
 
 

 

4 
4 Two-Link Flexible Manipulators 

  

4.1  INTRODUCTION  

In present chapter a noteworthy attempt to demonstrate the detailed mathematical modeling 
and subsequent modal characterization along with the determination of static deflection of a 
two-link flexible manipulator with a payload has been made. In addition, investigation of non-
linear phenomena of dynamic responses under external, parametric and internal resonance has 
also been accomplished. An appropriate and realistic dynamic modeling of the two-link ma-
nipulator that takes into accounts for the inertial coupling and geometry compatibility between 
equations of motion and boundary conditions incorporating both link and joint flexibilities sub-
jected to a harmonic motions has been derived using the extended Hamilton’s principle. The 
Cartesian actuator and revolute joint flexibilities have been modeled as a combination of linear 
spring-mass and torsional spring-inertia elements, respectively. The effect of parametric varia-
tion on system eigenfrequencies is well tabulated, and the corresponding eigenspectrums are 
illustrated graphically for different models of the two-link flexible manipulator. Also, from the 
literature review, it is evident that the studies demonstrating the influence of system parame-
ters on the eigenspectrums, especially mode-shapes of the two-manipulator is trivial. Hence, 
here the eigenfrequency equation and mode-shapes has been derived for different types of ma-
nipulator driven by different types of joints and also incorporating the generic payload condi-
tion. The system has been analyzed for the vibration attributes of steady-state responses and 
their stability under various resonance conditions. The effect of geometric and inertial coupling 
existing between the flexible arms on bifurcation states and stability of the obtained solutions 
has been thoroughly investigated. The significant influence of generic payload parameters on 
the eigen-parameters and nonlinear dynamics are studied and compared with those of point 
payload. Analytically obtained results have been verified numerically and found to be in good 
agreement.  

Further, the assumed mode method is explored to derive the coupled nonlinear second 
order equivalent temporal equations of motion of the links and the joints. The simulation of the 
resulting computationally efficient nonlinear model with smooth sinusoidal input torques at 
the joint actuators is investigated and graphically presented. In addition, the control problem 
for the trajectory tracking of a flexible two-link manipulator incorporating a payload described 
by a nonlinear model is addressed in the present work. The comparative mode shapes, bifurca-
tion diagrams and control characteristics those describe the vibrating system have been illus-
trated to demonstrate the dynamics of the flexible manipulator. The outcome of the present 
work enables new understanding into the design criterion and performance limitation of multi-
link flexible robots. The present theoretical results deliver a useful insight into the attributes of 
vibration characteristics along with the nonlinear dynamic behavior and operational stability of 
two-link flexible manipulator under joint motion. 

4.2 MATHEMATICAL MODELING 

A schematic diagram of a flexible two-link manipulator incorporating payload has been shown 
in Fig. 4.1. A brief procedure to model the manipulator is presented considering stretching ef-
fect and gravitational forces acting on the beam and masses in addition to bending deformation 
of the system. Here, the first link is fixed at one end and attached to the motor on other end 
while the second link is attached to the first motor from one end with a payload mass at the end 
of the second link. The motor and the payload mass at the end of the link are considered as 
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concentrated mass. Let (X,Y) and (x,y) represent the global and local co-ordinate system with 

 
))

,X Y  and  
) )
,x y  as the unit vectors, respectively. The links are modelled based on Euler-

Bernoulli beam theory which ignores rotary inertia and shear deformation. The elastic defor-
mation w(x,t) is assumed to be small compared to the length of the links. 

 
Fig. 4.1: Schematic diagram of deflected planar two-link flexible manipulator.  

 The relations between the unit vectors of inertial and moving co-ordinate system for the both 
the links are given as. 
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The end point (R) and the general point (s) on the flexible links are given, respectively as: 

1 1 1 1 1 ,ˆ ˆ
LR L x w y  2 1 2 2 2 2

ˆ ˆ .LR R L x w y           (4.1) 

   1 1 1 1
ˆ ˆ ,s x x y w y      2 1 2 2 2

ˆ ˆ .s R x x y w y          (4.2) 

Here, (x,y) denotes the undeformed position of an arbitrary point on the link. The total kinetic 

energy  totalT
of the system composed of the translational energy of mass of links, joint and 

payload is given by:    
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Total potential energy  totalU
of the system is given by:  

totalU U U U U   1 2 3 4 .           (4.4) 
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Here, 1 2 3, ,U U U   and 4U  represent the elastic strain energy, energy due to axial stretching, po-

tential energy of the link and potential energy of masses at the end of the link, respectively. 
 

4.3  FLEXIBLE MANIPULATOR WITH POINT PAYLOAD 

The equations of motion and associated boundary conditions for the two-link flexible manipu-
lator are modelled in this section from Eqs. (4.1)-(4.4) by exploiting Hamilton’s principle. 
Governing equation of first link in transverse direction: 

 1w :     2 2
1 1 1 1 1 1 1 1 1 1 1 1 1A w x w g E I w E A 3 / 2 w w 0.        &&&&&      (4.5) 

The associated boundary conditions of the first link: 
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Governing equation of second link in transverse direction: 

 2w : 
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The associated boundary conditions of the second link: 

  2 2 2 0,
0,

t
E I w     2 2 2 0,

0,
t
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After neglecting the gravitational terms, the governing equation of motion and the boundary 
condtions obtained in Eqs. (4.5-4.8) are similar to those obtained by [Fung and Chang, 1998] for 
un-constrained manipulator with no revolute joints.  

4.3.1 Free vibration analysis 

Variable separation method has been used to discretize the deflection functions which are the 

explicit function of space and time and expressed as      1 1, cosn
mw x t W x t  

and      2 2, cosn
mw x t W x t . Here,  nW x1  ,   nW x2  are the corresponding nth mode of eigen-

function for the first and second link, respectively and  cos n
mt  is the time modulation for a 

unknown nth mode of eigenfrequency  n
m of the whole system. Substituting these expressions 

in the linearized Eqs. (4.5) & (4.7), the solution of the equations of motion gives the eigenfunc-
tion for both the links in the following form:  

         1 1 2 3 4sin cos sinh cosh .n n n n n n n n nW x B x B x B x B x            (4.9) 

           2 1 2 3 4 1 1sin cos sinh cosh .n n n n n n n n n nW x C x C x C x C x W L x          (4.10) 

Here, unknown  1 4 1 4, ,n n n nB B C CL L  are the integration constants for 
thn  mode of vibration 

and can be obtained by substituting Eq. (4.9) and Eq. (4.10) into the boundary conditions that 
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result a set of five algebraic equations in five unknown in terms of characteristics exponent    

and following nondimensional parameters.  
4 2

1 1 1 1/ ,mA E I    2 2 1 1/ ,E I E I   2 2 1 1/ ,M A A     4 / ,M     1 ,L  2 1/ ,L L L    

1 1 1 1 1/ ,m m A L   2 2 1 1 1/ ,m m A L   and .L        (4.11) 
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Here  1 3 ,n nB B   2 4 ,n nB B  and  2 4 .n nC C  

The elements of the above matrix are expressed below: 

   3
13 2 sin cos ,n n n

mK          2
3

15 sinh cosh ,m
n n nK      

         3
14 2 cos cosh sin sinh ,n n n n n

mK            23 sin ,nK 

   24 cos cosh ,n nK     25 sinh ,nK    

           31 1 2 sin sinh cos cosh ,n n n n n
m m M LK                 

           32 1 2 cos cosh sin sinh ,n n n n n
m m M LK                33 / ,MK    

35 / ,MK        41 cos cosh ,n nK         42 sin sinh ,n nK     43 ,K   45 ,K   
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     (4.13) 

The eigenfrequency equation for the system is obtained for the existence of non-trivial solution 

for the Eq. (4.12), i.e.,   0ndet K    ; here   nK denotes the coefficient matrix. The expres-

sions for the constants  2 1 3, ,n n nB C CL  emerging in eigenfunctions in terms of 1B  which has 

assumed to have unit magnitude are obtained by some mathematical manipulations as ex-
plained in previous chapter.  

4.3.2 Static analysis 

For the static analysis, only the effects of steady loading conditions are considered which in this 
case includes the gravitational forces acting on links and masses of motors attached to them in 
addition to the bending load. Here, the two-link manipulator shown in Fig. 4.2 is initially con-
sidered in the vertical plane. The equation of motions and associated boundary conditions can 
be obtained from Eqs. (4.5)-(4.8) by eliminating the temporal terms. A similar result shall be ob-
tained by applying minimum potential energy theorem where the temporal terms in potential 
energy functions are ignored. 
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 2 2 2 2 2 2 1sin 0.LE I w A w               (4.16) 

       2 2 2 2 2 2 2 1 2 2 2 20, 0, 0, 0, sin 0, , 0.L Lw t w t E I w m g w E I w L t             (4.17) 

 
Fig. 4.2: Two-link flexible manipulator for static analysis.  

 
However it is initially assumed that the links are being held in horizontal position before the 
deflection and using the boundary conditions Eq. (4.15) and Eq. (4.17), one may obtain the ex-
pressions for static condition of the first and second link as:  
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         w x A g E A x m A L g E I x m A L L g E I x       4 3 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2/24 /6 /2 /2 .   

            (4.18) 

4.3.3 Internal Resonance: 3:1 

The nonlinear characteristics and stability of the two-link flexible manipulator has been studied 
for the case of 3:1 internal resonance. The geometric nonlinearities arising due to stretching ef-
fect and the inertial coupling in the equations of motion of both the links expressed as Eq. (4.5) 
and Eq. (4.7) are retained and also representative damping is included. The rotational motions 
of the motors and gravitational terms are neglected for the present study.  
Nonlinear equations of motion for first and second link are expressed in as   

    d

E A
A w E I w w w c w      21 1

1 1 1 1 1 1 1 1 1 1

3
0.

2
&& &        (4.19) 
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2
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The nondimensional terms are: w w L1 1 1/ ,  w w L2 2 2/ , x x L 1/ , 4
1 1 1 1 1/ ,t E I A L   and 

dc c L A E I 2
1,2 1,2 1 1 1 1 1/ . Using the nondimensional parameters, the Eqs. (4.19)-(4.20) after 

removing the bar for simplicity are expressed here as.  

  w w A L I w w c w     2 2
1 1 1 1 1 1 1 1 13 /2 0.&&&          (4.21) 

        L M Mw x w w A L I w w c w          2 2
2 1 2 2 2 2 1 1 2 2/ / 3 /2 / 0.&& & &&     (4.22) 

The governing equation of motion Eq. (4.21) & Eq. (4.22) are discretized by using Ga-

lerkin’ principle by expressing the deflection functions as      1 1 1  , ,w x r x p   and 

     2 2 2, ;w x r x p    here  1 ,x and  2 ,x  are the eigenfunction of the first and second 

links, respectively given in Eqs. (4.9)-(4.10). Now ordering the terms in Eqs. (4.21)-(4.22) in 
terms of ε, and utilizing the orthogonal property of the mode shapes, the following nonlinear 
nondimensional ordinary differential equations are obtained:   

     p p p p        2 3 2
1 1 1 1 1 12 0.&&&         (4.23) 

     2 3 2
2 2 1 2 2 3 2 2 22 0.p p p p p          &&& &&        (4.24) 

Here,  
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3 / / / ,MA L r I x x x dx x dx       
 
 
 
 
   dc   2

2 22 .   

Now, method of multiple scales is exploited to obtain the analytical and closed form solution of 

1p  and 2p which have been expressed in terms of fast and slow time scales.   

     2 3
1 11 0 1 2 12 0 1 2 13 0 1 2, , , , , ,p p T T T p T T T p T T T           (4.25) 

     2 3
1 21 0 1 2 22 0 1 2 23 0 1 2, , , , , , .p p T T T p T T T p T T T           (4.26) 

Using chain rule for the time derivatives and substituting Eq. (4.25) into Eq. (4.23) and 

after equating the coefficients of the same powers of ε, following equations are obtained: 

 1 :O   2 2 2
11 0 1 11/ 0.p T p              (4.27) 

 2 :O    2 2 2 2
12 0 11 0 1 1 12/ 2 / 0.p T p T T p              (4.28) 

 3O ε :
   

 

2 2 2 2 2 2
13 0 12 0 1 11 1 11 0 2

2 3
1 13 1 11 1 11 0

  / 2 / / 2 /

2 / 0.

p T p T T p T p T T

p p p T 

             

     
   (4.29)  

Similarly for the second link the governing equations are obtained as:  

 1 :O    2 2 2 2
21 0 2 21

2
11 02/ 0.p T p Tp                        (4.30) 

 2O ε :      2 2 2 2 2
22 0 21 0 1 1 22

2 2
2 12 0 2 11 0 1/ 2 / / 0.2p T p T T p p Tp T T            

 

            
(4.31) 
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 3O ε :
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p T p T T p T p T T

p p T

 



 







             

          

   

   (4.32) 

The general solution of Eq. (4.27) & Eq. (4.30) can be expressed as:  

       11 1 2 1 0 1 2 1 0, exp , exp .p P T T i T P T T i T            (4.33)  

          2 2 2
21 1 2 0 1 2 2 2 1 1 02, exp exp .p Q T T i T P T i T cc            (4.34) 

Now, substituting Eqs. (4.33)-(4.34) into Eqs. (4.28)-(4.31) gives: 

       2 2 2
12 0 1 12 1 1 1 0 1 1 1 0/ T Ω =-2iΩ / T exp +2iΩ / T exp .p p P i T P i T           

 (4.35)        2 2 2
22 0 22 2 1 0 22 2 21 0/ T Ω =-2i / T exp +2i / T exp .p p Q i T Q i T             

 (4.36) 

The elimination of secular terms in Eqs. (4.35)-(4.36) yields the particular solution as: 

12 0.p
 

  (4.37) 

22 0.p    (4.38) 

Similarly, the following expression is obtained for the response of 13p  and 23p : 

     2
13 1 13 1 2 1 1 1

2 2 2 3
0 1 0 1 1 02/ T Ω exp3 2 exp 3i P T P Pp p i T P i Ti P cc            

            (4.39) 
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/ T Ω exp 9 8 exp 3
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2 2p p i T P i T

i i T P i T Q i T cc

i Q T i P

P T

 

 





      

 

      

         

(4.40) 

Expression of  2P T  is written in the polar form as        2i
2 2= 1 2 e

T
P T a T

 and substi-

tuted in Eq. (4.39). Now, eliminating the secular terms from Eq. (4.39) and separating real and 
imaginary parts, the following governing equations are obtained: 

2 1 0,a T a       3
1 2 1/ 3/8 0.a T a             (4.41) 

The solution of Eq. (4.41) for a and   are as follows: 

 0 1 2  exp ,a a T  2
1 0 2 1 03 8 .a T             (4.42) 

Here, 0a  and 0   are arbitrary constants that are determined by initial conditions.  The particu-

lar solution of Eq. Error! Reference source not found. is: 

   3 2
13 1 1 1 08 exp 3 .p P i T             (4.43) 

Substituting Eqs. (4.33), (4.37) & (4.42) into equation Eq. (4.25), and replacing the time scales by 
original variable τ, one may obtain the following expression for the response of first link.     

