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 5 
5 Multi-Link Manipulator 

 
 

 

5.1 INTRODUCTION 

The chapter presents the theoretical study to determine the modal parameters and to 
investigate the dynamic instability of a harmonically driven planar multi-link manipulator with 
flexible hub and joints which can incorporate an arbitrary number of links and joints. A bidirec-
tional time dependent motion is provided at the actuator representing a Cartesian motion while 
the flexibilities of joints are modelled as torsional spring-inertia system. The dynamic modeling 
of representative three-link manipulator has been developed considering the link and joint flex-
ibilities by employing extended Hamilton’s principle. The detailed coupled nonlinear equations 
of motion and corresponding boundary conditions along with governing equations of joint mo-
tions are obtained. Further, eigenanalysis with subsequent derivation of mode shapes of the 
system has been performed to demonstrate the behavior of manipulator under parametric vari-
ations. Then, the second-order method of multiple scales has been employed to further analyze 
the vibration attributes of steady-state responses and their stability under different resonance 
conditions arising due to the joint motions and inertial coupling. The effect of geometric and 
inertial coupling existing between the flexible arms on bifurcation states and stability of the ob-
tained solutions has been thoroughly investigated and the results obtained here have been veri-
fied and found to be in good agreement. The comparative mode shapes and bifurcation dia-
grams with varying design parameters that describe the vibrating system have been illustrated 
to demonstrate the dynamics of the flexible manipulator. Different configurations of the manip-
ulator have been developed by varying the mass and flexibility of the link, payload lifted by 
link and changing hub-joint parameters. The results obtained provided a useful insight into the 
vibration characteristics of multi-link flexible manipulator under harmonic hub-joint motions 
which shall further insure its proper vibration attenuation and control.  

5.2 MATHEMATICAL MODELING 

A schematic of flexible multi-link manipulator incorporating payload with flexible joints oper-
ating in a planar space is shown in Fig. 5.1. The motion of the manipulator is described by a 

global co-ordinate system represented by  X,Y
 
with  X̂ ,Ŷ

 
as the unit vectors are assumed; 

the moving reference frame of  
) )

i ix ,y , i 1,2,.... j  are the orthogonal unit vectors attached with 

flexible links.  The hub and joints are assumed to undergo planar revolute motions and a bidi-

rectional time dependent motion     t , t 
 
in Cartesian plane is provided at the actuator. The 

expressions for the position vector of general point and end-point for jth link are given 
below: 
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Here,  x,y denotes the undeformed position of an arbitrary point on the link. The relations be-

tween the unit vectors of inertial and moving co-ordinate system for the jth link are given as. 
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The expressions for the total kinetic energy  totalT and potential energy  totalU
 
of the multi-

link manipulator system is expressed in terms of generalized coordinate system, respectively 
are given by: 
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i iL L 2j j j i2
2 2

total i i i i i i i i k k 1 L
i=1 i=1 i=1 k 10 0

U =1 2 E I w dx+ E A u + 1 2 w dx k w .& &      (5.4) 

Here, totalT  comprises kinetic energy associated with masses at the end of links, mass of the 

links, hub-joint inertias and actuator mass, while totalU  represents the elastic strain energy of 

links, energy due to axial stretching and strain energy of flexible joints, respectively. 

 
Fig. 5.1: Schematic diagram of multi-link flexible manipulator 

5.2.1 Free vibration analysis 

Here, to have an understanding of the dynamics of the multi-link manipulator, modeling of a 
three-link manipulator system driven by prismatic and revolute flexible joints has been pre-
sented. The governing equations of motion of links and joints along with the boundary condi-
tions are obtained by substituting Eqs. (5.1)-(5.4) in extended Hamilton’s principle. 
Equations of motion in longitudinal and transverse direction for first link are expressed as: 

 1u :    2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2A 2w w u x u E A u w w 0.                    & & &&& && && && && &           

    (5.5)
 

 1w :
                            



2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1

A w - 2 u - - w - x - u - E A u w w w u 1 2 w w

-E I w 0.

& && & & && &&& & && &&

   (5.6) 
The associated linearized boundary conditions for the first link are: 
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Equations of motion in longitudinal and transverse direction for second link are expressed as: 
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The associated linearized boundary conditions for the second link are: 
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Equations of motion in longitudinal and transverse direction for third link are expressed as: 
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The associated linearized boundary conditions for the third link are: 

 3 3 3 2 2 2L0,tE E A ,A u u   3 3L 3 3 3Lm u E A u 0.   &&&&     (5.15) 
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The linearized governing equation of first joint motion is expressed as:  
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The linearized governing equation of second joint motion is expressed as:  
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The linearized governing equation of third joint motion is expressed as:  
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 (5.19) 

For modal analysis of a 3R manipulator, the coupled nonlinear, Cartesian motion at hub and 
axial terms from Eqs. (5.5)-(5.19) are neglected and further expressing the transverse deflections 

of the links in terms of new functions in space and time as:    1 1 1 s x,t w x,t ,x   

     2 2 1 2 1Ls x,t w x,t x w      and      3 3 1 2 3 1L 2Ls x,t w x,t x w w .           The proce-

dure followed in section 4.3.1 is adopted here to obtain the mode shapes of the links as: 

         2 3 4x = x + sin x + cosh x + sinh x1 1 cos ,n n n n n n n n nW P P P P   

         2 3 4x = cos x + sin x + cosh x + sinh xn n n n n n n n nW Q Q Q Q ,       2 1 1 1 1 1

         2 3 4x = cos x + sin x + cosh x + sinh x       n n n n n n n n nW R R R R .3 1 2 2 2 2   (5.20) 

A set of twelve algebraic equations with  1 4
n

1 4 1 4P P ,Q Q ,R RL L L as variables in terms 

of known system parameters and characteristics exponent  n  is obtained by substituting Eq. 

