4 5 1 1 4 7 1 1

2 3
6 8 1 1 8 1 1

2i Ω  / T 2 Ω  3 Ω  3 Ω  3 /2

/2 Ω /2 exp /2 exp

/4 3 /2 exp 2 / 4 exp 2 0.

B i B B B B

B i T BB i T

B B B i T B i T

     

     

    

        

    

   

    (3.54) 

Now substituting  1B T  in polar form as      1 1
1 11 /2

i T
B b T e


  and separating real and imagi-

nary terms, one may obtain following reduced autonomous equations: 
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           

   

2 3 2
1 1 4 5 1 1 8 1 1 4 1 7 1

3
6 1 8 1 1

b /8 /8 sin /16 sin 2 / 4 /2 sin

/8 3 /16 sin 2 0,

b b b b

b b

        

  

         

  


 

      

           

b b b b b

b b b b

         

       

             





   

2 2 3 2
1 1 1 1 1 2 3 8 1 6 1 4 5 1 1

2 3 3
4 1 7 1 6 1 8 1 1 8 1 1

3 3 3 /8 / 4 /8 /8 cos

/ 4 /2 cos /8 3 /16 cos 2 /16 cos 2 0,
  

1 1 1 1.T                (3.55) 

However, the first order solution for the time responses of manipulator in terms of original var-
iable τ is given as. 

     1 11 /2 cos .p b O                (3.56) 

The stability of the steady-state solutions of Eq. (3.55) is investigated by examining the eigen-
values of the Jacobian matrix [ J ] as explained in section 3.1.3. The elements of the matrix [ J ] 
are given as: 

           2
11 4 5 10 10 6 10 8 10 10/4Ω /4 /8 Ω sin 2 3 /4Ω nin i ,s s 2J b b               

           

   

2
12 4 5 10 10 7 10 6 10 10

3
8 10 10

/8 Ω  /8 cos /2 Ω cos /4 Ω cos 2

/ 4Ω cos 2 ,

J b b

b

      

 

     

     

       

2 2
13 2 10 1 2 3 8 10 6 10 4 5 10

6 10 10 8 10 10

/ 3 3 Ω  3 Ω  3 /8Ω /4 Ω 3 /4 Ω Ω/4 cos

/8 Ω cos 2 3 /4Ω cos 2 ,

J b b b

b b

        

   

       


  

           

   

14 4 5 10 10 7 10 10 6 10

2
8 10 10

3 /8 Ω  Ω /8 sin /2 Ω sin /4Ω sin 2

/2 Ω sin 2 .

J b b

b

      

 

    
  (3.57) 

3.4.5 Subharmonic resonance case:  3Ω     

Using a procedure identical to that discussed in the previous section, one may obtain the fol-
lowing reduced equations in autonomous form.   

      2 2 3 2
2 2 2 2 1 2 3 8 2 6 2 4 5 2 23 3 3 3 /8 3 /4 3 cos 8 0,b bb b b                      

   2
2 2 4 5 2 2  /8 /8 0.sinb bb                  (3.58) 

The first order nontrivial solution for the time response of manipulator is given by  

     2 21 /2 cos /3 .p b O               (3.59) 

For the steady-state condition, the left hand side of Eq. (3.58) becomes zero and the system ren-

ders both trivial  2 0b  and nontrivial  2 0b   solutions and the frequency response equation 

can be obtained by eliminating the phase  2  from the resulting equations. The stability of 

nontrivial solutions is then investigated by similar procedure as explained in previous section. 

3.4.6 Numerical results and discussion 

a) Modal analysis: eigenspectrums 

The modal parameters as a pre-requisite to further characterize the resonant vibration in ma-
chinery and structures are computed. Usually, any mode of vibration is defined by the modal 
parameters, i.e., natural frequency, mode shape, and modal damping. Hence, estimation of 
those parameters is important in understanding of the overall dynamics of the system. Fig. 
3.16-Fig. 3.17 show the characteristics behavior of eigenfrequency with system parameters. 
Here, eigenfrequencies and corresponding eigenfunctions have been evaluated by considering 
both transverse and axial deformation. From Fig 3.16, it is evident that the eigenfrequency de-
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creases as the payload mass  mC  increases. Similarly, for a specific value of payload mass, the 

system eigenfrequencies decrease with increasing of payload inertia  I  .  

   
Fig. 3.16: Variation of eigenfrequencies with (a) payload mass and (b) inertia parameters for mh  =1.0,  Ih  =1.0,  

h  =0.5, c  =0.5,  
030 .   