    3 3 2
1 1 10.5 cos cos 3 3 64 .p a a                 (4.44) 

Here,   2 2
1 1 1 03 8 .a              

 In case of second link, it has been observed that due to the inertial coupling existing in 

the second link, the nondimensional frequency, 2  of second link is nearly three times the 

nondimensional frequency 1  of first link for the first mode for identical masses and link prop-

erties, which represent a condition of internal resonance. In the present case of internal reso-

nance of  3:1 between the two links, the nearness of 1  to   21 3   can be expressed as 

2
1 23       , which on substitution in Eq. (4.40), and further elimination of secular terms 

results in equation:  

       2 2 3 3 3
2 2 3 2 2 3 1 2 22 / 3 6 2 9 /8 exp 0i Q T Q Q Qk PP i Q k P P i T                   (4.45) 
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Here,  

  2 2 2
1 2 2 1/ .k      Expressing  2Q T  in polar form as        2

2 2  1 /2
i T

Q T b T e


   and 

substituted in Eq. (4.45). Now separating real and imaginary parts from the resulting equation 

and transformed into an autonomous system by letting 2  3T      , following expressions 

are obtained:  

      2 2 2 3 3 3
2 2 2 3 1 2 1 3 3 1 2/ 3 /4 9 /8 3 /8 9 /8 /8 cosb T b k a b a b b k a                   

       3 3
2 2 2 2 3 1 2/ 9 /8 /8 sinb T b k a                 (4.46) 

Eqs. (4.46) are the governing equation for modulation of the amplitude and the phase of the 
free oscillation term and the frequency equation for the steady-state condition can be found by 
eliminating the phase from the steady-state condition of Eqs. (4.46). The first order solution for 
the time response of second link in terms of original time variable is given by:  

       2 1 2 11 /2 cos 3 3 /16 cosP b a                  (4.47) 

Following a similar procedure as explained in section 3.1.3, the stability of the steady-state solu-

tions can be determined by investigating the eigenvalues of the Jacobian matrix  J which is 

given by:  

    

    

3 3
2 2 3 1 2 0 0

2 2 2
3 31 0 3 0 0 2 1 0 0 1

3 1 2 0 0 2 0
3 0 2

9 /8 /8 cos

./ 3 /4 9 /8
9 /8 /8 sin

3 /8

k a

J b k a b a b
k a b

b

    

  
   



  
 

      
   

  

 

4.3.4 Numerical results and discussion 

a) Static Analysis 

Static analysis is very important to understand the displacement profile which may further 
guide the designer to easily interpret the stress and strain distributions in the system before the 
process of its design takes place. For the deflection of the tip end, it is assumed that the payload 
moves vertically downwards instead of moving in a circular arc. It is valid if it is assumed to 
have a beam of low flexure. However, industrial manipulators may not satisfy this condition; 
hence, appropriate modification shall be necessary. Fig. 4.3 shows the static deflection of planar 
two-link manipulator.  To get an idea about the variation of static defection with the material of 
the three different cases are considered. In first case, both the links are made of steel (E=210 
GPa, ρ=7800 kg/m3), in second case the first link is made of steel while the material of second 
link is aluminium (E=69 GPa, ρ=2700 kg/m3), and in third case the first and second link are 
made of aluminium and steel, respectively. The beam characteristics considered are 

L L 1 2, 0.35 m, b b 1 2, 0.03 m, and h h 1 2, 0.003 m. It can be noticed that the static amplitude of 

the manipulator increases as the stiffness of the links is reduced. The manipulator experiences 
the maximum static deflection for the case when the first link is considered to be made of alu-
minum because of the combination of low Young’s modulus and high loading conditions at the 
end of the link.   
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Fig. 4.3: Static deflection of two-link manipulator. 

b) Modal analysis: eigenspectrums 

In Table 4-1, for a wide range of  2m  (defined in Eq (4.11)), the corresponding first five eigen-

frequency parameters,    are listed, which are the roots of the eigenfrequency equation that has 
been solved numerically using Newton-Raphson Method. Both the links are considered to be 

identical, which renders the values of ,M ,L  and   as unity, and also the mass parameter 

 1m  is taken as 1. From the Table 4-1, it can be observed that the   decreases as  2m   increases, 

which is obvious from the fact that the natural frequency of a system decreases as the inertia of 
the system increases.  Variation of nondimensional eigenfrequency parameter with respect to 

system mass parameters  1 2,m m  is shown through Table 4-2. It can be noticed that as the 

system mass parameters increase, the nondimensional eigenfrequency parameter decreases.
   

Table 4-1: Variation of eigenfrequency parameter with tip mass parameter  m2   

m2  1   2  

 3  
 4  

 5  

0 0.9346 1.7819 3.9239 4.8061 7.0686 

0.1 0.9030 1.6934 3.7584 4.6858 6.8339 

0.5 0.8119 1.5162 3.5476 4.5875 6.6409 

1 0.7408 1.4101 3.4812 4.5560 6.5962 

5 0.5420 1.1119 3.4121 4.4998 6.5555 

 

Table 4-2: Variation of eigenfrequency parameter with system mass parameter   m1 m2,  

 

 m1 m2,   1    2    3    4    5   

0.1 0.9494 1.8031 3.7530 4.7450 6.8299 

0.5 0.8251 1.5646 3.5457 4.6061 6.6397 

1 0.7408 1.4101 3.4812 4.5560 6.5962 

5 0.5302 1.0201 3.4132 4.4885 6.5561 

The effect of flexural rigidity ratio  2 2 1 1/E I E I  on the nondimensional eigenfre-

quency parameter is inferred from Table 4-3. The first five eigenfrequency parameters have 
been tabulated for a wide range of flexural rigidity ratio which shall cover all the practical val-
ues while other parameters are taken as unity. It is evident from the table that the eigenfre-
quencies tend to increase with increasing flexural rigidity ratio. Also, from Table 4-4 and Table 
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4-5 it is noticeable that the eigenfrequencies show a decreasing trend with the increase in non-
dimensional beam mass density and length parameters. 

Table 4-3: Variation of eigenfrequency parameter with flexural rigidity ratio  χ   

χ  

1   2  

 3  
 4  

 5  

0.5 0.6891 1.3488 3.0933 4.3139 5.7904 

0.75 0.7215 1.3850 3.3158 4.4540 6.2580 

1 0.7408 1.4101 3.4812 4.5560 6.5962 

1.5 0.7627 1.4433 3.7266 4.7023 7.0504 

2 0.7747 1.4645 3.9079 4.8105 7.3136 

Table 4-4: Variation of eigenfrequency parameter with beam mass density parameter  M   

M  1   2  

 3  
 4  

 5  

0.5 0.7693 1.4586 3.8799 4.8018 7.2327 

0.75 0.7544 1.4332 3.6581 4.6337 6.9300 

1 0.7408 1.4101 3.4812 4.5560 6.5962 

1.5 0.7169 1.3693 3.2295 4.4758 6.0793 

2 0.6964 1.3342 3.0575 4.4263 5.7273 

Table 4-5: Variation of eigenfrequency parameter with length parameter  L   

L  1   2  

 3  
 4  

 5  

0.25 0.9944 2.6042 4.6789 7.5458 10.5097 

0.75 0.9057 1.8908 4.3939 6.7740 7.9547 

1 0.7408 1.4101 3.4812 4.5560 6.5962 

1.5 0.6148 1.2211 2.4867 4.1111 4.8004 

In further text, the effect of variation of essential system parameters over mode shapes 
of the system is studied. The first four mode shapes of the two-link flexible manipulator system 

considering  1 ,m   2 ,m   ,L   ,  and    as unity is shown in Fig. 4.4. The effect of variation of 

system mass parameters on the mode shapes is depicted in  Fig. 4.5. A significant decrease in 
deflection of manipulator with increase in system mass parameter can be noticed for the lower 
mode shapes however higher mode shapes tend to clutter together along the length of manipu-
lator. 
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Fig. 4.4:  Mode shapes of flexible two-link manipulator (a) mode 1 (b) mode 2 (c) mode 3 (d) mode 4.  

    
Fig. 4.5: Effect of system   m1 m2, mass parameters on the mode shapes of the two-link manipulator (a) 

mode 1 (b) mode 2. 

The flexural rigidity ratio     has a noticeable effect on lower as well as higher mode 

shapes of the manipulator which is shown in Fig. 4.6. The mode shapes tend to spread out 
along the length of manipulator and the deflection of manipulator tends to decrease as the flex-
ural rigidity ratio increases. This effect can be very much useful while designing the arms of a 
robot manipulator made of different materials, as the changes in the flexibility may cause the 
variation in the deflection pattern of manipulator.  
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Fig. 4.6: Effect of flexural rigidity ratio   on the mode shapes of the two-link manipulator (a) mode 1 (b) 

mode 2. 

 
Fig. 4.7: Effect of beam mass density ratio  M on the mode shapes of the two-link manipulator (a) mode 1 (b) 

mode 2. 

The effect of variation of beam mass density parameter  M on the mode shapes can be 

observed in Fig. 4.7. Here also, the effect of mass density is pronounced over the mode shapes 
for both lower and higher order of vibration. So, it can be concluded that the variation of mate-
rials in two different arms of the two-link manipulator can cause the significant changes in the 
amplitude of payload. 

c) Nonlinear analysis: bifurcation and stability 

Internal resonance arising due to the inertial coupling between the links of two-link flexible 
manipulator has been investigated in the present section. The beam characteristics considered 
here are same as those employed in the static analysis. The dimensionless parameter, scaling 
factor and nondimensional representative damping coefficient is considered as 0.1. The initial 

conditions for first and second link are 10 0.1,p &10 0.1,p 20 0.0,p  and &20 0.0.p  For the 

steady-state response the system exhibits spring softening behavior as shown Fig. 4.8 in which 
the bending represents the presence of geometric nonlinearity in the system. Jump up and 
Jump down phenomena, represented by dotted arrow, is observed at the critical points, B and 
E, respectively during starting and stopping of the system. This jump phenomenon observed 
for the existence of saddle-node bifurcation, may cause catastrophic failure of the manipulator. 
The solid lines represent the stable steady-state solution the while dotted line symbolizes the 
unstable solutions.  
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The effect of payload mass parameter is also shown in Fig. 4.8. It is noticed that the max-
imum amplitude of the steady-state response decreases when the mass parameter of the pay-

load is increased. The demonstration of variation in beam mass density  M  and flexural rigid-

ity    ratio on the frequency response curve is shown in Fig. 4.9.  The maximum amplitude 

tends to increase with the beam mass density. The increase in flexural rigidity ratio also tends 
to increase the amplitude of the system; however, the jump-up phenomena start at a higher 
frequency. 

    
Fig. 4.8: Representative (a) frequency response curve and (b) effect of payload mass parameter  m2 for se-

cond link. 

The coefficients corresponding to cubic nonlinear terms arising due to the axial stretch-
ing in both the links can be varied by their respective geometric properties as given in Eq. 
Error! Reference source not found.. The effect of nonlinearity variation associated with the first 

 1  and the second  3  link on the frequency characteristics is elucidated through Fig. 4.10. 

A sharp increase in amplitude of system response along with the shifting of response curve is 
observed with the increase in nonlinear coefficient associated with first link. However, the re-
sponse curve witness substantial decrease in jump length with the increase in cubic nonlinear 
coefficient associated with second link.  

 
Fig. 4.9: Effect of (a) beam mass density  M and (b) flexural rigidity    ratio on frequency response curve 

of second link. 
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Fig. 4.10: Effect of geometric nonlinearity due to (a) axial stretching  1 of first and (b) second   3 link on 

frequency response curve of second link. 

     
Fig. 4.11: Effect of (a) damping and (b) amplitude of first link on frequency response curve of second link. 

The effect of nondimensional damping and the excitation amplitude on the frequency 
response curve of second link is shown in Fig. 4.11 and it can be observed that the slight in-
crease in damping results in large reduction of peak amplitude of the system. The initial excita-
tion given to first link has a pronounced effect on the amplitude of the second link. A large var-
iation in amplitude of second link is observed for a slight increase in excitation. Also, the jump 
phenomenon starts at a higher frequency for larger excitation amplitude of first link. The modal 
parameters as well as the nonlinear behaviors of the flexible two-link manipulator are signifi-
cantly influenced by the system parameters. The in-built internal resonance between the links 
may cause large vibrations in the system. Further investigations should be carried out to exam-
ine the system behavior under external excitations and joint motions. 

4.4 FLEXIBLE MANIPULATOR ATTACHED WITH GENERIC PAYLOAD  

Fig. 4.12 shows a schematic diagram of a deformed planar flexible two-link manipulator incor-

porating generic payload at the distal end. An axial constraint pulsating force   0 1 cosF F t   

having static and dynamic component is applied on the payload which models the disturb-
ances in working environment in which the manipulator is supposed to perform.  
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Fig. 4.12: A schematic diagram of planar two-link flexible manipulator with generic payload. 

The vector equation of centre of gravity of payload is given as: 

1 1

  cos sinˆ ˆ ,

j

C jL jL

j

j j j jL j jL

i i

P P L u c w x w c w y 

 

      
             
      

      

  
r r

j  2.     (4.48) 

Total kinetic energy  totalT and potential energy  totalU of the system is given by:  

     

2
2 2

1 10

1 /2 1 /2 1 /2 .

iL
T TT
i i C Ctotal i i C C iL ii i

i i

T q q dx m P P m P P I w 
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i i

U E I w dx E A u w dx

 

            (4.50) 

Here, the kinetic energy constitutes of energy due to translatory motion of the links, masses at 
the end of links and rotational energy of payload. The potential energy comprises of strain en-
ergy due to elastic bending and stretching effect of the links. The governing equations of the 
two-link manipulator system are obtained by using extended Hamilton’s principle are ex-
pressed here as. 
The governing equations of motion and boundary conditions in longitudinal and transverse 
directions of first link are: 

 1w : 
       

  

2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 0 1 1
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 1u :                2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1A u - w - 2w - x - u - E A u w w - F F cos t 0.&& & & &&& &    (4.53) 

        
    1 1 1 1 C 1L 1 1 1L 2 2(0,t ) 2 0,t

E A u 0, m m u E A u - E A u 0.&&      (4.54) 
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The governing equations of motion in axial and transverse directions for second link are:  

 2w : 

     

2 ' 2 '
2 2 2 1 1 2 2 1 2 1 1 2 2 2 2 2

2
2 1 2 2 2 1 2 1 2 1 2 2 1 2 2 2 2 2 2 2

2
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{ 2 2
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        2 1 1 2 1 1 1 2 1 2 2 2sin sin sin sin 0.C L L L L L L L Lm u cw w cw w c w c w E A u                && &&&& && &&

  2 2 2 0,
0,

t
E A u            (4.58) 

If the dynamics of the second link is neglected and the payload is being considered having ver-
tical offset, the Eqs. (4.51-4.58) reduce to those obtained by [Anderson, 1978].  

4.4.1 Free vibration analysis 

A similar procedure as presented in section 4.3.1 is followed to obtain the eigenfunctions for 
thn  mode shapes of vibration for transverse vibration and longitudinal directions are obtained 

as: 

         1 1 2 3 4sin cos sinh cosh ,n n n n n n n nW x B x B x B x B x         

           2 1 2 3 4 1 1sin cos sinh coshn n n n n n n n n nW x C x C x C x C x W L x           (4.59) 

     2 2
1 1 1 2 1si ,n cos

n n
n n nU x D L x D L x              

     2 2 2 2
2 1 1 2 1sin cos .

n n
n n nU x E L x E L x              (4.60)  

The integration constants and the eigenfrequency equation are determined by substituting the 
mode shapes in the boundary conditions and arranging them in matrix form similar to Eq. 
(4.12) whose elements are expressed here as: 

          3
13 / sin cos cos cos ,n n n n n

mC CK             

             
    

3
14 / cos cosh cos sin sinh

sin sinh ,

n n n n n n
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n n
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          3
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 The elements are expressed in terms of nondimensional system parameters expressed in Eq. 
(4.11) along with the payload and other parameters given as: 

3
1 1 1 1 1 1 1  / , / , / ,mC C c I Cm A L c L I A L        and 2 2

1 1 1/ .I A L     

4.4.2 Nonlinear forced vibration analysis 

The two-link manipulator is assumed to be acted upon by variable constraint giving rise to 
subharmonic resonance in both the links. The effects of the generic payload and other system 
parameters on the system stabilities are investigated in this section. For the sake of simplicity, 
the longitudinal and rotational motions of links are neglected while geometric nonlinearity aris-
ing due to axial stretching and the coupled nonlinear terms in Eq. (4.51) and Eq. (4.55), are re-
tained with addition of structural damping in both the links.  