Error! Reference source not found. into the boundary conditions and the elements of the coef-
ficient matrix are given below: 

          =
2

11 1 1 2 2 1 2 3cos sin 1 cosn n n n n
M L M L m m mK                  

          

 

=
2

12 1 1 2 2 1 2 3

2
1 1

sin cos sin

1

n n n n
M L M L m m m m

n
Ih h

K            

 

      



          =
2

13 1 1 2 2 1 2 3sinh cosh 1 coshn n n n n
M L M L m m mK                  

          

 

=
2

14 1 1 2 2 1 2 3

2
1 1

cosh sinh sinh

1

n n n n n
M L M L m m m

n
Ih h

K            

 

      



 
 

21 23K ,K 1,      =31 1 1 2 2 1 2 3 cos sin ,n n n
M L M L m m mK                 

     =32 1 1 2 2 1 2 3 sin cos ,n n n
M L M L m m mK              

     =33 1 1 2 2 1 2 3 cosh sinh ,n n n
M L M L m m mK              

     =34 1 1 2 2 1 2 3 sinh cosh ,n n n n
M L M L m m mK               3

36 1 1K ,  3
38 1 1K ,   

 = -41 cos ,n nK   -42 sin ,n nK   = cosh43 ,n nK   = sinh44 ,n nK  2
45 1 1 ,K   2

47 1 1 ,nK     

   = - 2
51 2 21 sin ,n n n

Ih hK        52 = 2
2 21 cos 1 ,n n

Ih hK    

   = 2
53 2 21 sinh ,n n

Ih hK        = 2
54 2 21 sinh 1 ,n n

Ih hK    

       

   
= -

2

1 1 1 1 1

55 1

2 2 2 3 1 1

cos sin 1
,

cos

n n n n
M

n
M L m m L

K
        



      

 
   

 
  
 

           

 
-

2

1 1 1 1 1 2 2 2 3 1 1

56 1
2

1 2 2

sin cos sin
,

1

n n n n n
M M L m m L

n
Ih h

K
               



  

 
    

  
  
 



 
 

132 

           = -
2

57 1 1 1 1 1 1 2 2 2 3 1 1sinh cosh 1 cosh ,n n n n n
M M L m m LK                 

 
     

 

           

 
= -

2

1 1 1 1 1 2 2 2 3 1 1

58 1
2

1 2 2

cosh sinh sinh
,

1

n n n n n
M M L m m L

m Ih h

K
               



  

 
    

 
  
 

 61 = cos ,nK   62 = sin ,n nK    63 = cosh ,nK   64 = sinh ,n nK   65 1K ,  67 1K ,   

 - 2
75 1 1 1cos ,nK      - 2

76 1 1 1sin ,nK      2
77 1 1 1cosh ,nK      2

77 1 1 1sinh ,nK      

2
79 2 2K ,  2

711 2 2K ,        3
85 2 2 2 3 1 1 1 1cos sin ,n n n

M L m mK              

     86 = 3
2 2 2 3 1 1 1 1sin cos ,n n n

M L m mK             

     87 = 3
2 2 2 3 1 1 1 1cosh sinh ,n n n

M L m mK              3
810 2 2 ,K   3

812 2 2K ,  

   = - 2
91 3 31 sin ,n n

Ih hK        = 2
92 3 31 cos 1 ,n n

Ih hK    

   = 2
93 3 31 sinh ,n n

Ih hK        = 2
94 3 31 cosh 1 ,n n

Ih hK      

   = - 2
95 1 1 3 3 11 sin ,n n

Ih hK           = 2
96 1 1 3 3 11 cos 1 ,n n

Ih hK       

   = 2
97 1 1 3 3 11 sinh ,n n

h hK           = 2
98 1 1 3 3 11 cosh 1 ,n n

Ih hK       

         = -
2

99 2 2 2 2 2 2 3 2 2cos sin 1 cos ,n n n n n
M m LK              

 
   

 

           = -
2

2
910 2 2 2 2 2 2 3 2 2 2 3 3sin cos sin 1 ,n n n n n n

M m L Ih hK                 
 

    
 

         = -
2

911 2 2 2 2 2 2 3 2 2sinh cosh 1 cosh ,n n n n n
M m LK              

 
   

 
 

           = -
2

2
912 2 2 2 2 2 2 3 2 2 2 3 3cosh sinh sinh 1 ,n n n n n n

M m L Ih hK                 
 

    
 

 = -101 sin ,n nK     =102 sin 1 ,n nK     =103 sinh ,n nK     =104 cosh 1 ,n nK   

 =105 1 1 ,nK c     =106 1 1 1sin ,n nK       =107 1 1cosh ,nK   

  =108 1 1 1sinh ,n nK      109 2K ,  1011 2K , 

   = 2
1109 3 2 2 2 2cos sin ,n n n

mK            = 2
1110 3 2 2 2 2sin cos ,n n n

mK        

   = 2
1111 3 2 2 2 2cosh sinh ,n n n

mK            = 2
1112 3 2 2 2 2sinh cosh ,n n n

mK        

 =1209 2cos ,nK     =1210 2sin ,nK    =1211 2cosh ,nK    =1112 2sinh ,nK    

15 16 17 18 19 110 111 112 22 24 25 26 27 28 29 210 211 212 35

37 39 310 311 312 46 48 49 410 411 412 59 510 511 512 66 68 69

610 611 612 71 72 73 74 710

K ,K ,K ,K ,K ,K ,K ,K ,K ,K ,K ,K ,K ,K ,K ,K ,K ,K ,K ,

K ,K ,K ,K ,K ,K ,K ,K ,K ,K ,K ,K ,K ,K ,K ,K ,K ,K ,

K ,K ,K ,K ,K ,K ,K ,K ,K712 81 82 83 84 89 811 1010 1012 1101

1102 1103 1104 1105 1106 1107 1108 1201 1202 1203 1204 1205 1206 1207 1208

,K ,K ,K ,K ,K ,K ,K ,K ,K ,

K ,K ,K ,K ,K ,K ,K ,K ,K ,K ,K ,K ,K ,K ,K 0,

             (5.21) 
The nondimensional parameters appearing in above equations are: 

4 2
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3
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Ih3 1 1h3 1/ ,AI L     2

h1 h1 m1k / I / , 
 

  2
h2 h2 m2k / I / , 
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h3 h3 m3k / I / ,    

1 1 L1 ,    and 2 2 L2 ,             (5.22) 

The condition for the existence of non-trivial solution for the set of equations obtained earlier, 

i.e.  n K 0  , results in the eigenfrequency equation of the system in terms of nondimensional 

parameters defined in Eq. (5.22); here  nK  denotes the coefficient matrix. In order to obtain 

the mode shapes of the links obtained in Eq. (5.20), the constants  2 4 1 4 1 4
n

  P P ,Q Q ,R R   are 

expressed in terms of unit magnitude n
1P . 