It is also observed that the eigenfrequency decreases when the hub mass  mh  and in-

ertia   Ih  of rotating hub are increased. The eigenfrequencies for the R-F beam calculated by 

[Coleman and McSweeney, 2004] can also be determined from the present model by eliminat-
ing the dynamics of hub, payload and axial deformation. With these observations, it is evident 
that with increase in mass and inertia of payload or actuator, increases the overall effective in-

ertia of the system and as a result, the natural frequency gets decreased  n
K

M
  with in-

crease in all those parameters.  

The effect of offset-ratio  c  and hub frequency parameter  h  on the eigenfrequen-

cies can be inferred from Fig. 3.17. It is observed that only the higher eigenfrequencies increase 

with the increase in offset ratio  c  . Hence, it becomes imperative to control the lower eigen-

frequencies for efficient control of manipulator to achieve the desired position when the ma-
nipulator is lifting a payload which is having its centre of gravity different than the terminal 

point of the link. The hub frequency parameter  h  is varied by regulating the value of the 

stiffness of actuator while keeping all other parameters constant. It is noticed that for the lower 

value of hub stiffness  h 1  , the eigenfrequencies are found to be increased. A sudden jump 

is observed when the rotating frequency becomes equal to that of fundamental natural frequen-

cy  h 1  . With further increase in frequency parameter, natural frequency appears to be re-

main constant.  

The eigenspectrums of first two modes of vibrations for four different models of flexible 
link manipulator are compared in Fig. 3.18. The first case corresponds to the mode shape ob-
tained in [Coleman and McSweeney, 2004] for R-F beam case; second case represents the condi-
tion when the dynamics of the hub is neglected; in the third case the axial motion of the manip-
ulator is neglected but include the hub motion; and finally the manipulator is described consid-
ering the axial as well as the hub motion of the link. It can be concluded that the consideration 
of axial motion in the analysis significantly increases the amplitude of the end-effector in all 
modes of vibrations. 

(a) (b) 
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Fig. 3.17: Variation of eigenfrequencies with (a) offset ratio and (b) joint frequency parameter for mC  =1.0, I  

=1.0, mh  =1.0,  Ih  =1.0,  
030 .  

   
 

Fig. 3.18: Comparison of mode shapes for four different models (a) mode 1 (b) mode 2. 

 Variation of mode shapes of manipulator with payload mass is shown in Fig. 3.19 and 
it is observed that the node shifts towards the payload end with the increase in payload mass 

 mC  and effect of payload is significant in case of first mode of vibration. It can also be no-

ticed that the payload leads to the significant deflection as compared to zero payload condition; 
this is because of the fact that the axial motion gets decoupled from the transverse vibration for 

zero payload. It is obvious from the Fig. 3.20 that the increase in hub mass  mh  significantly 

increases the deflection at actuator as well as payload end for almost all modes of vibration. 

The payload inertia  I   primarily affects the first few modes of vibration shown in Fig. 3.21.  

   

(a) (b) 

(a) (b) 
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Fig. 3.19: Variation of mode shapes with offset mass  mC (a) mode 1 (b) mode 2.  

From Fig. 3.22 it is observed that for h  < 1, deflection at the actuator end decreases 

significantly with the hub frequency parameter  h  for lower modes of vibration. For h  = 1, 

the manipulator vibrates with a mode higher than the mode corresponding to the hub frequen-
cy parameter value lower than unity which is has also been shown in Fig. 3.17. A marginal in-
fluence on the amplitudes of the both ends of manipulator is noticed with the further increase 

in hub frequency parameter  h . 

   
Fig. 3.20: Variation of mode shapes with hub mass  mh (a) mode 1 (b) mode 2. 

   
Fig. 3.21: Variation of mode shapes with payload inertia  I (a) mode 1 (b) mode 2. 

In Fig. 3.23, the comparison has been made with the condition when the payload is fixed 
at the point of attachment with zero offset, i.e., point payload. A large defleclion in the manipu-
lator with paylaod is noticed as compared to the no payload condition. It is obtained that the 

increase in offset ratio ( c )  increases the amplitude of the modal displacement especially for 

the lower modes of vibrations. It ishas observed that offset payload may offer an actual and re-
alistic modal displacement, while considering point payload may turn into a minimum 40-50% 
erroneous prediction as compared to a generic payload. Thus, for forecasting the actual dynam-
ic response and its key role onto the structural stability, it is inevitable to encapsulate the offset 
conditions associated with payload.  
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Fig. 3.22: Variation of mode shapes with hub frequency parameter (a)  h 1  (b)  h 1 . 