     2
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1cos3 /2 0.dA w E I w E A w w F F t w c w         &&&     (4.61) 

       2 2
2 2 2 1 2 2 2 2 2 2 2 2 2 2 1 0 1 1 2 2 23 /2 cos 0.L L dA w xw E I w E A w w A w w F F t w c w             & &&& &&   

(4.62) 
The nonlinear equations of motion of the links of manipulator expressed in Eqs. (4.61)-(4.62) are 
nondimensionalized using terms:  

w w L w w L x x L t E I A L     4
1 1 1 2 2 1 1 1 12 1 1/ ,  / ,  / , / , dc c L A E I F F  2 2

01 1 1 1 1 1 1 0/ , / 4,

2
0 0  /4,F F   2

0 0 /4,F F  d Mc c L A E I  2
2 2 1 1 1 1 1/ ,  and 2

1 1 1 1 1/ .F F L E I   

Here, 0F  is the critical buckling load of fixed-fixed columns. After executing discretiza-

tion of the resulting nondimensionalized equations using Galerkin’s principle by exploiting the 
mode shapes obtained in previous section, the appropriately ordered equations are expressed 
as: 

         2 2 3
1 1 1 1 1 2 1 1 1 12 cos 0.p p p p p              &&&     

 (4.63)              2 2 3 2
2 2 2 2 2 3 1 4 2 1 5 2 6 2 12 cos 0.p p p p p p p p                    & & && &&  

 (4.64) 
Following a similar procedure explained in section 4.3.3, the governing equations of motion for 
the first link in different time scales are obtained as: 

 1 :O    1 10 0,p             (4.65) 

 2 :O     1 11 1 0 10 0 1 10 2 10 1 02 2 cos .p D p D D p u T             (4.66) 

 3 :O       2 3
1 12 1 0 11 1 10 0 2 10 0 1 11 1 10 2 11 1 0 1 112 2 2 cos .p D p D p D D p D D p D p p T p           

             (4.67) 
Similarly for second link: 

 1 :O    2 20 0.p            

 (4.68)  2 :O      2
2 21 2 0 20 0 1 20 4 20 1 0 3 0 102 2 co .sp D p D D p p T D p           (4.69) 

 3 :O 
   

   

2
2 22 2 0 21 1 20 0 2 20 0 1 21 1 20

2 3 2
3 0 11 0 1 10 4 21 1 0 5 21 6 20 10

2 2 2

2 cos .

p D p D p D D p D D p D p

D p D D p p T p p p



   

       

     &
    (4.70) 

Here, i  is the linear differential operator defined for any function f 

as:  2 2
0  1,2 .i iD f f i     The general solution of Eqs. (4.65) & (4.68) can be expressed 

as:        10 1 2 1 0 1 2 1 0, exp , exp .p G T T i T G T T i T          

 (4.71) 

       20 1 2 02 021 2, exp , exp .p H T T i T H T T i T           (4.72) 

Now, substituting Eqs. (4.71)-(4.72) into Eqs. (4.66)-(4.69) gives: 
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             1 11 1 1 1 1 0 2 1 1 0 1 1 0=-2i G+ G / T exp i T /2 exp exp .p G i T G i T cc             

             (4.73) 

        

      

2
2 21 2 2 1 2 0 3 1 1 0

4 2 1 0 1 2 0

=-2i H+ / T exp i T exp

/2 exp exp ,

p H G i T

H i T H i T cc

     

  

    

    
    (4.74) 

The Eqs. (4.73)-(4.74) contain the secular terms which lead to unbounded solutions when the 

forcing frequency    becomes equal or nearly equal to twice the link’s normalized frequencies 

 1,22  leading to the subharmonic resonance which in turn causes large vibrations in the sys-

tem and eventually leads to catastrophic failure of the system. 

4.4.3 Subharmonic resonance case in first link:   1 12    

For this subharmonic resonance case in first link, the nearness of 1   to 1  , is expressed by in-

troducing the detuning parameter 1  as = 2 + εσ1 1 1 , which on the substitution in Eq. (4.73) 

results in the equation involving both secular and non-secular terms. In order to obtain the 

bounded solution the terms corresponding to  1 0exp i T  have to be eliminated and a process 

similar as that of section 3.1.3 is followed to obtain the solution in terms of time variable τ as: 

    
    1

2i G + 2i

3 = 0.

2 2 2 2 2 2 2 2 2 2
1 1 1 2 1 2 1 1 1

2 2 2
2 2 1 1 1 1

16 4

2 4 exp

G G

G T G G

            

       

        
  

 

   (4.75) 

Now,  G   is expressed in the polar form as        1i
1G = 1 2 a e

 
   which on substitut-

ing in Eq. (4.75) result in the autonomous set of governing equations of modulation amplitude 
and phase after separating real and imaginary parts as: 

     a = 0,2
1 1 1 1 1 1 2 2 1 1 14 8 sina a              = σ1 1 1 12T  .          

    
      = 0, 

2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 2 1 2 1 1 1

2 2 3
1 2 2 1 1 1 1 1

16 4

2 4 cos 3 4

a a a

a a

             

       

         
  

 

  (4.76) 

The first order solution in terms of original variable τ is expressed as: 

         2 2
1 1 1 1 2 1 1cos 2 2 16 cos 3 2 2u a a O                 

The elimination of 1  for the steady-state response  1 1 0a            of 

Eq.Error! Reference source not found., renders the frequency response equation along with the 

trivial solution  1 0a  . To determine the stability of trivial solution, the solutions of the linear-

ized form of Eq. (4.75) are investigated; that is: 
 

   2i G + 2i = 01 1 1 1 2 1 1expG G G T                  (4.77) 

Here,    2 2 2 2 2 2 2 2 2 2
1 2 1 2 1 1 116 2 ,               and  2

2 2 2 1 12 4 .         

 
 
 

Letting G be expressed as      G = 1exp 2r iG iG i   ( rG  and iG  are real), substituted in Eq. 

(4.77) and after separating real and imaginary terms following expressions are obtained: 

 1 1 1 1 2 12 2 2 0,r r iG G G            

 1 1 1 2 1 12 2 2 0.i i rG G G                  (4.78) 
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Here, Eq. (4.78) admits the solution in the form of      = 1
ˆ ˆ, , expr i r iG G G G   , where  ˆ ˆ,r iG G  

are arbitrary real constants. The resulting equations form an eigenvalue problem in the form 
expressed as: 

1 1 11

22 1 1

0
  

  

 


 
 i.e. 2

1 1 11 22 .             (4.79) 

Consequently, a trivial solution is unstable if and only if  2 2
11 22 1     and otherwise it is sta-

ble. The stability of the nontrivial response of the first link of the manipulator depends on the 
stability of the steady-state solution for the modulation amplitude and phase. The stability of 
the nontrivial steady-state solutions is determined by the nature of eigenvalues of the Jacobian 
matrix [ J ] given here as: 

 
   

   

1 3 10 1 10 3 10 1

2
3 10 10 1 4 10 1 1 10 1 3 10 1

sin cos

2 cos 2 9 2 sin

a
J

a a a

    

       

   
  

       

  

Here,  2
3 2 2 1 12 4 2 ,       and

   2 2 2 2 2 2 2 2 2 2
4 2 1 2 1 1 1 1 132 4 2 2 .                   

The steady-state solutions are stable only if the real part of the eigenvalues is negative other-
wise unstable. 

4.4.4 Subharmonic resonance case in second link:     12   

Similarly for the second link, the nearness of forcing frequency  1  with the normalized natu-

ral frequency  2 is expressed as    1 2 22 . After eliminating the secular terms from Eq. 

(4.70) and Eq. (4.74), the governing equations of modulation amplitude and phase is obtained 
as:   

     2
1 2 2 2 2 2 4 4 1 4 2/ /4 /8 sin 0,a a a                

       

  

2 2 3
2 2 2 2 2 2 2 4 4 2 2 2 5 2

2 2 2 2 2 2 2 2 2 2 2 2 2
2 4 2 6 1 1 4 2 2 2

/ /2 /4 cos 3 /4

/16 /2 /4 0.

a a a a

a a

            

           

     

      
  



   (4.80) 

The first order solution for the second link in terms of original variable τ is obtained as:  

       

      

2
2 2 2 2 4 2 2

2 2 2 2
1 3 1 1 2 1

cos 0.5 0.5 /16 cos 1.5 0.5

/ cos .

u a a

a O

       

        

    

   
 

The stability of the trivial and nontrivial solutions of Eq. (4.80) can be investigated by following 
the procedure explained in previous subsection. 

4.4.5 Numerical Results and Discussion 

a) Modal analysis: eigenspectrums 

This section has been dedicated to determine the modal parameters, i.e., natural frequency and 
modal displacement and their quantitative and qualitative evolution under the effect of varia-

tion in payload mass  mC , inertia  I , offset  c , and the offset angle    is studied. The 

results thus obtained for various loading and configurations of the links are presented next. The 
first five eigenfrequencies which are obtained as the roots of the eigenfrequency equation have 
been plotted for the sake of comparison. The other parameters considered for the analysis are 
duly indicated in the respective figures.   
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The variation of system eigenfrequencies with payload  mC , inertia  I  and offset ra-

tio  c  which can be regarded, respectively as the change in payload mass, inertia and varia-

tion of centre of gravity of payload is shown in Fig. 4.13. It is observed that the eigenfrequencies 

decrease with the increase in payload mass  n
K

M
  , payload inertia and also with the 

combined increase of both parameters. Here, the offset ratio  1c c L   defines the ratio be-

tween distance of center of gravity of payload from the point of attachment with the link and 
link length. The higher eigenfrequencies increases as the centre of gravity the payload is moved 

further, away from the point of attachment while at higher payload inertia  I values, even the 

lower eigenfrequencies increase with increase in offset ratio  c . Thus, the influence of com-

bined effect of payload inertia  I  and offset ratio  c is significant on the fundamental mode 

of vibration. Hence, due diligence should be taken while controlling the manipulators with the 
different shapes and sizes of payloads. However, it is observed that the eigenfrequencies de-

crease and increase with the increase in beam mass density  M   and flexural rigidity ra-

tio    , respectively. The beam mass density ratio and flexural rigidity ratio can be varied by 

manipulating the cross-sectional area of the links. 

  
Fig. 4.13: Effect of (a) payload mass  mC , (b) inertia  I , and (c) offset ratio  c  on the eigenfrequencies of 

flexible two-link manipulator for  m1  =0, M  =1.0,   =1.0, L  =1.0,   and   =0. 

Modal displacements  1
nW x  and  2

nW x  are expressed by Eq. 

Error! Reference source not found. that represent the eigenfunctions of the first and second 
link, respectively for nth mode of vibration. The influences of various decision variables on the 
eigenspectrums are investigated in the next section. The variation of first four mode shapes of 
two-link manipulator when the mass of the payload lifted by manipulator represented by pay-

load mass  mC is shown in Fig. 4.14. Mode shape for no payload condition  0mC   has also 

been reported. Modal deflection along the length of manipulator for lower modes of vibration 
decreases as the payload mass increases. Figure also depicts the cluttering of the mode shapes 
in the higher modes of vibration. The mode shapes of the manipulator carrying payload vary 
significantly as compared with the no payload condition.  

(a) 
(b) 

(c) 
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Fig. 4.14: Variation of first four mode shapes of flexible two-link manipulator with payload mass  mC (a) 

mode 1 (b) mode 2 (c) mode 3 (d) mode4.  

     
Fig. 4.15: Variation of mode shapes of flexible two-link manipulator with payload inertia parameter  I (a) 

mode 1 (b) mode 2. 

The influence of payload inertia  I  on the eigenspectrums is illustrated in Fig. 4.15. 

The modal deflection suddenly increases with the introduction of inertia  0I   in the pay-

load and thereafter there is subsequent decrease in deflection with the increase in payload iner-
tia. Cluttering of mode shapes can be observed in higher modes of vibration when the inertia 
parameter is varied.  

The influence of offset ratio  c  on the eigenspectrums is shown in Fig. 4.16. The offset 

ratio is varied from 0 to 1.0, which shall be sufficient to cover all the practical values while 
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0c   corresponds to the condition when the centre of gravity is coincident with the point of 

attachment with the second link. It is observed that the first mode deflection decreases as the 

offset ratio  c  increases. However, in higher modes of vibration as the offset ratio increases 

the mode shapes tend to clutter together along the length of manipulator. As the orientation of 

the payload    is changed from axial  0   to the perpendicular  090  , the modal deflec-

tion decreases while higher modes of vibration tend to clutter together as depicted in Fig. 4.17.  

      
Fig. 4.16: Variation of mode shapes of flexible two-link manipulator with offset ratio  c (a) mode 1 (b) mode 2. 

 

    
Fig. 4.17: Variation of mode shapes of flexible two-link manipulator with offset angle   (a) mode 1 (b) mode 2.  

The significant influence of offset payload parameters on the fundamental frequency 
and eigenspectrums of the manipulator shall be an essential consideration while designing the 
control strategies for the flexible manipulator involved in operations where the terminal link of 
the manipulator is involved in lifting/grabbing payloads of different shapes and sizes because 
the fundamental frequency of the manipulator is significantly affected by the payload parame-
ters.  

b) Nonlinear analysis: bifurcation and stability 

The geometrical and physical characteristics considered in nonlinear analysis for both links are, 
width b = 0.03 m, height h = 0.003 m and length L = 0.3 m. The nondimensional damping coef-

ficients  1,2 , amplitude ratio of 0 ,F  and 1F  are chosen as 0.01, 0.005 and 0.005, respectively. In 

all numerical simulations, bookkeeping parameter (ε) and scaling factor (r) are selected as 0.1 
and 0.001, respectively; the other parameters are indicated in the figures. The frequency re-
sponse equations obtained from Eqs. Error! Reference source not found.-
Error! Reference source not found. for first and second link, respectively are a nonlinear alge-

braic equations in terms of steady-state amplitudes a1,2 , and detuning parameters 1,2 . The 
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equations are solved numerically and the results are presented in Figs. 4.18-4.25 as the ampli-
tudes have been plotted against the external frequency at the given values of essential system 
parameters. The solid lines in the figures represent stable solutions, while the dashed line de-
picts the unstable solutions. A representative frequency curve for the first and second link is 
shown in Fig. 4.18 from which it can be deduced that the amplitude of second link at a particu-
lar frequency is significantly larger than that of first link.  
 

   
Fig. 4.18: Frequency response characteristics of (a) first and (b) second link of two-link manipulator with gener-

ic payload.  