5.2.2 Dynamic Characterization 

Now, the governing flexible equations of motion of the links and rigid body motion of the 
joints given in Eqs. (5.6), (5.10), (5.14), (5.17), (5.18) & (5.19) are arranged in a computationally 
efficient closed form of equations using assumed mode method. The obtained set of equations 
is numerically simulated by input smooth sinusoidal torque and the parametric variation of the 
system responses is studied. An expression similar to Eq. (4.114) using the mode shapes ob-
tained in Eq. (5.20) are used to obtain the dynamic model of the 3R manipulator in state space 
form as:  
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     (5.23) 

Here,  1,2,3M q ,   1,2,3t 1,2,3tq , , 
 
and  1,2,3 1,2,3tq ,  

   
respectively are the mass matrix, corio-

lis component matrix and stiffness matrix and 1,2,3   represent the input torques at the joint of 

the links. 

5.2.3 Nonlinear forced vibration analysis 

The frequency response of the multi-link manipulator is investigated for the existence of forced 
and 1:1:1 internal resonance in the manipulator links due to the inertial coupling between the 
links. A small amplitude excitation is provided to the first link and the influence of system pa-
rameters on the nonlinear characteristics of other links is studied. The hub- joint dynamics and 
axial deformation in governing equations of motion of links obtained in Eqs. (5.6), (5.10), and 
(5.14) are neglected; geometric nonlinearities components are retained and structural damping 
in the links have been included. With a similar approach as in section 4.5.4, the nondimension-
alized and appropriately ordered governing equations of motion of the links are obtained as:  

    2 3
1 1 1 1(τ) + (τ) + 2 - cos - - ( ) = 0.2

1 1 1 1 2 1 1 3sinp p p p p        && &
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(5.26) 

The nonlinear equations of motions obtained in Eqs. (5.24)-(5.26) can be solved by various 
numerical methods. To simplify the complex differential problem in hand cannot be routinely 
solved, one can take the advantage of the small parameter ε, and hence, the most commonly 

used perturbation method, method of multiple scales is exploited. Here, the deflections ip
 
are 

expressed in terms of fast  0T  and slow time  1T  scales to obtain the steady-state solutions of 

Eqs. (5.24)-(5.26) as: 

    0 0 1 1 0 1, , ,i i ip p T T p T T  1,2,3.i         (5.27) 

  ��Error! No sequence specified.���Error! No sequence specified.���Error! No sequence speci-

fied.��Using chain rule for the time derivatives, substituting Eqs. (5.27) in Eqs. (5.24)-(5.26) and 
after equating the coefficients of the same powers of ε, following equations for first, second and 
third link are obtained as: 
First link: 

 0O :  2 2 2
10 0 1 10+ = 0.p T p            (5.28) 

 1O :
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Second link:  

 0O :  2 2 2
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Third link:  
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30 0 30+ = 0.3p T p           (5.32) 
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The general solutions of ordinary differential equations Eqs. (5.28), (5.30) & (5.32) are: 
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   10 1= +1 0 1 0
0 .i T i Tp G T e G T e 

   
     (5.34) 

   20 1+2 0 2 0
0 .i T i Tp H T e H T e 

         (5.35) 

   30 1+3 0 3 0
0 .i T i Tp I T e I T e 

         (5.36) 

Now, substituting Eqs. (5.34)-(5.36) simultaneously in Eqs. (5.29), (5.31) & (5.33), the resultant 
equations are obtained containing secular or small divisor terms at different resonance condi-
tions which result in unbounded solutions. From the resulting equations, the system experience 

different resonance conditions such as primary resonance case 1 1 ,  2 2 ,   3 3   ; in-

ternal resonance case 1 2 ,  2 3 ,  3 1  ; combined resonance 

case 1 2 22 ,    1 2 32 ,    1 3 32 ,    3 2 32 ,    and simultaneous resonances 

occurring with the combination of above resonance conditions. 

5.2.4 1:1:1 Internal Resonance    1 2 3    

It is found numerically that the internal resonance of 1:1:1 exist between the links of the manip-

ulator system, i.e., 1 ,  2 ,  and 3  are nearly equal to each other for certain system parame-

ters. This internal resonance can be avoided by changing the length of the links and hence vary-

ing  L1,2 .  In the present case, nonlinear free vibration case has been analyzed by giving a 

small initial excitation to the first link and investigating the influence of system parameters on 
the vibration behavior of the second and third links due to the existence of internal resonance. 
The harmonic motions given to the joints are neglected from Eqs. (5.24)-(5.26). Further, the 

nearness of 1  to 2  for internal resonance condition in the first two links are expressed as 

2 1   , and 2  to 3  for internal resonance condition in last two links are, respectively ex-

pressed as 3 2  , here  1,2 are known as detuning parameters. Now, using the procedure 

explained in subsection 3.2.3 and eliminating the secular terms leading to unbounded solutions, 
the following expressions are obtained: 

 + 2 -3 = 0.2
1 1 1 1 32i G T i G G G            (5.37) 
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Now, the polar form of  1G T ,
  1H T ,

  1I T  expressed respectively as 

       1 1i
1 1 1= 1 2 e ,

T
G T a T

        2 1i
1 2 1= 1 2 e ,

T
H T a T


and        3 1i

1 3 1= 1 2 e
T

I T a T


and substi-

tuted in Eqs. (5.37)-(5.39) to obtain the governing equations for the modulation amplitude and 
phases of respective links. 
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(5.42) 

The first order approximate solutions of links in terms of original time variable τ, are expressed 
as: 

   cos τ - + O1 1 1 10.5 ,p a      cos O2 2 1 1 10.5 ,p a      

   cos O3 3 1 1 1 20.5 .p a                 (5.43) 

The steady-state response of the second and third link can be obtained by eliminating the 
terms involving temporal changes in modulation amplitudes and phases in Eqs. (5.40)-(5.42) i.e.  