 

   
Fig. 3.23: Variation of mode shapes with offset ratio  c (a) mode 1 (b) mode 2. 

b) System performance: tip Responses 

The structural flexibility in links and joints of a robotic system often gives rise a problem in 
end-point positioning inaccuracy while practically this position inaccuracy needs to be damped 
out or controlled to achieve desired performance. Thus, the performance parameters have been 
evaluated here to demonstrate how the structural parameters affect the tip position for a given 
motion. Dynamic performances of the system in the sense to reach its final state or delaying the 
overall system responses has been evaluated from Eq. (3.45) with an applied smooth sinusoidal 
torque at rotating hub. Here, the dynamic response has been obtained for the system with 
young’s modulus E=210 Gpa, and mass density of   7800  kg/m3, hub mass moment of iner-

tia and mass of aI  420x10   kgm2 and 0.1 kg, respectively.  The payload at the terminal end of 

the manipulator is having only axial offset. The variation of tip displacement (m) and angular 
tip position (rad) with payload parameters, i.e., payload mass, payload inertia and offset length 
has been demonstrated in Fig. 3.24. It has been observed that the tip position and overshoot de-
creases with the increase in payload mass. Also, the settling time decreases from 0.75 s to 5 s as 
the payload mass is increased from 0.1 kg to 0.3 kg. Angular position of the link for three val-
ues of payload, i.e., 0.1 kg, 0.2 kg and 0.3 kg, respectively, are 0.19 rad, 0.13 rad and 0.90 rad.  



 
 

51 

 

 

Fig. 3.24: Variation of manipulator tip deflections and modal displacements with (a) payload mass (b) payload 
inertia (c) payload offset. 

c) Nonlinear analysis: bifurcation and stability 

For all numerical simulations, the beam with length L 0.35 m, width b  0.03 m, 
height h  0.003 m has been considered while small-parameter ε, and scaling factor (r) are se-

lected as 0.1 and 0.1, respectively. The damping coefficient (ξ) and amplitude ratio  0   are 

chosen as 0.1, and 0.005 for primary resonance while these values for subharmonic resonance 
case are 0.001 and 0.05, respectively. The effect of parametric variations of these offset variables 
on the nonlinear behavior and assessment of stability under primary and secondary resonance 
conditions has been demonstrated. Frequency response curves in Fig. 3.25 depict the presence 
of jump phenomena due to S-N bifurcation for the primary resonance case and subharmonic 
resonance case because of geometric and inertial nonlinearities resulting in multiple solutions. 
The solid line represents the stable solutions, while dashed line depicts the unstable solutions 

(a) 
(a) 

(b) (b) 

(c) (c) 
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in all frequency response curves. In both the cases, the frequency response curve is bent to-
wards left as the system reveals spring softening behavior. For first case, jump up and jump 
down has been found at point B and E, respectively when a slight increase or decrease in fre-
quency takes place at these points. In second case, when frequency is at the critical point I, the 
system experiences a saddle-node bifurcation and the response amplitude jumps down to the 
stable trivial response in point J. A sudden decrease in amplitude due to this jump may cause a 
catastrophic structural failure. This can be avoided by operating the system in safe zones de-
picted in response curves.  

      
Fig. 3.25: Frequency response curves for flexible robotic manipulator for (a) primary and (b) sub-harmonic res-

onance. 

The approximate solution is being validated with the findings obtained numerically us-
ing time responses, and phase portrait at three critical points C, G, D marked in frequency re-
sponse characteristics for primary resonance in Fig. 3.26. The results obtained analytically are in 
good agreement with those obtained by numerically integrating Eq. (3.48).  

  

   

Fig. 3.26: Analytical (a) numerical (b) time history, phase portrait, and FFT (c) of critical points C, G, and D iden-
tified in Fig. 3.2 for primary resonance case. 

(a) (a) 
(b) 

(b) 
(c) 
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The effect of offset mass  mC  on the frequency response curves is illustrated in Fig. 

3.27. In primary resonance case, the amplitude of the manipulator increases with the increase in 
payload mass. The bi-stable region also increases without affecting the jump length with in-
crease in payload mass for subharmonic resonance condition. In addition, it is noticed that for 
higher payload mass, the jump down phenomenon occurs at much lower frequency of the pul-
sating force. Thus, the system instability can be regulated by adjusting the value of payload 
mass yielding minimum jump length.  

  
Fig. 3.27: Variation frequency response curves with payload mass  mC  for (a) primary and (b) sub-harmonic 

resonance. 

The influence of payload inertia  I  on the system stability is depicted in Fig. 3.28. The 

increase in payload inertia decreases the jump length and consequently the maximum ampli-
tude of the system decreases for primary resonance case. However the bi-stable region in sub-
harmonic resonance case significantly increases without changing the jump length with in-
crease in payload inertia. 