It is also noted that the frequency curves are bent towards the left for both the links, indicating 
softening type nonlinearities leading to multivalued amplitudes at the same forcing frequen-

cy  1 . The jump phenomenon is observed at the bifurcation points G and J for first and se-

cond link respectively. In the detuning parameter region -0.4 ≤ 1   ≥ 0.4 for first link and -0.18 

≤ 2   ≥ 0.18 for second link, there are two solutions, the trivial solutions and upper branch so-

lutions. Since the trivial solution is unstable in this region, the only possible response for the 

link’s operation in this frequency range lies on the upper branch. On the left region of -0.4 < 1   

for first link and -0.18 < 2 for second link, the system has three possible solutions, a stable triv-

ial solution, an unstable nontrivial solution of smaller amplitude and a stable nontrivial solu-
tion of larger amplitude. In these regions the amplitudes of the link can be trivial or nontrivial 
depending on the initial conditions considered for performance. For large values of detuning 
parameters, the links vibrate at the nontrivial amplitudes for small initial conditions. However, 
as the detuning parameters is slowly increased to the left bifurcation point (a subcritical pitch-
fork bifurcation) G for first link (J for second link), the link experiences a sudden jump to the 
upper branch at point H for first link (K for second link). Further increase in detuning parame-
ter leads to the decrease in amplitude till the right bifurcation point (a supercritical pitchfork 
bifurcation) at I for first link (L for second link) where the solution again becomes trivial. This 
sudden jump in the system’s vibration may cause catastrophic failure which can be avoided by 
operating the manipulator in safe zones indicated in the frequency response curves. The equa-
tion of motion represented by Eq. Error! Reference source not found. is solved numerically by 
using fourth-order Runge-Kutta method and the results are found to be in good agreement 
with analytical outcomes for assorted critical points. Fig. 4.19 shows the time response, phase 
portrait, and FFT of first link at the critical points A, B, and C keyed to Fig. 4.18.     
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Fig. 4.19: Analytical (a) numerical (b) time history, phase portrait, and FFT (c) of first link identified in Fig. 4.18 

at the point A, B, and C. 

Four cases of different payload conditions and inclusion of nonlinearity have been com-

pared in Fig. 4.20. Case I represents no payload  0mC   condition and in case II the payload 

is considered as a point mass having no inertia  0, 0, 0mC I c     .  It is evident that the 

amplitude and the unstable region increase significantly with the inclusion of payload. Case III 

denotes the condition when inertia is included  0, 0, 0mC I c      in the payload and Case 

IV represents a generic payload having mass, inertia and offset  0, 0, 0mC I c     as well. 

The unstable region again widens with the consideration of inertia and offset, however, the 
amplitude at a specific forcing frequency decreases with the inclusion of generic payload. It can 
also be noticed from the figure that the consideration of nonlinearity bends the frequency re-
sponse curve exhibiting multiple solutions and jump phenomenon. Now in the further text, the 
effect of system parameters variation on the frequency response curved of both the links has 
been thoroughly studied.  

      
Fig. 4.20: Comparison of (a) four different payload conditions and (b) linear and nonlinear model. 

(a) (a) (b) 

(b) 

(c) 
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The effect of payload mass  mC  on the frequency response curves of first and second 

link is illustrated in Fig. 4.21. The amplitude at a particular forcing frequency increases with the 

increase in payload mass  mC  and it is also observed that the unstable region between the 

critical bifurcation points increases for both the links. The variation of frequency response curve 

of both the links with respect to payload inertia  I  is shown in Fig. 4.22. It is observed that 

the amplitude of the links for a particular frequency decrease with the increase in payload iner-
tia. Also, the unstable region between the bifurcation points for both the links widens as the 
inertia of the payload is increased. The effect of increasing the distance of the centre of gravity 
of the payload from the point of attachment with the link on the frequency response of links is 

demonstrated in Fig. 4.23. As the offset ratio  c  increases, the branches of the response curve 

for the first link converge and unstable region slightly increases, while for the second link the 
branches diverge resulting in increase of unstable region. 

     
Fig. 4.21: Variation of frequency response curves of (a) first and (b) second link with payload mass  mC . 

 

    
Fig. 4.22: Variation of frequency response curves of (a) first and (b) second link with payload inertia  I  . 
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Fig. 4.23: Variation of frequency response curves of (a) first and (b) second link with payload offset  c . 

The maximum amplitudes of both links decreases with the beam mass density  M  as 

shown in Fig. 4.24. The unstable region between two bifurcation points decrease significantly 

with beam density in case of second link. The effect of flexural rigidity ratio   on the maxi-

mum amplitude of the link is significant in case of second link as illustrated in Fig. 4.25. The 
increase in flexural rigidity ratio leads to the increase in maximum amplitude with marginal 
effect on the region of instability.  

    
Fig. 4.24: Variation of frequency response curves of (a) first and (b) second link with beam mass density ra-

tio  M .  

    
Fig. 4.25: Variation of frequency response curves of (a) first and (b) second link with flexural rigidity ratio   .  
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The fundamental eigenfrequency of the manipulator is significantly affected by the pay-
load parameters and hence, it is very essential to take the size, shape and orientation of the pay-
load into consideration while designing. In addition, the orientation of the externally applied 
constraint force may directly or parametrically excite the system depending on its orientation 
with respect to the centre of gravity of payload. Thus, the type of payload and its attributes 
may have implications on the stability of the system under external or parametric excitations. 
The results thus obtained shall be useful in the vibration attenuation of the flexible manipulator 
gripping a generic payload and working under the environment where the end-effector is sub-
jected to pulsating force such as spraying, painting, grinding etc. 

4.5 FLEXIBLE MANIPULATOR WITH HARMONIC REVOLUTE PAIRS  

Consider a planar flexible two-link manipulator incorporating an extended payload being driv-
en by two motors representing flexible joints as shown in Fig. 4.26. A brief dynamic modeling 
has been presented considering the planar revolute motions of the joints along with links un-
dergoing geometric stretching. The flexible revolute joints are modeled as torsional spring-
inertia elements. 
 

 

Fig. 4.26:  A planar two-link flexible robotic manipulator connected with flexible revolute pair. 

The position vector of general point and the position vector of centre of gravity of the extended 
payload are given as:  
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The expressions for the total kinetic energy  TotalT and potential energy  TotalU  of the system 

are respectively given by:  
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  (4.83) 

The virtual works done by the external torques  1,2  applied at the joints and the non-

conservative force due to structural damping  1,2dc in the links are: 

1 1 2 2 1 1 1 2 2 2 .nc d dW W c w w c w w           & &        (4.84) 
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The kinetic energy due to revolute motion of the links, payload inertia and potential en-
ergy due the strain energy of joint stiffness is added in Eqs. (4.3)-(4.4) while the gravitational 
potential energy of the system is neglected. The extended Hamilton’s princi-

ple      
2

1

2

1 2

1

,

t

nc

t

T U dt W W t t        is exploited using Eqs. (4.81)-(4.84) to obtain the 

governing equations and boundary conditions along with the joint dynamics which are further 
solved to derive the eigenfrequency equation and mode shapes of the system. 
 Equation of motion for first link is expressed as: 

 1w :     2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 13 /2 0.dA w x w c w E I w E A w w         &&& &&&      (4.85) 

The associated boundary conditions for the first link are: 
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Equation of motion for second link is expressed as: 

 2w :
 

  

2 2 2
2 2 2 1 1 2 2 1 2 2 2 1 1 2 2 2 2 2 1 2 2

2
2 2 2 2 2 2 2 2 2

2 2 2

3 /2 0.

L L L L

d

A w xw x x w w w w v w w w w

c w E I w E A w w

                    

    

& & & & & && & &&& &&&& &&

&
 

            (4.87) 
The associated boundary conditions for the second link are: 
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The governing equation of first joint motion is expressed as:  
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The governing equation of second joint motion is expressed as:  
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4.5.1 Free vibration analysis 

For modal analysis, the coupled nonlinear terms from Eqs. (4.85)-(4.90) are neglected and the 
transverse deflections of first and second links are derived in terms of new functions in space 

and time as    1 1 1, ,r x t w x t x    and      2 2 1 2 1, , ,Lr x t w x t x w     which are further 

expressed as      1 1, cosn
mr x t W x t   and      2 2, cosn

mr x t W x t   , while angular rotations 

are denoted as  1 10 cos mt     , and  2 20 cos mt   , respectively. Here,  x1
nW  and 

 x2
nW  are the corresponding eigenfunction for the first and second link for the nth mode of 

vibration, respectively, while 10   and 20  are the amplitudes of joint rotations and m  is the 

unknown eigenfrequency of the whole system. The mode shapes of the links are obtained by 
substituting above expressions in the linearized equation of motions of the links given by Eq. 
(4.85) & Eq. (4.87) as: 

          1 1 2 4cos cosh sin sinh .n n n n n n n nW x G x x G x G x           (4.91) 

         2 1 2 3 4cos sin cosh sinh .n n n n n n n n nW x H x H x H x H x          (4.92) 

A system of seven algebraic equations is obtained after substituting Eqs. (4.91)-(4.92) in 
the boundary conditions along with the consideration of the joint dynamics which are further 
arranged in the form of matrix similar to Eq. (4.12) whose elements are given as: 

   11 cos cosh ,n nK      12 sin ,nK    13 sinh ,nK 
2

14 ,K  2
16 ,K      

          21 1sin sinh cos cosh ,n n n n n
m mC M LK                 

     22 1cos sin ,n n n
m mC M LK              

     23 1cosh sinh ,n n n
m mC M LK          

3
25 ,K  3

27 ,K  

      3
34 sin cos sin ,n n n n n

mC cK           
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      3
35 cos sin cos ,n n n n n
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36 sinh cosh sinh ,n n n n n
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3 2
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63 1 1 11 / cosh sinh sinh 1 ,n n n n n n
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   71 cos cosh ,n nK     72 sin ,n nK     73 sinh ,n nK      

74 76, ,K K      15 17 24 26 31 32 33 41 42 43 64 65 66 75 77, , , , , , , , , , , , , , 0.K K K K K K K K K K K K K K K     (4.93) 

In addition to the parameters defined in Eq. (4.11), the elements of the matrix are expressed in 
terms of: 

3 3 3
1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1/ , / , / , / , / ,mC C c Ic c Ih h Ih hm A L c L I A L I A L I A L              

  2
h1 1 1 mk / J / ,  and   2

h2 2 2 mk / J / .    (4.94) 

The eigenfrequency equation shall be obtained for the condition of nontrivial solution of the 
obtained system of equation and the constants of integration can be evaluated as explained in 
section 4.4.1.  



 
 

87 

4.5.2 Nonlinear forced vibration analysis 

The responses of two-link flexible manipulator have been studied for both the links of manipu-
lator considering harmonic revolute motion being imparted to the flexible joints given by ex-

pressions as  1 10 1cos     and  2 20 1cos    . The geometric nonlinearities due to axial 

stretching and the coupled nonlinear terms in Eqs. (4.85) & (4.87) have been retained and are 
expressed here as: 

    2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 13 /2 0dA w x E I w E A w w A w c w          &&& & &&     (4.95) 
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The nondimensionalized governing equations are obtained by using the parameters defined in 
section 4.4.2 with further discretization by Galerkin’s method using the mode shapes given in 
Eqs. (4.91) & (4.92) and after appropriate ordering of the involved terms expressed here as: 
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The steady-state solutions of the nonlinear Eqs. (4.97) & (4.98) are obtained by using se-
cond order method of multiple scales in a similar approach as explained in previous section. 
The governing equations for the first link are obtained after equating the coefficients of the 

same powers of ε as: 

 1 :O  2 2 2
11 0 1 11/ 0.p T p             (4.99) 

 2 :O        2 2 2 2 2
11 1 1 12 1 10 0 10 0 1 4 1 1 0/ 2 / 2 / cos 0.p T p p T p T T T                  (4.100) 
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   (4.101) 

In a similar manner the equations for second link are obtained as:  

 1 :O  2 2 2
21 0 2 21/ 0p T p             (4.102) 

 2 :O 
     

   

2 2 2 2 2 2
21 1 2 12 2 20 0 20 0 1 2 10 0

2 2
12 2 2 0 13 2 2 0

/ 2 / 2 / /

cos cos 0.

p T p p T p T T p T

T T

  

     

             

 
  (4.103) 
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  & &   3
20 10 1 0 3 20sin 0.p T p  &

 (4.104) 

The general solution of Eq. (4.99) & (4.102) can be expressed as:  

       10 1 2 1 0 1 2 1 0, exp , exp .p P T T i T P T T i T           (4.105) 

       20 1 2 2 0 1 2 2 0= , exp , exp .p T T TQ i T Q iT T          (4.106) 

Substituting Eqs. (4.105)-(4.106) in Eqs. (4.100)-(4.103) gives: 

        2 2 2 2
12 0 1 12 1 1 1 1 0 4 1 1 0p / T + p =-2i P+ P / T exp /2 exp .i T i T cc              (4.107) 
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2 2 2
21 1 2 12 2 2 2 0 2 1 2 0

2 2 2
2 1 1 0 12 2 2 0 13 2 2 0

/ 2 exp 2 / exp

exp /2 exp /2 exp 0.

p T p i Q i T i Q T i T

P i T i T i T cc

     

        

        

   
  (4.108) 

Here, one may observe that any solution of Eq. (4.107)-(4.108) will contain secular or 

small divisor terms if the frequencies of joint rotations  1,2  become equal or nearly equal to 

link’s normalized frequencies  1,2 . These secular or small divisor terms should be removed in 

order to have bounded solutions of Eqs. (4.100)-(4.103). 

4.5.3 Primary resonance case in first and second link:  ( 1 1   and 2 2   ) 

The nearness of 1  to 1  and 2  to 2  for simple resonance condition are, respectively ex-

pressed as + εσ1 1  , and + εσ2 2 . The Eqs. (4.107)-(4.101) and  Eqs. (4.103)-(4.104) are solved 

simultaneously for the elimination of secular terms and subsequently, the resulting equations 

are expressed in terms of original time variable τ similar to the procedure in section 3.1.3. 

      

     

2 2 2 2 2
1 1 1 4 1 4 1 1 1 4 1 1 1 1 1

2 2 2 2 2 2 2 2
5 1 1 1 1 5 1 1

2 / 2 /2 /4 /4 exp

/4 exp 2 3 /2 0.

i P i P i T

P T P P P P

                

          

      

    

(4.109) 

          

   

    

2 2 2 2 2
2 12 2 12 2 2 2 12 2 2 2 2 1

2 2 2 2 2 2
5 1 2 1 3 2 2 2

2 2 2 2 2 2
6 2 7 1 8 1

2 / /2 / 4 / 4 exp

/ 4 exp 2 3 2

/2 /2 2 0.

i Q i T

Q T Q Q Q i Q

PP Q

              

         

        

      

   

  

 (4.110)  

 

Expressions of  P   and  Q  are written in the polar form as 

       1i
1P 1 / 2 a e

 
  and        2i

2 Q 1 / 2 a e
 

  . Now, substituting these expressions into 

Eq. (4.109)-(4.110) and separating real and imaginary parts, the following differential equations 

are obtained by letting 1 1 1 1T     and 2 2 1 2  T     as: 

         

   

2 2 2 2 2
1 1 1 1 1 4 1 4 1 1 1 1 5 1 1 1

2 2
4 1 1 1 1

/ /2 / 4 sin /8 sin 2

/ 4 cos 0,

a a a               

     

       


  

         

       

2 2 2 2 2
1 1 1 1 1 1 4 1 4 1 1 1 1 5 1 1 1

2 2 2 2 2 2 3
4 1 1 1 1 1 5 1 1 1 1

/ /2 / 4 cos /8 cos 2

/ 4 sin /2 / 4 3 /8 0.

a a a

a a

                

            

     

    
(4.111) 
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12 2 2 2 2

/ /2 / 4 sin /8 sin 2

/ 4 cos 0,
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2 2 2
2 2 2 2 2 2 12 2 12 2 2 2 2

2 2 2 2 2 2 2
6 2 2 2 12 2 2 1 2 8 1 1 2

2 2 2 2 2 2 3
2 7 1 6 2 2 3 2

/ /2 / 4 cos

/8 cos 2 / 4 sin / 4

/2 / 4 / 4 3 /8 0.

a a

a a a
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   (4.112) 

 
The second order approximate solutions of first and second link in terms of original 

time variable τ, can be expressed as: 

     1 1 1 11 /2 cos ,p a O        
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2 2 2 2 2 2
2 2 2 2 2 1 1 2 1 1 2 13 1 2 1 1

2

0.5 cos /2 cos /2 cos

.

p a a

O

                



      



 

 

 For the steady-state conditions of Eqs. (4.111)-(4.112), the elimination of the phase  n  from 

the resultant equation renders a frequency response equation in terms of na  (amplitudes) and 

n  (frequencies for both the links). Stability of the steady-state solutions is determined by fol-

lowing a similar procedure explained in previous section by investigating the eigenvalues of 

the Jacobian matrices 1,2J    for the first and second link respectively given below: 
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   (4.113) 

Stability of the steady-state solutions of links are now decided by the nature of eigenvalues of 
matrices of Eq. (4.113). If all the eigenvalues have negative or zero real parts, the steady-state 
solutions are stable. 
 