2 1 3 1 1 1 2 1a / T , a / T , / T , / T 0.           The elimination of phases i.e. 1 2  ,  , from the result-

ant equations results in the sixth-order polynomial in terms of amplitudes  1 2 3a ,a ,a  and de-

tuning parameters  1 2,  . The stability of the steady-state solutions for the second link is as-

certained by introducing a small perturbation  21 11  a , in 2 1a ,  as 2 20 21a a a   , 1 10 11      

and investigating the eigenvalues of the following resultant Jacobian matrix: 

  

   
   

   

   
   

   

&

&

2
6 1 10 2 102 2

2 9 1 10 2 10 2 2
9 1 10 20 2 10

2 2 2
1 2 20 13 20 2 3 10 1 2 2

1 6 1 10 20 2 102 2
9 1 10 20 2 10 2 2

9 1 10 2 102 2
9 1 10 20 2

2 cos
8 sin 2

4 cos 2

9 8 3 8
2 sin

8 cos 2
4 sin 2

4

a
a

a a
a

a a a
a a

a a
a

a a

 
  

 

    
 

 


    
    
  


              
  


 
  

10

10

.
a






   
  





 

If the eigenvalues of coefficient matrix  J  have negative real parts the solution is stable, oth-

erwise unstable. The stability of the steady-state solutions of Eq. 
Error! Reference source not found.can also be determined in a similar manner. 

5.2.5 Primary Resonance in the links       1 1 2 2 3 3, ,      

The primary resonance occurs in all the links of the manipulator when the frequency of the 
driving harmonic joint motion becomes equal or nearly equal to the normalized frequency of 
the link. Here the internal resonance has been avoided by considering different lengths of the 

links by changing 1,2L . For the primary resonance case, the nearness of i  to i  can be ex-

pressed as i i i    . Now, substituting these expressions along with the Eqs. (5.34)-(5.36) in 

Eqs. (5.29), (5.31) & (5.33) and eliminating the secular terms for the bounded solutions, follow-
ing equations are obtained:  

     1 1 1 1 1 1 1 1 2 1 1 1 3 1 3sin 2 sin 2 8 0, ,b T b b T                  

      3
1 1 1 1 1 1 3 1 1 2 1 2 1 1 3 1cos 2 2 cos 2 8 3 8 0.b T b b b b                  (5.44) 

     2 2 1 2 2 2 5 2 8 2 2 2 4 1 4sin 2 sin 2 8 0, ,b T b b T                  

      
 

2 2
2 2 2 1 2 2 4 5 2 2 8 7 9 1 1

3
8 2 2 13 2

cos 2 2 2

cos 2 8 3 8 0.

b T b b b

b b

      

  

         

 
   (5.45) 
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 (5.46) 

The frequency response curves in terms of the modulation amplitudes  ib  and detuning 

parameters  i  
for the steady-state condition  i ib t , t 0      of Eqs. (5.44)-(5.46) can be 

obtained by eliminating the phase terms  i . The stability of the steady-state solutions can be 

investigated by following the procedure explained in previous subsection.  
 

5.2.6 RESULTS AND DISCUSSIONS  

a) Modal analysis: eigenfrequencies and eigenspectrums 

The robotic manipulators are involved in variety of operations in diverse environments involv-
ing various forcing conditions. Hence, it is of utmost importance to have a better understanding 
of the behavior of modal parameters of the robotic manipulators such as eigenfrequencies and 
mode shapes, so that the designer could manipulate the system to work under safe conditions. 
In circumstances, when the system is subjected to a forcing frequency equal or nearly equal to 
one of the system natural frequencies, the system tends to vibrate at inadmissible amplitudes 
which are catastrophic for the system as well as for the operator involved. The manipulation of 
the system can be accomplished by varying the system parameters and their affect can be visu-
alized by alternating the nondimensional system parameters. The analysis of system dynamics 
can be better interpreted by having the prior information about the modal parameters which is 
basic and an essential requirement. The nondimensional eigenfrequencies of the system can be 
obtained by numerical solution of the transcendental eigenfrequency equation resulting from 
the condition for the existence of nontrivial solution of equation obtained in subsection 5.2.1. 
The system parameters can be varied to obtain different configuration of the multi-link manip-
ulators such as changing the material of different links represented by flexural rigidity ratios 

 1,2  and beam mass density ratios  M1,2 , varying the hub-joints stiffness or iner-

tia  h1,2,3 h1,2,3,I  etc. Manipulators involved in tasks such as lifting or placing of different ob-

jects can be viewed as variation of payload parameter at the terminal of the third link  m3 . 

The variation of other parameters can be understood in a similar manner. The system eigenfre-

quencies decreases with the increase in mass of the payload being lifted by manipulator  m3 , 

joint inertias  Ih1,2,3 , beam mass density ratios of the links  M1,2  and joint masses  m1,2 . 

The increase in flexural rigidity ratios of the links  1,2 and stiffness of the joint  h1,2,3
 
causes 

an increase in the values of system eigenfrequencies. Here also, the system eigenfrequencies 
show a jump at the unit magnitude of the joint frequency which is a condition where the joint 
dynamics gets decoupled from the link dynamics and the joint tends to behave as a point mass. 
For higher values of joint frequency, the system tends to vibrate at a higher mode of vibration. 
The influence of system parameters is significant on the fundamental natural frequencies of the 
manipulator which may result in the inaccurate predication of resonance phenomenon during 
the forced interaction of manipulator. 