  
Fig. 3.28: Variation frequency response curves with payload inertia  I  for (a) primary and (b) sub-harmonic 

resonance. 

From Fig. 3.29, an increase in vibration amplitude is noticed with the increase in hub in-

ertia  Ia  with a significant effect on bi-stable region in the frequency response curve of sub-

harmonic resonance case. The jump length is observed to be increased with increase in hub in-
ertia and the jump-down phenomena starts at much lower frequency for large hub inertia. It is 
evident from Fig. 3.30 that, in case of primary resonance, the maximum amplitude of the sys-
tem decreases as the center of gravity moves away from the point of attachment. The increase 
in offset ratio also increases the bi-stable region in subharmonic resonance case. Hence, more 
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offset distance becomes more vulnerable to catastrophic failure due to its elevated instability 
range.  

    
Fig. 3.29: Variation frequency response curves with actuator inertia  Ih  for (a) primary and (b) sub-harmonic 

resonance. 

   
Fig. 3.30: Variation of frequency response curves with offset ratio  c  for (a) primary and (b) sub-harmonic 

resonance. 

It is noticeable from Fig. 3.31 that the amplitude increases with the increase in stiffness 

of hub for the primary resonance case.  Hence, with increase in hub-stiffness, frequency h   

also increases in a linear proportion. Since with increase hub stiffness, natural frequency is 
found to be increased and as result, the jump down phenomenon starts at a higher frequency 
for larger hub stiffness. 

 

   
Fig. 3.31 : Variation of frequency response curves with frequency parameter  h  for (a) primary and (b) sub-

harmonic resonance. 
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3.5 SUMMARY 

The present work has shown an extensive effort to highlight the significance of generic payload 
on the determination of modal characteristics of a flexible manipulator with bi-directional base 
motion. The evaluation of modal parameters is essential for the behavior estimation of manipu-
lator system when it is externally excited and the frequency of the excitation becomes nearly 
equal to the system natural frequency. The small deformation model using nonlinear Euler-
Bernoulli element has been derived with the account of geometric nonlinearity arising due to 
mid-plane stretching for rotating Cartesian manipulator with a pulsating constraint force. For 
manipulator with revolute joint, a large deflection model of a flexible manipulator considering 
both transverse and axial deformation, dynamics of rotating hub, generic payload, i.e., offset 
payload, and rigid motion of platform has been derived. The extended Hamilton’s principle is 
used to obtain the governing equations and boundary conditions. Subsequently, the eigenfre-
quencies and mode shapes have been developed in terms of essential system parameters.  

The longitudinal and transverse motion of the manipulator gets coupled for the non ax-
ial offset of the payload. The eigenfrequencies of the system tend to decrease as the offset mass, 
actuator mass, inertia and offset length increase. However, increase in actuator stiffness results 
in the increase of eigenfrequencies of the single-link manipulator.  When the system frequency 
equals the natural frequency of the hub and actuator spring-inertia system, the manipulator 
vibrates at one mode higher as compared to the values of frequency parameter less than unity. 
The variation of the actuator mass affected the amplitude of the roller-supported end with a 
marginal effect on amplitude of payload end. The amplitude of the mode shapes is significantly 
affected by the consideration of generic payload as compared to point payload condition. The 
change in offset parameters has shown a significant effect on modal deflection and angular po-
sition of the manipulator affecting the maximum overshoot and settling time when a smooth 
sinusoidal torque is applied at the hub-end.  It has been observed that the system behavior can 
easily be controlled by adjusting the system parameters such as payload mass, payload inertia 
actuator inertia and offset ratio.  

The bifurcation diagrams provided a useful insight into the nonlinear dynamic behavior 
under primary, subharmonic and combined resonance conditions due to the externally applied 
pulsating force and joint motions. Geometric and inertial nonlinearities induce the multiple so-
lutions which further leads to system bi-stability through saddle-node and pitchfork bifurca-
tions resulting in jump phenomena. The response curves have been observed to exhibit an ad-
verse behavior with a variation from spring hardening to spring softening or vice-versa for the 
Cartesian manipulator with the change in payload mass, actuator mass and offset ratio. The 
revolute manipulator with large deformation model exhibit only spring softening behavior. Al-
so, with increase in payload mass, hub inertia and axial offset ratio witness an increase in re-
sponse amplitude and the jump length. The behavior alterations in response with payload pa-
rameters and sudden change in amplitude at the saddle-node and pitchfork bifurcation points 
may lead to a catastrophic failure under periodical operation of the manipulator with the revo-
lute and Cartesian joint motions. 