4.5.4 Dynamic Characterization 

In this section the dynamic characterization of a two-link manipulator in conjunction with the 
assumed mode method discretization is accomplished. A simulation of computationally effi-
cient closed form equations of motion of the manipulator is realized to demonstrate the influ-
ence of important system parameters on the system responses specifically on the angular tip 
positions, modal displacements and tip accelerations. Now, the assumed mode method is used 

to express the deflection  1,2w  of a point located at a distance x along the links of the manipu-

lator as: 
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       1 1 1, ,w x t x q t         2 2 2, .w x t x q t        (4.114) 

Here,  1q t  and  2q t   are the modal displacements of first and second link respectively;  1 x  

and  2 x  are the eigenfunction of first and second link for first mode of vibration respectively 

given in Eqs. (4.91)-(4.92). By substituting the Eq. (4.114) in Eqs. (4.85), (4.87), (4.89), & (4.90), the 
dynamic model of the two-link manipulator with extended payload can be expressed in matrix 
form as:   

     

 

 
1 1 1t1tt 1t

2tt 2t 2 1,2 1,2t
1,2 1,2t 1,2t

1tt 1t 1

2tt 2t 2

q ,q q 0

q q 0q ,
M q q , .

0

0

 

 
 

  

  

      
      
        
      
      
       

     (4.115) 

Here,  1,2M q is the mass matrix,  1,2 1,2,t tq  is the Coriolis component matrix, 

 1,2 1,2, tq  
 

is the stiffness matrix while last matrix column in Eq. (4.115) represents the force 

matrix containing the torque exerted at the joints of the manipulator. 

4.5.5 Inverse PD control 

Now, the open input loop torques are calculated those are capable of replicating the given tra-

jectories for both the joints  1 2,d d  of the manipulator system given in Eq. (4.115). Firstly for 

the required given trajectories, the resultant modal deflections  1 2,d dq q  are calculated by nu-

merically integrating the governing equations of flexible manipulator dynamics from of Eq. 

(4.115) for zero initial conditions. Now, the required input torques  1 2,d d  of the system are 

obtained for the rigid body motion of the manipulator from the inverse dynamic model of Eq. 

(4.115) by using the desired trajectory  1 2,d d  and computed modal deflections  1 2,d dq q . In 

order to add robustness to the system, a linear feedback proportional-derivative (PD) controller 
on the joint trajectory error is used and expressed as: 

          input d d d d d p d d dq ,q , , 1 D K K .            
 

& & && & &      (4.1) 

Here, pK  and dK  are the proportional and derivative gains respectively and can be selected 

suitably so that the poles of the linearized system of Eq. (4.115) are in left half of s plane. When 

hubs are driven by the torques  input given in Eq. (4.116), the desired trajectories of the joints 

are obtained. 

4.5.6 Numerical Results and Discussion 

a) Modal analysis: eigenspectrums 

The better understanding of eigenfrequencies of the two-link flexible manipulator with revo-
lute pairs is essential in order to prevent the system from vibrating at undesirable amplitudes 
when it is subjected to a forcing frequency that is nearly equal to one of the system natural fre-
quencies. The variation of system parameters can be viewed as the variation of operating condi-
tions i.e., link properties, joint properties, etc. For example, variation in payload mass, beam 
mass density parameter, and flexural rigidity ratio, respectively, correspond to the variation in 
the weight of the payload being lifted by the manipulator, the use  a manipulator having differ-
ent link masses, and the changes in flexibility of both the links of manipulator. In a similar 
manner, variation of other parameters can be interpreted. Calculation of modal parameters is 
an essential and basic requirement prior to the analysis of the system dynamics. These variables 
are determined by numerically evaluating the determinant of coefficient matrix in Eq. 
Error! Reference source not found. for the nondimensional system parameters.  
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The influence of essential system parameters on eigenfrequencies is presented here 
while constant variables are indicated in the respective subsection of Table 4-6. Here the point 

mass and extended payloads are respectively denoted by 2m  and mC . Variation of eigenfre-

quencies with system masses  m1 m2,  and beam mass density  M is shown in Table along 

with Fig. 4.27. It is evident that the eigenfrequency decreases  n
K

M
   with increase in 

mass either at the terminals of the links by increasing payload and joint mass  m1 m2,   or 

when the mass density of second link is increased with respect to the first link  M .  

Table 4-6: Variation of eigenfrequencies   i  of two-link manipulator with system parameters. 

The variation of eigenfrequencies   i  with system mass payload parameter m1 m2, having  L 1.0,  M 1.0,  

  1.0,   Ih1 1.0,  Ih2 1.0,   h1 1.0,  h2 1.0.      

 m1 m2,   

 0.0 0.5 1.0 5 

1   0.9979 0.9182 0.8868 0.8350 

 2   2.3303 2.0551 1.9815 1.8807 

 3   4.0535 3.7929 3.7451 3.6917 

 4   5.0496 4.6829 4.6198 4.5345 

 5   7.0933 6.7347 6.6935 6.6511 

The variation of eigenfrequencies   i  with beam mass density parameter  M having  m1 1.0,  

 m2 1.0,  L 1.0,   1.0,  Ih1 1.0,   Ih2 1.0    h1 1.0,  h2 1.0.  

M   

 0.5 0.75 1.0 1.5 

1   0.9089 0.8972 0.8868 0.8692 

 2   2.0943 2.0320 1.9815 1.9033 

 3   3.9898 3.8560 3.7451 3.5760 

 4   4.9310 4.7271 4.6198 4.5043 

 5   7.2284 6.9688 6.6935 6.2490 

The variation of eigenfrequencies   i   with flexural rigidity ratio   having  m1 1.0,   m2 1.0,   L 1.0,  

 M 1.0,   Ih1 1.0,   Ih2 1.0,   h1 1.0,   h2 1.0.   
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 0.5 1.0 1.25 1.5 

1   0.7561 0.8868 0.9314 0.9683 

 2   1.7690 1.9815 2.0460 2.0970 

 3   3.4050 3.7451 3.8430 3.9100 

 4   4.4360 4.6198 4.6960 4.8040 

 5   5.9120 6.6935 6.9200 7.3130 

The variation of eigenfrequencies   i  with joint inertia ratios   Ih1 Ih2, having  m1 1.0,   m2 1.0,   L 1.0,  

 M 1.0,    1.0,   h1 1.0,   h2 1.0.  

 Ih1 Ih2,   

 0.5 0.75 1.0 1.5 

1   0.9974 0.9291 0.8868 0.8358 

 2   2.1229 2.0416 1.9815 1.8961 

 3   3.8754 3.7964 3.7451 3.6832 

 4   4.6491 4.6300 4.6198 4.6092 

 5   6.7463 6.7132 6.6935 6.6711 

The variation of eigenfrequencies   i   with joint frequency parameters   h1 h2, having  m1 1.0,   m2 1.0,  

 L 1.0,  M 1.0,    1.0,    Ih1 1.0,   Ih2 1.0.   

 h1 h2,   

 0 0.5 1.0 1.25 1.5 

1   0.8496 0.8868 0.59158 2.9405 3.2898 

 2   1.9207 1.9815 1.4638 4.5386 4.5655 

 3   3.6998 3.7451 3.5000 6.4463 6.5519 

 4   4.6119 4.6198 4.9816 7.5819 7.6331 

 5   6.6770 6.6935 6.5455 9.5954 9.6784 

Comparison of four different cases of flexible two-link manipulator 

 [Ata et al., 2012] Case (I) Case (II) Case (III) 

1   1.8751 1.2479 0.74081 0.8868 
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 2   4.6940 1.8751 1.4101 1.9815 

 3   7.8547 4.0311 3.4812 3.7451 

 4   10.9955 4.6940 4.5560 4.6198 

 5  14.1371 7.1341 6.5962 6.6935 

From Fig. 4.27, it can be noticed that the beam mass density parameter has a significant 
effect on the higher eigenfrequencies as compared to lower natural frequencies. It is also evi-
dent from the Table 4-6 and the Fig. 4.28 that the eigenfrequencies increase with increase in 

flexural rigidity ratio   , i.e., either by reducing the flexibility of first link or by increasing the 

flexibility of the second link. The eigenfrequencies decrease with joint inertias  1 2,Ih Ih  , since 

effective inertia of the manipulator gets increased with increase in joint inertias.  

     
Fig. 4.27: Variation of eigenfrequencies of two-link manipulator having revolute pair with (a) payload mass pa-

rameter  2m  and (b) beam mass density parameter  M  for   =1.0,  Ih1  =1.0,  Ih2  =1.0, and h1,2  =0.5.  

The variation of frequency parameters of the joints can be represented as the variation 
of joint stiffness while keeping other variables constant. The eigenfrequencies tend to increase 

with the joint frequency for  1 2, 1   . The unit magnitude represents the condition when 

system frequency becomes equal to the natural frequency of joint. Hence, Eqs. 
Error! Reference source not found.-Error! Reference source not found. representing the joints 
motion becomes invalid and the joints could be considered as a point mass. However, for 

 1 2,  >1, the eigenfrequencies again increase with increase in joint frequency parameters. 

These conclusions can also be verified from Fig. 4.28, where it is noticed that at unit magnitudes 
of joint frequency parameters the eigenfrequencies observe a sudden jump nearly to higher ei-
genfrequency.  

At the end of the table, four cases have been compared. The first column represents the 
eigenfrequencies evaluated by [Ata et al., 2012] for the third case when first link is considered 
in fixed-fixed and second link is considered fixed-free condition. The same eigenvalues can be 
obtained from the present model if the beam and mass inertia along with the hub-joint dynam-
ics from the boundary conditions are neglected. The case (II) represents the conditions when 
the beam inertias are included in the boundary conditions resulting in the origination of anoth-
er eigenfrequency around those obtained in [Ata et al., 2012]. In case (III), the beam dynamics 
along with the joint and payload masses have been considered and hence again the eigenfre-
quencies decrease further. The final case represents the present model with inclusion of hub 

(a) 

(b) 
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dynamics and payload and it is visible that the eigenfrequencies slightly increase as compared 
to the previous case due to the addition of joint stiffness in the boundary conditions.  
 

      
Fig. 4.28: Variation of eigenfrequencies of two-link manipulator having revolute pair with (a) flexural rigidity 

ratio   and (b) joint frequency parameters  h1,2 for m1   =1.0, m2 1.0,    Ih1  =1.0,  Ih2  =1.0, andM  =1.0. 

      
Fig. 4.29: Variation of eigenfrequencies of two-link manipulator having revolute pair with (a) axial offset 

length  c  and (b) payload inertia  Ic for  mC 1.0,   m1 1.0,     1.0,   M 1.0,   Ih1 1.0,   Ih2 1.0,  

  h1 h2, 0.   

The system eigenfrequencies decrease with the addition of inertia to the system while 

lifting a payload with larger inertia  Ic  which is visible in Fig. 4.29. In case of offset ratio  c  

, it is observed that the eigenfrequencies tend to decrease as the centre of gravity of the payload 

is moved farther away from the point of attachment with the link if the payload inertia  Ic is 

considered as zero. However, while the lower eigenfrequencies decrease, higher eigenfrequen-

cies seems to be increased with payload offset  c  as soon as the payload with inertia  Ic is 

considered in the analysis. Hence, it demonstrates the peculiar influence of the combination of 
payload on the system eigenfrequencies. Hence, in order to achieve precise positioning of a 
payload whose centre of gravity differs from the terminal point of link, the fundamental mode 
should be controlled appropriately.   

Fig. 4.30 depicts plots to compare the first two eigenspectrums for point mass payload 
with an extended payload condition. It is evident that the eigenfrequencies for the case point 
payload are larger than the manipulator having an extended payload due to the presence of 
inertia as well as the offset in the centre of gravity of payload. It has been observed that the in-
fluence of extended payload is much significant on the higher modes of vibration which is evi-
dent from the comparative eigenspectrums illustrated in the figure. 

(a) (b) 

(a) 

(b) 
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Fig. 4.30: Comparison of (a) eigenfrequencies and (b) mode shapes of two-link flexible manipulator with point 

and extended payload for m1 1.0     m2 mC, 1.0,   Ih1,2 1.0,  Ic 1.0,   c 0.5,  M 1.0,    1.0,   h1,2 0.  

An understanding of variation of vibration spectrums with varying system parameters 
shall enable efficient ways of controlling the vibration and subsequently stabilizing the overall 
system through vibration damping and energy dissipation of such robot systems when various 
boundary feedback schemes are being employed. Hence, the analysis is further extended to ex-
amine the effect of system parameters on the evaluation of the corresponding eigenspectrums 

of two-link flexible manipulator with revolute pairs. The influence of system mass  1 2,m m  , 

i.e., either by varying payload mass or joint mass, on the mode shapes is illustrated in Fig. 4.31. 
The modal deflection tends to decrease with increase in system mass parameters as compared 
to the condition of when the masses at terminal points of links are considered as zero. The node 
shifting towards the payload end is also noticed with the increase in payload mass. The effect is 
significant in case of lower modes of vibration and mode shapes likely to spread out along the 
length of manipulator. 

       
 

Fig. 4.31: Variation of mode shapes of two-link manipulator having revolute pair with varying payload mass 

parameter   m1 m2, (a) mode 1 (b) mode 2 . 

The variation of modes of vibration when the mass density of second link is increased 
or interpreted as decrease in first link beam mass density is demonstrated in Fig. 4.32. The in-

fluence of beam mass-density  M  is prominent in case of lower modes of vibration while the 

higher mode shapes tend to clutter together. However, from Fig. 4.33, it is evident that, as the 
flexibility of the second link is increased with respect to the first link, manipulator deflection 
decreases and its effect is significant for higher mode of vibration. The large manipulator de-

flection exists for small values of joint inertia  1 2,Ih Ih   which is demonstrated in Fig. 4.34. For 

larger values of joint inertia the mode shapes tend to adhere together.   
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Fig. 4.32: Variation of mode shapes of two-link manipulator having revolute pair with varying beam density 

parameter  M (a) mode 1 (b) mode 2 .  

  
Fig. 4.33: Variation of mode shapes of two-link manipulator having revolute pair with varying flexural rigidity 

ratio   (a) mode 1 (b) mode 2 . 