 An efficient vibration control and stabilization of a multi-link manipulator (3R) under 
the influence of various design parameters can be achieved by having a better understanding of 
variation of vibration spectrums with system parameters. The fundamental characteristics of a 
mechanism or mechanical structure in modal space are resonant frequencies and the corre-
sponding eigenfunctions. In this section, the unpredictability of the system dynamics under es-
sential parametric variation and subsequent configuration dependency of the system, are inves-

https://www.thesaurus.com/browse/unpredictability
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tigated in terms of modal properties. It is obvious that any change in the inertia and stiffness 
properties of multi-link manipulator leads to variations of the eigenfrequencies and hence di-
rectly introduces uncertainty and robustness problems in such manipulators. Hence, the pre-
sent study shall demonstrate the passive control of the system through the variation of multi-
link parameters. 

 In various industrial applications a robot is utilized to manipulate different payloads 
and hence the dynamic characteristics of the manipulator depend on the payload. The payload 
lifted by the manipulator adversely affects the overall inertia of the system which in turn 
changes the system eigenfrequencies and hence the mode shapes. The influence of pay-

load  m3
 
on the 3R manipulator system is illustrated in Fig. 5.2, where the mode shapes of the 

system are compared with no payload condition. It is clearly evident that the consideration of 

payload  m3 significantly affects the all modes of vibrations and the amplitude of the manipu-

lator tip decreases with increase in payload leading to error in the modal displacements of 
about 30-40 %. The higher modes of vibration remain unaltered with the variation of payload 
and mode shapes clutter along the length of the manipulator. 

     
Fig. 5.2: Influence of payload mass parameter  m 3 on mode shapes apes 

with m1,2 1.0,  M1,2 1.0,  L1,2 1.0,  1,2 1.0,   h1,2 ,3 0.5,  ,  and Ih1,2 ,3 1.0  (a) mode 1 (b) mode 2. 

The variation of mode shapes with the change in beam density of second  M1 and 

third link  M2
 
is demonstrated in Fig. 5.3. The beam density associated with the links can be 

maintained by changing the cross sectional area of the link if both the links are of same materi-
al. The influence of beam density is prominent in case of higher modes of vibration and mode 
shapes tend to spread out along the length of manipulator. The amplitude of the higher mode 

shapes increases with increase in second link beam mass density  M1 , while the amplitude 

decreases with increase in third link beam mass density parameter  M2 . 
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Fig. 5.3: Influence of first and second beam mass density parameter  M1,2 on mode shapes with  m1,2,3  1.0,   

 1,2 1.0,  L1,2 1.0,   h1,2 ,3 0.5,   ,  and Ih1,2 ,3 1.0  (a) mode 1 (b) mode 2. 

 

The variation of system mode shapes with flexibility of the second link and third 

link  1,2  with respect to the first link is shown in Fig. 5.4. It is evident from the figure that 

both the flexural rigidity ratio of second link and third link immensely affect the modes of vi-
bration. The amplitude of manipulator decreases with the increase in the second link flexural 

rigidity ratio  1  and the third link flexural rigidity ratio  2 . The higher modes of vibration 

in second case clutter together nullifying the effect of the change in  2 , unlike the case of se-

cond link flexural rigidity ratio  1 .  

           

   
Fig. 5.4: Influence of flexural rigidity ratios   1,2 on mode shapes with m1,2 ,3 1.0,  M1,2 1.0,  L1,2 1.0,  

 h1,2 ,3 0.5,  and Ih1,2 ,3 1.0  (a) mode 1 (b) mode 2. 
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In Fig. 5.5, the influence of hub inertia  Ih2,3  on the mode shapes of the system is 

demonstrated. It is evident; that the hub inertia affects the lower modes of vibration significant-
ly while the amplitude of the system decreases with the increase in hub inertia This effect is no-
ticeable only for the larger range of lower eigenfrequencies. The variation of hub-joint frequen-

cy  h1,3  of system can be regarded as the variation of joint stiffness. Unit magnitude of joint 

parameters is the limiting case when Eqs. (5.17)-(5.19) becomes invalid and hub-joint dynamics 
gets decoupled from the manipulator dynamics which in turn compels the joints and hub to 
behave like concentrated masses. The eigenfunctions for this limiting case have to be calculated 
by considering the manipulator having point masses at the joints and neglecting the revolute 
motion of the joints. It has already been noticed that the system changes its behavior for the 
frequency parameter values between 1 and 1.5. The influence of system eigenspectrum with 

hub  h1  and second joint frequency  h3 is shown in Fig. 5.6. The change in hub frequency 

 h1  is indicative of a significant effect on the deflection of manipulator and the amplitude of 

the proximal end of the manipulator increases with increase in  h1 .  A change in behavior of 

the manipulator is visible at h3 =1.5 due to a sudden jump in eigenfrequencies as discussed in 

previous section. For second joint frequency parameter values of 1.0< h3 <1.5, the system vi-

brates at higher mode of vibration for the corresponding eigenfrequency. 

 
Fig. 5.5: Influence of hub joint inertia parameters   Ih2 ,3 on mode shapes with m1,2 ,3 1.0,  M1,2 1.0,  L1,2 1.0,  

 1,2 1.0, and h1,2 ,3 1.0  (a) mode 1 (b) mode 2. 
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Fig. 5.6: Influence of hub joint frequency parameter   1,3 on mode shapes with m1,2 ,3 1.0,   M1,2 1.0,  

 L1,2 1.0,   Ih1,2 ,3 1.0,   1,2 1.0,  and h2 1.0  (a) mode 1 (b) mode 2. 