  
 

Fig. 4.34: Variation of mode shapes of two-link manipulator having revolute pair with varying joint inertia pa-

rameters   Ih1 Ih2, (a) mode 1 (b) mode 2 . 

Variation of frequency parameters  h1,2  is shown in Fig. 4.35 and it is observed that 

the system tends to change its behavior as the frequency parameter reaches to the unit magni-

tude. The manipulator starts vibrating at higher modes of vibration for h1,2 >1, which is also 

apparent from the Table 4-6, where the eigenfrequencies observe a sudden jump at unit magni-
tude of frequency parameters. It is apparent from the Fig. 4.36 and Fig. 4.37 that the offset 

length  c and inertia of the payload  I  considerably affects both the lower as well as higher 

modes of vibration for rigid joint condition and the deflection of manipulator decreases with 
both the payload parameters.   
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Fig. 4.35: Variation of mode shapes of two-link manipulator having revolute pair with varying joint frequency 

parameters   h1 h2, (a) mode 1 (b) mode 2 . 

  
 

Fig. 4.36: Variation of mode shapes of two-link manipulator having revolute pair with axial offset ratio  c (a) 

mode 1 (b) mode 2 .  

These obtained modal parameters depict the inherent dynamic characteristic of a system 
in the form of eigenfrequencies and mode shapes. Parametric study of this modal analysis also 
indicates the way of improving and optimizing the dynamic characteristics of two-link manipu-
lator. Identification of eigenfrequencies and corresponding mode shapes renders the infor-
mation about the deflection shape of vibration to the design engineer when one of the natural 
frequencies matches with the external frequency called as resonance.   
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Fig. 4.37: Variation of mode shapes of two-link manipulator having revolute pair with axial offset ratio  I (a) 

mode 1 (b) mode 2 .  

b) Nonlinear analysis: bifurcation and stability 

The earlier works lacked in the nonlinear behavior of the two-link manipulator and the major 
focus has been laid over the control and trajectory tracking of the manipulator. In an attempt to 
provide an insight and better understanding of performance of a two-link manipulator, here, 
further investigation of its dynamic performances to discern the level of performance safety 
and avoidance of undesirable behavior due to the instabilities because of the uncertain motor 
speed, mechanical properties and dynamic modeling is accomplished. The catastrophic failure 
of the two-link manipulators of various configurations can be avoided by the sufficient 
knowledge of the system behaviors operating at a certain speed. The different configurations of 
the manipulator can be achieved by varying the system parameters such as weight of payload 
being lifted, changing the masses of links, varying the flexibility of links, adjusting the flexibil-
ity of the joints etc. The geometrical properties of the links are the same as those considered in 
section 4.4.5 and the other parameters have been indicated in the figures.  

It has been observed that when both links have the same properties, a 1:1 internal reso-

nance exist between the links which iscan be avoided by considering length-ratio  L equal to 

1.1. The nondimensional damping coefficients  1,2  and amplitude ratios  10,20 are chosen as 

0.01 and 0.0005, respectively. In all numerical simulations, book-keeping parameter (ε) and scal-
ing factor (r) are selected as 0.1 and 0.001, respectively. In all figures, the solid line represents 
stable solutions and the dashed line denotes unstable solutions. The steady-state responses of 
both links are given by Eqs. (4.111) and (4.112) and shown in Fig 4.38-Fig. 4.45 which represent 

the change in amplitude of manipulator deflection  1,2a  against the respective motor speed 

parameter  1,2 . The frequency response curves for the autonomous systems representing the 

vibration amplitudes for both the links are continuous curves exhibiting multi-valued solutions 
and associated phenomena due to the existence of saddle-node bifurcations manifested with 
the presence of nonlinearities within the system. The effect of nonlinearities on the frequency 
response curves is shown in Fig. 4.38 and it can be concluded that the nonlinearities induce 
spring softening behavior with the bending of curve resulting in the multivalued solutions at a 
particular frequency in both the cases. In Fig. 4.39, time response, phase portrait and FFT for 
three critical points A, B, and C as identified in Fig. 4.38 are compared numerically and analyti-
cally. They are found to be in good agreement.   
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Fig. 4.38: Effect of nonlinearities on frequency response curve of (a) first and (b) second link. 

 

       

 
Fig. 4.39: (a) Numerical and (b) analytical time history and phase portrait, (c) FFT at critical points A, B, and C 

identified in Fig. 4.38. 

The influence of the mass of payload  2m lifted by the second link of the manipulator 

on the frequency response curves of the links are illustrated in Fig. 4.40. The first link exhibits 

spring softening behavior and the amplitude of responses gets increased for m20 1  . With a 

further increase in payload mass  2m from 1 to 2, the system shows hardening effect and the 

maximum amplitude of the first link starts decreasing. However, the behavior of second link 
remains invariant with payload mass and experiences only softening effect. The amplitude of 

second link, first increases for α 2.5 10 m   and thereafter, the amplitude starts decreasing for 

the rest of the values. Hence, it is noted that varying the payload mass shows the effective trend 
of nonlinearity, i.e., hardening/softening behavior and the undesirable vibrations due to the 
sudden variation of the amplitude can be avoided by operating the manipulator at safe speeds 
for the particular payload being handled.  

(a) (a) (b) 

(b) 
(c) 
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Fig. 4.40: Effect of variation of payload mass parameter  m2  on frequency response curve of (a) first and (b) 

second link. 

The demonstration of variation of mass of the beams represented by beam mass density 

 M on the frequency response curves for both the links is shown in Fig. 4.41.  The first link of 

manipulator exhibits spring-softening behavior when the ratio of beam mass density of second 

to first link is kept between 0.5 and 1, i.e., M 0.5 1  , and then spring-hardening behavior 

for 1.M   For smaller values of M , the amplitude increases while for larger values of M , 

the amplitude decreases. However, the second link only experiences the spring softening be-
havior and maximum vibration amplitude decreases when the beam mass density of second 
link is increased with respect to first link. Thus, with an appropriate selection of design param-
eters, the trend of nonlinearity may be maintained either to softening or hardening that may 
further guide the control strategies and subsequent catastrophic failure due to sudden change 
in vibration amplitudes can be attenuated with the appropriate selection of operating limit of 
variable. 

     
Fig. 4.41: Effect of variation of beam density parameter  M   on frequency response curve of (a) first and (b) 

second link. 

The influence of increasing the flexibility of second link or decreasing the flexibility of 

first link, i.e., flexural rigidity ratio    on the steady-state response amplitudes for both the 

links is shown in Fig. 4.42. The effect of flexural rigidity ratio has a negligible effect on the am-
plitude of first link. However, the steady-state amplitude of the second link increases with the 

increase in flexural rigidity ratio. The effect of joint inertias  1 2,Ih Ih   on frequency response 

curves of the first and second link is shown in Fig. 4.43. The first link observes the alteration 
changes in fundamental behaviour from spring softening behavior to hardening behavior for 

1 2, 1.0Ih Ih   . However, the second link exhibits similar spring softening behavior and the 

amplitude increases as the joint inertia increases.  
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Fig. 4.42: Effect of variation of flexural rigidity ratio    on frequency response curve of (a) first and (b) se-

cond link. 

    
Fig. 4.43: Effect of variation of joint inertia parameters   Ih1 Ih2, on frequency response curve of (a) first and 

(b) second link. 

The joint parameter represents  h1,2  the stiffness of the joints, if all other parameters 

are kept constant. The influence of frequency parameters  h1,2  on the steady-state response 

of both the links of manipulator is illustrated through Fig. 4.44. For first frequency parame-

ter h1 , the first link alternates its behavior from spring softening to spring hardening while 

stiffness of first joint has a negligible effect on the behavior of the frequency response curve for 
second link.  However, both links observe behavior alteration with the increase in stiffness of 

second joint  h2 . A substantial decrease in amplitude of both the links is observed with the 

addition of small viscous damping as indicated in Fig. 4.45.  
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Fig. 4.44: Effect of variation of second frequency parameter  h1,2 on frequency response curve of (a) first and 

(b) second link. 

     
Fig. 4.45: Effect of damping parameters   1 ,2 on frequency response curve of (a) first and (b) second link. 

The obtained results can be successfully used to attenuate/suppress the vibrations of 
two-link manipulator system. They find applications in nuclear power plants, medical, and 
space industry. The large deflection model of the two-link manipulator result in additional non-
linear terms in the equations of motion can be analyzed based on the mode shapes obtained in 
present analysis. Also, the configuration of the manipulator can be modified by changing beam 
geometry or varying the location of payload along the length of the link for more complex ma-
nipulators. Hence, a similar methodology can be adopted to investigate their dynamics. Fur-
ther, the analysis can be extended to the conditions when two-link manipulator can be subject-
ed to different forcing conditions representing the forced environment in which the manipula-
tor is supposed to work such as axially constraint surface contact force, varying magnetic field 
etc. The present results also provide a framework for linear and nonlinear design of multi-link 
manipulators. 

c) System performance: tip Responses 

The modern flexible robot manipulators demonstrate superiority over rigid robots due to their 
low weight, less power consumption, small actuators, higher payload to manipulator weight 
ratio along with larger maneuverability and transportability. However, flexibilities in the links 
and joints, their control to achieve and maintain accurate positioning and trajectory tracking 
poses a major challenge. The dynamics of the flexible manipulator are significantly more com-
plex by virtue of the flexible nature of the system. The simulation of the developed model sub-
jected to specified input command is essential to form the basis for design and development of 
suitable control strategies for the systems. Hence, here a step towards the comprehension of 



 
 

103 

system responses in time domain for the parametric variation of manipulator attributes has 
been taken. The relevant characteristics of the links assumed in the simulation are as follows:   

Here to conduct this analysis, the assumed geometrical and physical characteristics for 

both the links are width 1,2b  0.05 m, thickness 1,2h  0.0055 m, material densi-

ty 1,2 7800 
3kg m , material Young’s modulus 1,2E 210 GPa, lumped mass of joint at the 

end of the first link 1 m 0.1 Kg, extended payload mass Cm o.1 Kg, inertia of joints 

1,2 0.02hI 2kgm ,  inertia of payload 0.008cI 2kgm , offset length c 0.1 m,  and lengths of 

links 1,2 L 0.5 m. The parameter varied to examine its effect on the time responses has been 

mentioned in figure itself, while other parameters remain constant as detailed earlier. The 
closed form dynamic model expressed in Eq. (4.115) is simulated by smooth sinusoidal input 
torque of duty cycle of 0.5 sec duty cycle and amplitude of 0.3 Nm at first joint as shown in Fig. 
4.46 and a similar torque profile of 0.6 Nm amplitude is applied at second joint. The influence 
of the parametric variation on the angular tip positions, modal displacements and tip accelera-
tions of the links have been presented graphically. 

 
Fig. 4.46: Input torque profile to the joints. 

The rise time and settling time are very essential parameters of robotic systems for their 
satisfactory performance in various industrial applications. The rise time indicates the time re-
quired by the manipulator to reach desired position as soon as the input torque is imparted to 
the joint. As the manipulator reaches its perquisite set points, the residual vibrations are no-
ticed which delays the tip to reach its steady-state. The settling time is characteristic of a re-
sponse which indicates the time required by the end-effector of the manipulator to reach the 
steady-state condition. Both parameters are significant for a robotic system since it is indispen-
sable for manipulator to reach its required position and attain the steady-state condition in min-
imum time which in turn increases the productivity rate and precession. The payload mass 

 Cm  has a substantial influence on the angular tip positions, modal displacements and angu-

lar accelerations of the links which clearly evident in Fig. 4.47. While the angular tip positions 

and settling time decreases with the increase in payload mass  Cm , the rise time increases as 

the manipulator lifts a heavier payload. For the first link the tip vibrates at -0.095 rad, -0.12 rad, 
and -0.18 rad and for second link the tip vibrates at 0.83 rad, 0.5 rad, and 0.37 rad for 0.0 kg, 0.2 
kg, and 0.4 kg payload mass respectively. The tip accelerations also decrease with the increase 
in payload mass owing to the fact inertia is added to the system.  
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Fig. 4.47: Effect of variation of payload mass  Cm on the angular positions, tip displacements and tip accelera-

tions of (a) first link (b) second link. 

The other payload parameters, i.e., payload inertia  cI and offset length (c) have a neg-

ligible effect on the characteristics of the first link which is evident from Fig. 4.48-Fig. 4.49. 

However, the angular position of the second link decreases as the payload inertia  cI is in-

creased or the centre of gravity of payload (c) is moved farther away from the terminal point of 
the link. It is noticed that, there is a negligible influence of payload parameters on the rise time 

of the second link response. However, as the manipulator lifts the payload of larger inertia  cI  

and offset (c), the second link takes smaller time to reach its steady-state.  
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Fig. 4.48: Effect of variation of payload inertia  cI   on the angular positions of (a) first and (b) second link. 

 

 
Fig. 4.49: Effect of variation of offset length  c on the angular positions of (a) first and (b) second link. 

 
Fig. 4.50: Effect of variation of length of first link  1L on the angular positions of (a) first and (b) second link. 

The influence of the length of the links  L1,2 on the angular tip response of manipulator is in-

ferred from Fig. 4.50-Fig. 4.51. It is evident that the angular tip position and the settling time of 
the first link response decreases with the use of a manipulator with the longer links while, a 
negligible effect is seen on the angular tip position of the second link by increasing the length of 

first link  L1 . However, the settling time of the second link  L2  response increases. With the 

increase in length of the second link  L2  from 0.5m to 0.7m, the position inaccuracy of the first 

and second link increases by 18 % and 51%, respectively. Thus, to reach desired set point, a 
longer manipulator requires a larger torque input. 
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Fig. 4.51: Effect of variation of length of second link  2L on the angular positions of (a) first and (b) second link  

The second joint mass  1m  has a negligible influence on the time response of the se-

cond link and the settling time of the first link which is shown in Fig. 4.52. However, the ampli-

tude of first link response decreases with increase in mass of the second joint  1m . The tip ac-

celerations experience large fluctuations as compared to other parameters when the joint iner-

tias  1,2hI  are increased and their amplitude increases with increase in joint inertias which is 

also observed in Fig. 4.53. Also, as the joint inertias  1,2hI are increased, the angular positions of 

both links decrease and it is also noticeable that the settling time of the first and second link re-
sponses decrease and increase, respectively. 

 
Fig. 4.52: Effect of joint mass  1m on the angular positions of (a) first and (b) second link. 
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Fig. 4.53: Effect of joint inertia  h1,2I on the angular positions and tip accelerations of (a) first link and (b) se-

cond link. 

 Further, in Fig. 4.54, the effect of variation of material of the manipulator links on the 
system responses is demonstrated. The cases have been presented when the manipulator links 
are made of three different materials usually employed to manufacture the manipulator links 
i.e. steel, grey cast iron and aluminum. It is evident from the figure that the angular positions of 
the links made of aluminum are much larger than those of steel and grey CI. And also the tip 
accelerations significantly decreases as the material of the links is changed from aluminum to 
steel or grey CI.  

  

    

Fig. 4.54: Effect of material of the links on the angular positions and tip accelerations of (a) first and (b) second 
link. 