The determination of eigencharacteristics plays a significant role in many applications 
such as design, control and identifications of flexible manipulators. The first eigenfrequency is 
most important vibration mode regarding control of flexible manipulators as it imposes the 
limitation on the system to maneuver at higher speeds. Also, control algorithm such as com-
mand shaping depends on the accurate determination of first eigenfrequency and the corre-
sponding eigenfunctions. Hence, the manipulator system can be modified to enhance its per-
formance by manipulating the eigenfrequencies. Also, the evaluation of eigenfrequencies and 
corresponding mode shapes enables the design engineer to have a provision for the adjustment 
in the system by varying system parameters when forcing frequency becomes equal or nearly 
equal to one of the natural frequencies of the manipulator resulting in the phenomenon called 
resonance. 

b) System performance: tip Responses 

Here, the closed form of equations obtained as Eq. (5.23) is numerically simulated to analyze 
the system responses, i.e., angular tip positions, tip displacements and angular accelerations of 
the links, under externally applied joint torques for better understanding of the system dynam-
ics while achieving the desired set points. The system responses are significantly affected by the 
change in the manipulator configurations and parameters which in turn influence the effective-
ness of the manipulator performance. Smooth sinusoidal torque of amplitude 0.1 N-m, 0.2 N-m, 
and 0.3 N-m with a duty cycle of 2 seconds is applied at the first, second and third hub joint, 
respectively. The geometric and physical characteristics of the manipulator considered for the 

simulations are density of the links  1,2,3  as 7800 kg/m3, length of the links as  1,2,3L  0.5m, 

Young’s modulus of material of links as  1,2,3E 240 GPa, mass moment of inertia of links as 

 h1,2,3I 0.008 kg/m2, and masses at the terminal of the links  1,2,3m as 0.1 kg. The parametric 

variations of the time responses are depicted in Fig. 5.7-Fig. 5.10 for different system parame-
ters. From Fig. 5.7 it can be observed that the angular tip position of the links and the settling 
time decreases with increase in payload mass. The increase in payload mass increases the total 
inertia of the system and hence the amplitude of the tip acceleration decreases. However, vibra-
tions in the tip after the duty cycle of the torque in case of the terminal link are observed to be 
larger as compared to the first link. Hence, it can also be concluded that, as the number of links 
are increased in the manipulator, end tip vibrations increase and therefore more effective con-
trol techniques have to be adopted for the last link as compared to the first link. Due to its in-
volved dynamics in the first and second link boundary conditions, the third joint mass only af-
fects the first and second links which is noticeable in Fig. 5.8. The angular positions and the set-
tling time of the first and second link decrease with the third joint mass leading to significant 
position inaccuracy of the manipulator. 
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Fig. 5.7: Influence of payload mass  3m  on the angular positions and tip accelerations of the (a) first link (b) 

second link (c) third linkthe links. 

   

Fig. 5.8: Influence third joint mass  2m on the angular positions of the (a) first link (b) second link (c) third 

link.the links. 

The variation of system response with the change in joint inertia is shown in Fig. 5.9. It is 
observed that the angular tip position decreases with the increase in joint inertias. As the num-
ber of links of the manipulator is increased, the effect of change in joint inertia on the end point 
accelarations increases. The tip of the third link experience large residual vibrations as com-
pared to the first link after the duty cycle of the respective torques.  
   

 
 

(a) (b) 

(c) 

(a) 
(b) 

(c) 

(a) (b) 

(c) 
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Fig. 5.9: Influence joint inertias  h , ,I 1 2 3 on the angular positions and tip accelerations of the (a) first link (b) se-

cond link (c) third link.the links. 

The variation in length of the manipulator links has a significant influence on the angular 
position of the respective link which is also evident in Fig. 5.10. The increase in length of the 
second link decreases the angular tip position of the links and this effect is most prominent in 
the case of second link tip response. In the case of first link, the residual vibration damp out af-
ter 5 seconds, but in the case of second and third links the rigid vibrations of the tip increases 
which may cause the inaccuracies in the tip positioning. The study of the tip responses due to 
the input torque shall contribute to the enhancement of effective control techniques for PRR 
and long reach manipulators. It is also observed that as the increase in the length of the manip-
ulator induces inaccuracies in the tip position due to parametric variations, the control engineer 
has to appropriately design the controllers to suppress or attenuate the residual vibrations in 
the manipulators, especially for use in precision industries. 

 

 

Fig. 5.10: Influence length of links  L2 on the angular positions and modal displacements of the links. the (a) 

first link (b) second link (c) third link. 

c) Nonlinear analysis: bifurcation and stability 

 
The geometrical and physical properties of the links considered for the simulations and fre-
quency response curves are similar to the subsection 4.4.5. The nondimensional damping coef-

ficients  1,2 , amplitude of the revolute motion of joints 10 ,20 ,30 , small book keeping parame-

(a) 
(b) 

(c) 
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ter    
and scaling factor  r are chosen as 0.01, 0.0005, 0.1 and 0.005, respectively. The other pa-

rameters have been indicated in the figures or captions. To avoid the internal resonance the 

length parameters for the second  L1  and third link  L2
 
is taken as 1.1 and 1.2, respectively. 

The bifurcation diagrams for the internal resonance arising due to the inertial coupling between 
the links and the primary resonance due to the revolute motion of the joints are illustrated in 
Fig. 5.11-Fig. 5.24. The representative frequency response curves for the internal resonance in 
second link and primary resonance in first link have been shown in Fig. 5.11.  

    
Fig. 5.11: Frequency response curves of (a) the second and first link for internal resonance and  (b) the first link 

for primary resonance, respectively. 

   

   
Fig. 5.� SEQ Fig. \* ARABIC \s 1 �12�: (a) Numerical and (b) analytical time histories, phase portrait and (c) FFT of 

critical points G, H, and I identified inkeyed to Fig. 5.11. 