These results will be very helpful and shall contribute significantly in development of 
effective control algorithms for a flexible two-link robot manipulator incorporating an extended 
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payload. The present analysis have demonstrated that the system attributes such as system in-
ertia, link parameters and payload variables plays a very important role in the dynamic behav-
ior and system characteristics of flexible manipulator and should be considered while modeling 
and controlling such systems. Subsequently, the eigenspectrums can be further used to analyze 
such models under different forcing conditions in order to achieve a satisfactory and safe de-
sign of manipulators with attenuations and to avoid catastrophic failures. 

d) Performance analysis: control parameters 

The procedure of inverse dynamics of the system is exploited to design and determine the 
open-loop torque accounting of the rigid body motion of the joints for the accurate positioning 
of the links of manipulator. Here to conduct the simulations, the geometrical and physical char-

acteristics for both links have been considered similar to the previous subsection. The pK  and 

dK  are taken as (100, 150) and (500,600), respectively. A sinusoidal torque profile is used to po-

sition the first link at 60 deg and second link at 30 deg, respectively in 4 seconds. The influence 
of payload on the angular position, input torque and modal displacement is demonstrated in 
Fig. 4.55. It can be observed that both links achieve the desired positions and the error (of order 
0.001) reduces with increase in payload mass from no payload condition to 0.5 kg. The required 
input torque and the amplitude of the tip displacements also increases significantly with the 
increase in payload mass. It can also be observed that the tip of first link have smaller amounts 
of residual vibrations as compared to the second link, even after the required torque is re-
moved.  Hence, while lifting a larger amount of payload will require increased amount of 
torque. The increased end-point vibrations due to larger payloads have to be suppressed for 
accurate positioning. A negligible effect on the input torque of the second hub is noticed with 
the increase in second joint mass in Fig. 4.56, however the torque input of the first joint increas-
es due to the increase in overall inertia of the system driven by first joint. 

 

   

(a) 
(b) 
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Fig. 4.55: Effect of variation of payload mass  2m on the angular positions, input torques, and tip displace-

ments of (a) first link and (b) second link. 

An increase in joint inertias increases the power consumption of the actuators due to increased 
input torques which can be inferred from Fig. 4.57 and it also increases the amplitude of the 
residual vibrations of the end-effector which may result in increased error in trajectory tracking 
of the manipulator. The end-effector vibrates at significantly higher amplitudes for larger joint 
inertias after reaching the desired set angular positions. 

    
Fig. 4.56: Effect of variation of second joint mass on the input torques of (a) first link and (b) second link. 

An increase in length of the first link increases the required amount of torque for both the joints 
however the rigid motion of the end point of the second link increases significantly which is 
evident from the Fig. 4.58. While the end point vibrations of the first link damp out after some 
time for the larger link length but the tip of the second link continues oscillating for a larger du-
ration.  

 

(a) (b) 

(a) 
(b) 
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Fig. 4.57: Variation of joint inertia  h1,2I on the input torques, and tip displacements of (a) first and (b) second 

link. 

 

   

 

Fig. 4.58: Variation of first link length  1L on input torques, and tip displacements of (a) first and (b) second 

link. 

It is observed from Fig. 4.59 that as the material of the links is changed from steel to aluminum, 
the input torque reduces but the tip of the manipulator links still vibrates with large ampli-
tudes. The residual vibrations are prominent in the case of the aluminum. Thus, while the use 
of aluminum shall reduce the power consumption of the manipulator system significantly, the 
design engineer will have to reduce the end point vibrations for accurate trajectory tracking. 
Hence, based on the present results, the design engineer must find a strategy which optimizes 

(a) 
(b) 

(a) (b) 
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both the power consumption and residual vibrations while operating manipulators under par-
ametric variations. 

 

   

 

Fig. 4.59: Variation of material on the input torques, and tip displacements of (a) first link and (b) second link. 

 

4.6 TWO-LINK FLEXIBLE MANIPULATOR WITH PRISMATIC AND REVOLUTE 
JOINTS 

A schematic diagram of a two-link planar flexible manipulator is considered where first link is 
attached to a prismatic joint while revolute joint is used to hold the second link as shown in Fig. 

4.60. The first link of the manipulator is being provided time dependent vertical motion   at 

the actuator having mass  am  and linear stiffness  ak representing the actuator and av  is the 

vertical displacement of actuator from the equilibrium position. The second link is being driven 

by revolute joint having mass  1m , inertia  hI  and torsional spring stiffness  k  at one end 

and payload of mass  2m at other end. 

The expressions for the total kinetic energy  totalT  and potential energy  totalU of the system, 

respectively are given by: 
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Here, totalT  constitutes the kinetic energy associated with masses of the links, masses at the link 

terminals, actuator mass, and joint inertia, while totalU  represents the bending strain energy of 

links, energy due to axial stretching, strain energy of the actuator and revolute joints. 

 

Fig. 4.60: Schematic diagram of a planar two-link flexible robotic manipulator with prismatic and revolute joint 
incorporating a payload. 

4.6.1 Free vibration analysis 

The governing equations of link motions along with joint dynamics obtained for the two-link 
flexible manipulator with prismatic and revolute joint by employing extended Hamilton’s prin-
ciple are expressed here as: 
The governing equation of motion for first link is expressed as: 

 1w :            &&&& && 2
1 1 1 1 1 1 1 1 1 13 /2 0.aA w v E I w E A w w       (4.119) 

The associated boundary conditions for the first link are: 
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The governing equation of motion for second link is expressed as: 
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The associated boundary conditions for the second link are: 

  2 0,t
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Equation of motion of joint dynamics is expressed as:  
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In this section the eigenfunction and eigenfrequencies are sought for the dynamic model 
derived earlier through free vibration analysis. The coupled nonlinear terms from Eqs. (4.119)- 
(4.123) are neglected and the transverse deflections of first and second links are expressed in 

terms of new functions in space and time as        1 1, , ar t w t t v t      and 

         2 2 1, , a Lt w t t v t x wr          . The new deflection functions and the joint motion 

are expressed as explicit function of time and space similar to those in section 4.5.1 and substi-
tuted in the governing equations of motion of the links to obtain the respective mode shapes for 
the nth mode of vibration as: 

           1 1 2 3cos sin sinh cosh .   n n n n n n n nW R x R x x R x        (4.124)

          2 1 2 3 4  cos sin cosh sinh .   n n n n n m n m nW S x S x S x S x       (4.125) 

The constants  1 3 1 4,  S
n

R R SL L  are calculated by substituting the mode shapes obtained in 

Eqs. (4.124)- (4.125) in the boundary conditions. The resulting equations are arranged in the ma-
trix form similar to Eq. (4.12) whose coefficients are expressed in terms of nondimensional sys-
tem parameters as: 
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 64 cos ,nK   65 sin ,nK   66 cosh ,nK    67 sinh ,nK     

   3
74 2 cos sin ,n n n

mK          275
3sin cos ,n n n

mK         

   3
76 2 cosh sinh ,n n n

mK          3
77 2 sinh cosh ,n n n

mK         

14 15 16 17 24 26 35 37 45 47 61 62 63 71 72, , , , , , , , , , , , , , ,K K K K K K K K K K K K K K K  and 73 0.K    

 The integration constants and the eigenfrequency equation are computed as explained in 
section 4.5.1. In addition to the system parameters given in Eq. Error! Reference source not found., 
at the same time above elements are expressed in terms 

of:   2/ / ,h h mk I     2/ / ,a a ak m   3
1 1 1 ,/J Ih A L  and 1 1 1 1/ .am m A L    

4.6.2 Nonlinear forced vibration analysis 

The nonlinear behaviors and stability characteristics of the two-link flexible manipulator with 

harmonically driven prismatic and revolute motion of frequency 1,2  have been analyzed. The 

nonlinear coupled terms and the cubic nonlinearity arising due to geometric stretching have 
been retained in the governing equations of motions of the links expressed in Eqs. (4.119) & 

(4.121) and viscous damping  1,2dc is included in both links. Similar to section 4.5.2 the govern-

ing equations of motion are nondimensionalized, discretized using the mode shapes obtained 
in previous sub-section and after appropriate ordering of the nonlinear terms are expressed 
here as: 

       2 2 2 3
1 1 1 1 1 1 1 1 2 12 cos 0.p p p p             && &       (4.126) 

          
             

               

           

2 2 2
2 2 2 2 2 3 1 1 11 2 2

4 1 2 1 2 2 5 1 1 1 2 12 1

2 2 2
6 1 2 1 1 2 7 1 1 1 1 8 2 2 1

2 3
9 2 1 10 2 2 1 2 13 2

2 cos cos

sin sin cos sin cos

sin sin sin sin

sin

p p p

p p

p p p p

p q p p p

            

                 

                   

          

    

  

 

  





&& &

& &&

&&

& 0


  


 
  


  (4.127) 

The approximate solutions of Eqs. (4.126)- (4.127) are determined by using second order 

method of multiple scales similar to section 4.5.2 and 1,2p  are expressed in terms of fast  0T   

and slow time  2
1 2, T T     scales. Equating the coefficients of the same powers of ε the 

governing equations of motion of the first link in different time scales are obtained as: 

 1 :O  2 2 2
0 1 10/ 0p T p    .        (4.128) 
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The equations for the second link are obtained in a similar manner as: 
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The general solution of differential equations Eqs. (4.128)- (4.131) can be expressed as:  

       10 1 1 2 1 0 1 1 2 1 0, exp , exp .p Q T T i T Q T T i T          (4.134) 

       20 1 2 02 2 2 1 2 02, exp , exp .p Q T T i T Q T T i T          (4.135) 

Now, it can be observed that any solution of Eqs. (4.129)- (4.132) will contain secular or 

small divisor terms if the frequency of prismatic  1  and revolute joint  2 motion become 

equal or nearly equal to link’s normalized frequencies  1,2 . In order to have bounded solu-

tions of the respective equations these secular or small divisor terms should be removed. Also, 

it has been numerically found that the normalized link frequencies  1,2 are nearly equal for 

same link parameters which results in the existence of internal resonance between the links of 
the manipulator. 

4.6.3 Primary resonance in the first and second link:  1 1  and   2 2   

In case of the first link, a simple resonance condition exits when the frequency of prismatic joint 

motion  1  becomes equal or nearly equal to the normalized frequency  1 and in the se-

cond link when the frequency of revolute joint motion  2 becomes equal or nearly equal to 

the normalized frequency  2 . Now, for simple resonance case, the nearness of 1  to 1  and 

2  to 2   are respectively expressed as, 1 1   , and 2 2   , here 1  and 2  are known 

as detuning parameters. Following a similar procedure as adopted in sub-section 4.4.2, the gov-
erning equations for the vibration for both the links in terms of original time variable τ are ob-
tained as: 
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Substituting the polar form of  Q 1  and  Q 2  as        1
1 1Q = 1 /2

i
r e

 
   and  

       2
2 2Q = 1 /2

i
r e

 
   and separating real and imaginary parts, the following differential 

equations are obtained by letting 1 1 1 1T     and 2 2 1 2T     as: 
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             (4.139) 
The solutions of the first and second link up to the second order approximations in terms of 
original time variable  , are expressed as: 

     2
1 1 1 11 /2 cos ,p r O        

          2 2 2 2
2 2 2 2 3 1 2 1 11/2 cos /2 cos .p r O                  (4.140) 

The steady-state response of Eqs. (4.138)- (4.139) can be obtained by equating  /jr    

and  /j     (j=1, 2) to be zero which results in a set of two equations for the links. Further, 

the respective frequency response equations of the links in terms of jr  and j   can be obtained 

by eliminating j   from the resultant equations obtained earlier. Similar to the sub-section 4.5.3, 

for the first link, in order to determine the stability of the steady-state solutions, a small pertur-

bation is introduced in Eqs. (4.138)  and 1r , and 1  are replaced with 1 10 11r r r  , and 

1 10 11    . The stability of the steady-state solutions is determined by investigating the ei-

genvalues of following Jacobian matrix: 
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The steady-state solutions will be stable if and only if the real parts of the eigenvalues are 
negative. The steady-state solutions stability for the second link can also be determined in a 
similar manner. 

4.6.4 Internal resonance in the second link:    1 1  and   1 2   

Numerically, it was found that the normalized frequency of the first link  1 is nearly 

equal to the normalized frequency of the second link  2 leading to the existence of internal 

resonance. Here, the primary resonance occurs in first link  1 1   and the second link vi-

brates due to the internal resonance between the links  1 2  . The nearness of 1 to 2 is 

expressed as, 2 3   and 3  is the detuning parameter for internal resonance. The governing 

equation of motion for the first link remains the same as Eq. (4.126) and hence the equation for 
the vibrating amplitude and phase are given by Eq. (4.138). However, for the second link the 
reduced equations for vibration amplitude and phase after following the procedure explained 
earlier are expressed as:  
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Here, 1 1 1 1 ,T    3 3 1 3 1 ,  T        and second order solution for the second link motion 

is           2 2 2 2
3 3 1 3 11 2 2 2 21 /2 cos /2 cosq r O               . The frequency response 

equation and the stability of the steady-state solutions can be determined by following the 
methodology as explained in earlier section. 

4.6.5 Numerical Results and Discussion 

a) Modal analysis: eigenspectrums 

The eigenspectrums of a system are the essential parameters whose comprehension is crucial 
for its safe operation and acceptable performance as well. The system vibrates at inadmissible 
amplitudes leading to its failure or catastrophic injuries to the operator involved when the sys-
tem is operated at a frequency equal or nearly equal to one of its natural frequencies. The varia-
tion of the eigenfrequencies with the system parameters provides a better understanding of the 
operational territory of the system in order to avoid such occurrences. 

The variation of system parameters has been accomplished by altering the nondimen-
sional parameters and thus apprehending its effect on the eigenspectrums of the two-link flexi-

ble manipulator with prismatic and revolute joints. The variation of payload mass  2m  corre-

sponds to the different payload masses being lifted by the terminal end of the link, the influ-
ence of change in flexibility and masses of the links can be achieved respectively by varying the 

flexural rigidity   of the system and the beam mass density ratio  M . A similar interpreta-

tion can be sought for the variation of other system parameters.  

The variation of eigenfrequencies of flexible two-link manipulator with prismatic and 

revolute motion with actuator mass  ma and actuator joint frequency parameter  a  is 

shown in Fig. 4.61. It is evident that the system eigenfrequencies decrease as the inertia is add-

ed to the system    n K M   by increasing the actuator mass. The actuator frequency parame-

ter  a represents the stiffness of the actuator if other parameters are kept constant. In the case 

of actuator frequency parameter, there is a gradual increase in lower eigenfrequencies but the 

higher eigenfrequencies increase with the actuator frequency  a  up to unit magni-

tude  a 1.0   and witness a sudden jump thereafter. Similar to section 4.5.6, it has also been 

observed that the system eigenfrequencies decrease with increasing mass of the payload lifted 

by the manipulator  2m , mass of the actuator  ma , mass of joint  1m or beam mass densi-

ty  M .  Also, adding stiffness to the system either, by increasing the flexural rigidity ratio    

or by increasing the stiffness of the joint, resulted in increase in eigenfrequency of the system.  

Also, the unit magnitude of the joint frequency  h represents the condition when the 

natural frequency of the manipulator system becomes equal to the natural frequency of the tor-
sional spring-inertia system depicting the flexible joint. At unit magnitude, Eq.  becomes void 
and joint dynamics gets decoupled from the manipulator system limiting the joint to behave as 
a point mass.  It has also been observed that the system eigenfrequency experience a sudden 

jump at unit magnitude  h 1.0  of the joint frequency parameter. Hence, beyond this value 
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the system starts oscillating at a higher mode of vibration. Similar to Fig. 4.28, it is also ob-

served that a lower eigenfrequency generates around 1.5h  , and due to which the system 

again tends to vibrate at lower eigenfrequency.  
 

      
Fig. 4.61: Influence of (a) actuator mass  ma and (b) frequency parameter  a on eigenfrequencies of flexi-

ble two-link manipulator with prismatic and revolute joints for m1,2 =1.0,  Ih  =1.0, a  =0.5, and  M =1.0. 

In order to develop efficient control strategies and have a better understanding of nonlinear 
response of flexible robots, the development of accurate eigenspectrums is perquisite require-
ment. The effect of system parameters on the manipulator response is apprehended through 
the eigenfunction which has been used to discretize the infinite dynamic model of the manipu-
lator governed by the partial differential equations. Therefore, a brief investigation to under-
stand the influence of system parameters on the eigenfunctions of the two-link flexible manipu-
lator has been presented.  

 The payload  2m  being lifted by the manipulator has a significant effect on the deflec-

tion of manipulator system which is visible in Fig. 4.62. In comparison to the no load condition, 

the deflection of the lower modes of vibration decreases as the mass of the payload  2m at the 

terminal end of the manipulator is increased. However, the influence of payload  2m  is ob-

served to be negligible on the higher modes of vibration and mode shapes tend to clutter along 
the length of the manipulator.    

    
Fig. 4.62: Influence of payload mass parameter  m2 on mode shapes of flexible two-link manipulator with 

prismatic and revolute joints (a) mode 1 (b) mode 2. 

 The mass of the actuator  ma majorly affects the deflection of the roller supported end 

of the manipulator which is evident from Fig. 4.63. The deflection of the roller supported end 

decreases with the increase in actuator mass  ma  with a negligible effect on the terminal end 

of the manipulator. The flexural rigidity ratio   represents the flexibility of the links which 

(a) 

(b) 
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can be varied by manipulating the cross-sectional area of the links. The influence of flexural ri-

gidity ratio    is significant on the lower modes of vibration as shown in Fig. 4.64. The deflec-

tion of the manipulator decreases as the flexural rigidity ratio    is increased and the mode 

shapes tend spread out along the length of the manipulator.  

    
Fig. 4.63: Influence of actuator mass parameter  ma  on mode shapes of flexible two-link manipulator with 

prismatic and revolute joints (a) mode 1 (b) mode 2. 

   
Fig. 4.64: Influence of flexural rigidity ratio    on mode shapes of flexible two-link manipulator with prismatic 

and revolute joints (a) mode 1 (b) mode 2. 

    
Fig. 4.65: Influence of (a) beam density parameter  M and (b) joint inertia parameter  Ih  on mode shapes 

of flexible two-link manipulator with prismatic and revolute joints. 

 The influence of beam mass density  M  ratio and the joint inertia parameter  Ih  on 

the mode shapes of the flexible two-link manipulator is demonstrated in Fig. 4.65. The beam 

mass density ratio  M of the manipulator can be manipulated by varying the thickness of the 
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links. The manipulator deflection decreases with increase in beam density ratio  M  as well as 

the joint inertia  Ih  and mode shapes for higher modes of vibrations are observed to clutter 

together.  

 

   

  Fig. 4.66: Influence of joint frequency parameter  h  on mode shapes of flexible two-link manipulator with 

prismatic and revolute joints (a) mode 1 (b) mode 2. 

The variation of mode shapes of the manipulator with the actuator frequency  ma  and joint 

frequency  h  parameter is shown in Fig. 4.66. The actuator stiffness has a significant influ-

ence on the roller supported end of the manipulator. For the second mode of vibration, the sys-

tem starts vibrating at amplitude corresponding to the third natural frequency for a 1.0   

which has also been shown in Fig. 4.61 where the system’s eigenfrequencies experience the 
jump for higher modes of vibration. It is observed that the eigenfrequencies experience a sud-

den jump at unit magnitude of the joint frequency  h 1   and hence the system vibrates at a 

higher mode of vibration. Also, as the joint frequency  h  is increased beyond 1.5, the system 

again tends to vibrate at a lower mode of vibration. A sudden jump in values of eigenfrequency 

is noticed for h1.0 1.5  . The amplitude of the manipulator at roller supported end as well as 

the terminal ends are significantly affected by the change in actuator and joint frequency pa-

rameters  a,h . The presented results furnish vital information regarding eigen-parameters of 

two-link flexible manipulator with prismatic and revolute joint which shall enable the identifi-
cation of resonance conditions when operating frequency becomes equal or nearly equal to the 
system natural frequency and hence, facilitate the proper attenuation of system to avoid the 
inadmissible vibrations. 
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b) Nonlinear analysis: bifurcation and stability 

In the literature, the nonlinear behavior of prismatic single-link manipulator has been exten-
sively studied and the research has been confined to the development of control strategies of 
two-link manipulator having prismatic joints and rigid links. When the manipulator is subject-
ed to a prismatic motion, the system experiences a forced vibration and undergoes relatively 
large vibrations causing undesirable vibrations due to its low stiffness which is a major con-
cern. The adequate familiarity with the manipulator behavior under parametric variation of 
system attributes enables the operator to avoid catastrophic failure under such circumstances. 
In the present analysis, the geometrical and physical characteristics are the same as considered 
in section 4.6.5 and the other parameters are stated in the figures itself. For primary resonance 
condition in both the links, the internal resonance has been avoided by considering the length 

ratio  L  of 1.1. While for internal resonance in the second link, the links are assumed to be of 

the same length, i.e., L =1.0. The amplitude ratio for Cartesian motion  0   and revolute joint 

motion 0  are chosen as 0.0005 while the nondimensional damping coefficients  1,2  are taken 

as 0.01. In all numerical simulations, book-keeping parameter (ε) and scaling factor (r) are se-
lected as 0.1 and 0.005, respectively.  

 
Fig. 4.67: Frequency response curve of the (a) first and (b) second link of flexible two-link manipulator with 

prismatic and revolute joint for primary resonance case. 

The frequency response curves representing the amplitude  1,2r  of manipulator with 

respect to the respective motor speeds  1,2  obtained for the steady-state conditions of Eqs. 

Error! Reference source not found.-Error! Reference source not found. for primary resonance 
cases in both the links are shown in Figs. 4.67-4.75. While the solid lines represent the stable so-
lutions, the dashed lines depict the unstable solutions in all figures. The representative frequen-
cy response curves of the first and second link for the primary resonance due to the harmonic 
motion imparted to the actuator and revolute joints are shown in Fig. 4.67. The presence of ge-
ometric nonlinearities induces the multivalued solutions and jump phenomenon in the fre-
quency response curves of both links. It is observed that while the first link exhibits the spring 
hardening behavior with the bending of curve towards right, the second link illustrates spring 
softening behavior with bending towards the left. In case of first link the jump down phenome-
non is observed at point D while increasing the motor speed and a sudden increase in ampli-
tude of vibration is witnessed at point G as the motor speed is decreased. The numerical and 
the corresponding analytical time response, phase portrait and FFTs have been presented in 
Fig. 4.68 and results are found to be in good agreement. 
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Fig. 4.68:  (a) Numerical and (b) analytical time history, phase portrait, and (c) FFT at critical points A, B, and F 

identified in Fig. 4.67. 

   
Fig. 4.69: Variation of frequency response curve of (a) first and (b) second link with of mass parameters  m1,2  

   
Fig. 4.70: Variation of frequency response curve of second link with (a) actuator mass parameter  ma

 and (b) 

beam mass density ratio  M
. 

  The variation in the configuration of manipulator can be accomplished by altering the 

system attributes such as payload mass parameter  m2 representing payload lifted by manip-

(a) 
(a) 

(b) 

(b) 
(c) 
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ulator, flexural rigidity ratio   and beam mass density ratio  M  
by manipulating the cross 

sectional area, joint inertia  Ih  and their stiffness  h ,k  etc. It is observed that the payload 

mass  m2 , actuator mass  ma , and beam density ratio  M  have a negligible effect on the 

amplitude of the first link for primary resonance case. While the maximum amplitude of se-

cond link increases with increase in payload mass parameter  m2 , actuator mass  ma , and 

beam mass density ratio  M  which is evident from Fig. 4.69-Fig. 4.70.  

 
Fig. 4.71: Variation of frequency response curve of (a) first and (b) second link with flexural rigidity ratio   . 

The influence of flexural rigidity ratio on the frequency response curves is shown in Fig. 

4.71 and it is seen that as the flexibility ratio    
increases the amplitude of the first link de-

creases for 0.5 1.5  and with a further increase in flexural rigidity ratio    
the amplitude 

experiences a marginal change. However, the jump length of the second link witnesses a signif-

icant increase with the increase in flexural rigidity ratio   .  

It is evident from Fig. 4.72 that the amplitude at a particular frequency for the first link 

increases marginally with increase in joint inertia  Ih . It is also noticed that the jump length 

and the unstable region of frequency response curve of the second link decreases significantly 

with increase in joint inertia  Ih . The results presented here are in contrast with those of sec-

tion 4.5.6, where the first link experiences an alteration in vibration behavior from spring hard-
ening to spring softening or vice-verse for payload mass, beam density ratio and joint inertia. 
Thus, it can be concluded that the nonlinear system behavior is a critical function of the joint 
dynamics. 

 
Fig. 4.72: Variation of frequency response curve of (a) first and (b) second link joint inertia parameter  Ih

. 
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The actuator frequency parameter  a and joint frequency parameter  h
 
respectively repre-

sents the actuator spring stiffness  ak
 
and joint torsional spring stiffness  k if other parame-

ters are kept constant. It is observed in Fig. 4.73 that the variation of the actuator frequency pa-

rameter  a
 
witness a transformation of behavior of first link from spring hardening to spring 

softening and a sudden increase in amplitude of second link at the unit magnitude of   a . 

However, with further increase in actuator frequency parameter  a , the jump length of the 

nonlinear response for both the links decreases. In case of joint frequency parameter  h , the 

second link alternates its behavior from spring softening to spring hardening and first link ex-

periences a sudden increase in amplitude at unit magnitude of  h .The behavior alteration of 

system with joint stiffness may result in sudden change in jump length during starting or stop-
ping of prime mover. Thus, trend of spring hardening or softening in the frequency response 
can be maintained by the appropriate selection of the joint stiffness. 

 

Fig. 4.73: Variation of frequency response curve of (a) first and (b) second link with actuator frequency param-

eter  a
 and joint frequency parameter  h

. 

The influence of critical system parameters on the manipulator link responses has been 
shown in Fig. 4.74-Fig. 4.75 for the existence of internal resonance in the second link of the ma-
nipulator. In the present case, the amplitude generated in first link due to the primary reso-
nance excites the second link. In Fig. 4.74, a comparison has been made between the response of 
second link for simple resonance and internal resonance case. It is observed that the amplitude 

of the second link for internal resonance at a particular detuning parameter  3 is significantly 

larger as compared to the primary resonance case. Also, the amplitude of second link  3r , and 

hence the jump length experienced by the second link, considerably increase with the increase 
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in excitation amplitude of first link  1r . As the links of the manipulator are dynamically cou-

pled leading to internal resonance, the system may experience large vibrations even without 
the presence of external excitations. Again, the amplitude of the second link increases and de-

creases respectively with increase in payload mass parameter  m2  and joint inertia  Ih  pa-

rameter as illustrated in Fig. 4.75. 

     
Fig. 4.74: Comparison of frequency response curve of second link for (a) primary and internal resonance and 

(b) effect of amplitude of first link  1a . 

 

      
Fig. 4.75: Variation of frequency response curve of second link with (a) payload mass parameter  m2

and (b) 

joint inertia parameter  Ih
 for internal resonance case. 

The present analysis can be satisfactorily applied to long reach robot manipulators in-
volved in pick and drop operations. The derived eigenspectrums can be adopted in developing 
control schemes for end point vibration suppressions and nonlinear analysis of manipulators 
undergoing large deformations. Nowadays, manipulators are being used in different adverse 
conditions where the end-effector is subjected to various forcing conditions with different joint 
conditions and also, end-effector move along the link to perform various operations. The pre-
sented linear and nonlinear approach can be employed for the analysis of such manipulators 
dynamics.  

4.7 SUMMARY 

The present work introduces a theoretical analysis to understand the modal parameters of a 
two-link flexible manipulator with prismatic and revolute joint incorporating a generic pay-
load. Due to the extensive utilization of long reach manipulator in industries under different 
working environments, it becomes essential to study the modal-parameter and their variations 
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with system attributes of such manipulators to gain an insight on their behavior in resonance 
conditions. Further, the nonlinear flexural vibrations when the flexible robotic system is sub-
jected to a harmonic motion at the flexible joints and pulsating axial constraint force have been 
studied. In an attempt to understand the influence of the system attributes on the dynamic 
characteristics of subject manipulator the forward and inverse dynamics of the manipulator is 
studied. A summary of the precise and distinct outcomes obtained as follows. 

The quantitative decrease in eigenfrequencies with increase in payload mass, payload 
inertia, actuator mass, actuator inertia, joint inertias and increasing the beam mass density of 
second link with respect to first link, has been graphically reported and tabulated. However, an 
increase in flexibility of second link with respect to the first link and stiffness of joint and actua-
tor has witnessed an increase in eigenfrequencies. The payload parameters especially payload 
inertia and offset length have distinctive affect on the fundamental eigenfrequencies. The pay-
load mass, payload inertia, joint inertia and beam mass density ratio have a significant influ-
ence on the lower modes of vibration and mode shapes tend to spread out along the length of 
the manipulator. The amplitude of roller supported and terminal ends decreases respectively 
with the increase of actuator and payload masses. The system started functioning at higher 
modes of vibration for the frequency parameters greater than unity. When the natural frequen-
cy of joint is equal to the system frequency, the joint motions get decoupled from the transverse 
motion of the manipulator and joints started acting like point masses.  

The joint dynamics has a significant influence on the existence of the internal resonance 
in the links of the two-link flexible manipulator. 3:1 internal resonance has been found for point 
payload condition when the manipulator joints are considered as point masses and as soon as 
the joint dynamics is considered in the analysis, the links are found to be 1:1 internally resonat-
ed. The nonlinearity coefficients associated with second link tend to decrease the peak ampli-
tude of steady-state response of the system. A large reduction in peak amplitude of second link 
vibration has been noticed with the slight increase in damping parameter. It is noticed that the 
amplitude of the links at a particular frequency for subharmonic resonance case increases with 
the payload mass and offset and the unstable region increases with the payload parameters. 
The variation of payload mass, joint inertia and beam mass density parameter have noticed a 
fluctuation of system behavior from spring softening to spring hardening or vice-versa only in 
the first link for manipulator with revolute joints. A negligible influence of the payload mass, 
actuator mass and beam density is noticed on the frequency response of roller supported link. 
However, both links have observed this phenomenon of behavior alteration when the natural 
frequency of the second joint increases beyond the system natural frequency.  

The angular tip position of both the links decreases with increase in payload mass, 
length of second link, and joint inertias. The response of the first link remains unaltered with 
the payload parameters such as payload inertia and payload offset length. Large residual vibra-
tions are noticed for the increase in joint inertia even after the completion of duty cycle of input 
torque and power consumption by the joints significantly reduce as the material of the links is 
changed from steel to aluminum. In case of inverse dynamics, while reaching the desired angu-
lar position, the increase in mass of payload, mass of joints, inertia of the joints and link length 
increases the required torque input significantly The increase in link length and the joint inertia 
witness an adverse effect on the end point vibrations and the tip of the link vibrates at large 
amplitudes during the operation. The present framework enables an efficient theoretical model 
of two-link manipulator with prismatic and revolute joints and shall contribute in better under-
standing of its vibration attenuation and development of the effective control techniques for 
suppression of residual oscillations. 

 
 
 