In all figures the dashed line represents the unstable solutions while solid line depicts 
stable solutions. The system exhibits multi-valued solutions and jump phenomenon due to 
saddle-node bifurcations for the existence of geometrical nonlinearities. Spring softening and 
spring-hardening behaviors are observed in second and first link for internal and primary res-
onance case, respectively. The jump up and jump down phenomena occurring while the start-
ing or stopping of the prime mover may result in the catastrophic failure of the manipulator 
system. The time response, phase portrait and FFT’s obtained by numerically solving Eq. (5.24) 

(a) (a) 
(b) 

(b) 
(c) 
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have been compared in Fig. 5.12 with the corresponding analytical results determined from re-
duced equations of the amplitude and phase accomplished in Eq.  (5.44) at the various critical 
points (G, H, I) as identified in Fig. 5.11 and found to be in good agreement. Further, the influ-
ence of system characteristics on the frequency response curves of the links for internal reso-
nance and primary resonance case has been examined in order to have a better understanding 
of ways to attenuate unwanted vibrations by operating the system in safe zones. 

Now, firstly, the influence of system parameters on the nonlinear behavior of the system 
through frequency response curves for the internal resonance case and in later part the primary 

resonance is studied. The effect of the initial excitations  1a given to the first link on the fre-

quency response of the second and third links is depicted in Fig. 5.13. The amplitude of both 
the links at a particular frequency and the unstable regions increase with increase in the ampli-

tude of the excitations. As the mass of the payload  m3 lifted by the manipulator increases, 

the jump length decreases for both links leading to smaller unstable region and the links tend to 
vibrate at lower amplitudes at a particular frequency which is also noticeable in Fig. 5.14. The 

comparison has been made with respect to the no payload condition  m3  0 
 
and the jump 

phenomenon occurs at much lower frequency as the payload mass  m3 
 
is increased. 

   
Fig. 5.13: Influence of initial excitation  1a on frequency response curves of (a) second and (b) third link for 

internal resonance with m1,2 ,3 1.0,  M1,2 1.0,  1,2 1.0,  L1,2 1.0,  h1,2 ,3 0.5, and Ih1,2 ,3 1.0.   

     
Fig. 5.14: Influence of payload mass  m 3   on frequency response curves of (a) second and (b) third link for 

internal resonance with m1,2 1.0,  M1,2 1.0,   1,2 1.0,  L1,2 1.0,    h1,2 ,3 0.5,   and Ih1,2 ,3 1.0.  

The flexural rigidity  1,2
 
and beam mass density  M1,2

 
ratio of the links can be var-

ied by changing the cross-sectional dimensions of the links. The influence of variation in flexur-
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al rigidity  1  
on the frequency response curves is illustrated in Fig. 5.15. It is observed that, 

while the amplitude of the first link at a particular frequency increases, the amplitude of the 

second link decreases with the increase in flexural rigidity  1 . A negligible effect of flexural 

rigidity ratio  2  
on the frequency response of the second link is noticed, but the jump length 

in case of   link increases with the increase in flexural rigidity ratio of the third link. It can be 

observed from Fig. 5.16 that the beam mass density of the third link  M2  
significantly affects 

the frequency response of both links, and the steady-state amplitude of the second link at a spe-
cific frequency increases while that of the third link decreases. 

 

      
Fig. 5.15: Influence of second link flexural rigidity ratio  1

  on frequency response curves of (a) second and 

(b) third link for internal resonance with m1,2 ,3 1.0,  M1,2 1.0,     2 1.0,   L1,2 1.0,  h1,2 ,3 0.5,    

and Ih1,2 ,3 1.0.   

 

 
Fig. 5.16: Influence of third link beam mass density parameter  M2

on frequency response curves of (a) se-

cond and (b) third link for internal resonance with m1,2 ,3 1.0,  M1 1.0,  1,2 1.0,  L1,2 1.0,  h1,2 ,3 0.5,  and 

 Ih1,2 ,3 1.0.   

The jump length of both links increase with increase in joint inertias  Ih1,2,3 which is al-

so demonstrated in Fig. 5.17. For the third link the unstable region is very small and the system 

vibrates at very small amplitude for small values of joint inertias  Ih1,2,3 . The first joint fre-

quency  Ih1  has a negligible influence on the steady-state response of the second link which 

is also depicted in Fig. 5.18. In the case of third link, the amplitude at a specific frequency first 

increases up to the unit magnitude of h1  h1 1   and with the further increase in h1  results 

in decrease in the jump length. It can be observed that no behavior changes occur in the second 
and third link for the internal resonance case and both the manipulator exhibit spring softening 
behavior for parametric variations. 
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Fig. 5.17: Influence of hub and joint inertia parameter   Ih1,2 ,3 on frequency response curves of (a) second and 

(b) third link for internal resonance with m1,2 ,3 1.0,  M1,2 1.0,   1,2 1.0,   L1,2 1.0,  and  h1,2 ,3 0.5.   

    
Fig. 5.18: Influence of first hub joint frequency parameter  h1

on frequency response curves of (a) second 

and (b) third link for internal resonance with m1,2 ,3 1.0,  M1,2 1.0,  

 1,2 1.0,  L1,2 1.0,  h2,3 0.5. and Ih1,2 ,3 1.0.  

 

The first link experiences behavior alteration as shown in Fig. 5.19; from spring softening 

to spring hardening with increase in payload  m3
 
for the primary resonance in the link aris-

ing due to the revolute motions given to the joints. For no payload condition  m3 0  , the 

jump length and the unstable region is much smaller in the case of the second and third links. It 
is noticed that the first link demonstrate spring softening behavior while the second and third 
links show spring hardening behavior for the variation of second link flexural rigidity ratio 

 1  
as illustrated in Fig. 5.20. While a marginal change is noticed in the amplitude of the first 

link, the amplitude of the second and third links respectively increase and decrease with in-

crease in flexural rigidity ratio  1 . 

 

(a) (b) 
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Fig. 5.19: Influence of payload mass  m 3 on frequency response curves of (a) first, (b) second and (c) third 

link for simple resonance with m1,2 1.0,  M1,2 1.0,  1,2 1.0,  L1 1.1,  L2 1.2,  h1,2 ,3 0.5,  and Ih1,2 ,3 1.0.  

 
Fig. 5.20: Influence of second link flexural rigidity ratio  1

on frequency response curves of (a) first, (b) se-

cond and (c) third link for simple resonance with  m1,2 ,3 1.0,  M1,2 1.0,   2 1.0,   L1 1.1,  L2 1.2,   h1,2 ,3 0.5,  

 Ih1,2 ,3 1.0.
 

 
The first link changes its behavior from spring softening to spring hardening and the am-

plitude of the second link at a particular frequency increases with the increase in beam mass 

density of the second link  M1 which is evident from Fig. 5.21. This behavior alteration can 

lead to significant increase or decrease in manipulator vibrations while under operating condi-
tions and may damage the system if appropriate trend is not maintained. Also, as the beam 

mass density  M1
 
is increased, the frequency range at which the jump phenomenon occurs 

also increases. A negligible effect on the frequency response of the third link is seen with the 

change of beam mass density  M1 . Mostly, it is noticed that the nonlinear behavior of the first 

link is affected by the various system parameters. In the case of lower values of joint inertia pa-
rameters, the system exhibits spring hardening behavior and for higher values of Ih1,2,3  the 

system changes its behavior to spring softening as shown in Fig. 5.22. The amplitudes of other 
the two links increases with the increase in Ih1,2,3

 
at a particular detuning parameter.  

 
Fig. 5.21: Influence of second link beam mass density parameter  M1

on frequency response curves of (a) first, 

(b) second and (c) third link for simple resonance with 

 m1,2 ,3 1.0,  M2 1.0,  1,2 1.0,  L1 1.1,  L2 1.2,  h1,2 ,3 0.5, and Ih1,2 ,3 1.0.
 

The variation of frequency response of the links of a 3R manipulator with the first and 

third joint frequencies  h1,3  is shown in Fig. 5.23-Fig. 5.24. The increase in first joint frequen-

cy parameter  h1 causes a change in the behavior of the first link from spring softening to 

spring hardening with a marginal influence on the jump length of the second and third links. It 
is also observed that the S-N bifurcation point for the second and third link almost occurs at the 

same point. The third joint frequency  h3  alters the behavior from spring softening to spring 
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hardening for second and third links. However, in the case of the first link, the behavior change 

is seen only around the unit magnitude ( h3 =1.0), of the third joint frequency parameter. 

 

 

Fig. 5.22: Influence of hub and joint inertia parameter   Ih1,2 ,3 on frequency response curves of (a) first, (b) se-

cond and (c) third link for simple resonance with m1,2 ,3 1.0,   M1,2 1.0,   1,2 1.0,   L1 1.1,   L2 1.2,  and 

 h1,2 ,3 0.5.   

 
Fig. 5.23 : Influence of first hub joint frequency parameter  h1

on frequency response curves of (a) first, (b) 

second and (c) third link for simple resonance with m1,2 ,3 1.0,   M1,2 1.0,   1,2 1.0,   L1 1.1,  L2 1.2,   

 h2 ,3 0.5  and  Ih1,2 ,3 1.0.   

 
Fig. 5.24: Influence of third hub joint frequency parameter  h3 on frequency response curves of (a) first, (b) 

second and (c) third link for simple resonance with m1,2 ,3 1.0,   M1,2 1.0,   1,2 1.0,  L1 1.1,  L2 1.2,   

 h1,2 0.5 and Ih1,2 ,3 1.0.    

 

5.3 SUMMARY 
 
This work presents a theoretical framework to dynamically model a multi-link flexible manipu-
lator having harmonic prismatic and revolute joints and undergoing a bidirectional time de-
pendent motion. The influence of system parameters on the modal characteristics of 3R manip-
ulator are examined.  
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The eigenfrequencies decrease with the increase in inertia of the system due to addition of 
payload mass, joint inertia and beam mass density of the second and third links. The eigenfre-
quencies increase with increase in system stiffness as the flexural rigidity ratio associated with 
the links and stiffness of the joints is increased. A sudden jump in the eigenfrequencies is ob-
served at the unit magnitude of joint frequency parameter. The deflection of the manipulator is 
significantly affected by the change in the mass of payload and system mass parameters. The 
influence of the payload on the higher modes of vibration is observed to be negligible and clut-
tering of the mode shapes is noticed. The change in beam mass density and flexural rigidity of 
the links majorly affects the higher modes of vibration and the amplitude of the manipulator 
decreases with the increase in joint inertia. At certain values of joint frequency parameter the 
system changes it behavior adversely and starts vibrating at higher modes of vibration to the 
corresponding eigenfrequency. The decoupling of joint dynamics from the system is observed 
for the unit magnitude of the joint frequency parameters and the joints start acting like concen-
trated mass. 

The system responses such as angular tip positions, modal displacements and tip accel-
erations under parametric variations for the input torque are reported to comprehend the dy-
namic behavior of the system while reaching the desired positions. The links achieve a lower 
angular position for the increased payload mass, joint inertias, and link lengths when same 
amount of torque is applied to the joints. The amplitude of the link tip accelerations increase 
with the increase in number of links in the manipulator which may cause the increased interac-
tion forces with the working surface. The higher residual vibrations are noticed for the longer 
link lengths leading to the inaccurate positioning of the long reach manipulators.  

The influence of system parameters on the nonlinear behavior and bifurcations of the 3R 
manipulator for internal resonance incurring due to inertial coupling between the links and 
primary resonance as a result of harmonic motion of the joints have been studied. The second 
and third links demonstrate spring softening behavior, leading to multiple solutions and jump 
phenomena on account of geometric nonlinearities in the links for the internal resonance. While 
the amplitude and the unstable region of the second link increase with the initial excitations 
given to the first link, flexural rigidity ratio of second link, and joint inertia parameters, the 
jump length of the third link increase with the increase in beam mass density ratio of the third 
link and joint inertias. Unlike the internal resonance case where both links exhibit spring soften-
ing behavior with parametric variations, the frequency response curves of first link reveals the 
behavior alteration from spring softening to spring hardening or vice-versa with the change in 
payload mass, beam mass density ratio, joint inertias and joint parameters in case of primary 
resonance.  

 
 
 
 
 
 
 
 
 
 
 
 

 


