
4
Classification using machine learning techniques

As discussed and observed in previous chapters, there are many ways to diagnose sarcopenia

but, for various reasons, we are following the algorithm developed by EWGSOP. The ”Confirm” step

of this algorithm requires muscle power which is one of the expensive requirements. The same was

discussed in chapter 3 which resulted into a predictive model for muscle power based on BMI, gait

velocity and grip strength out of 5 variables, used as inputs. Although, this model was based on already

estimated muscle power using Takai and Smith models. The discussion concludes that STS, along with

some other physical performance parameters, is one of the most important tests in the diagnosis of

Sarcopenia. In this chapter, we use some of the functional screening tests and physical performance

parameters to classify sarcopenic subjects from non-sarcopenic subjects. We are using both the data

sets, collected in India as well as in the U.K., for the purpose of classification. We use some of the

frequently used machine learning algorithm for this classification. One of the problems, which we

observed, was that of imbalanced data, that is, divided intomajority andminority classes. It is important

tonotehere thatbalancednatureofdata is oneof theprerequisitesofmostof the classificationalgorithms.

We, therefore, briefly discuss the problem of imbalance data classification before we actually classify

the given data.

4.1 CLASSIFICATION OF IMBALANCED DATA

It has been very well established that machine Learning techniques are useful in predicting

diseases automaticallywith high frequency rate. It also reduces errors due tohuman interventionor due

to any other operational reasons. Generally, when an expert needs to understand whether a disease

is present or not, a binary classification learning algorithm becomes a powerful tool. Decision Tree,

Support Vector Machine, Logistic Regression, Artificial Neural Network etc are some of the frequently

used techniques for classification. No algorithm is universally preferable to all others but depends on

the data set and its use. While analyzing the data, it is often assumed that the distribution of classes

is uniform, that is, the data set is balanced with respect to all the categories of the response (output)

variable. Clearly, an algorithm gives good results for balanced data set. On the other hand, when the

data set is imbalanced, the data distribution features can’t be properly displayed by these algorithms.

Conventionally, an imbalanced data set is defined as the data with unequal number of examples in each

class. There are two categories of imbalance nature of the data –

(i) Between class imbalance – Uneven ratio between two ormore outcome classes originating from the

difference in class prior probabilities, that is, non-uniform distribution. (ii) Within class imbalance – Rare

cases such as, presence of uncommon type of disease. Most of the medical data fall into this category.

If the given data is to be classified into presence of disease or not, that is, two class classification, then

one of the two would be a majority class. This majority class dominates everywhere in the analysis.

Which obviously will result into wrong classification. Almost all the classifiers are sensitive to class

imbalance nature of underlying data; however, some of them are more sensitive than others. For

example, C5.0 (Decision Tree) is most sensitive as it works globally without paying attention to specific

data points. Because of the flexible nature of multilayer perceptron, it is slightly less prone to the class

imbalance problem than C5.0. Support vector machine is even less prone since boundaries between

classes are calculated with respect to only a few support vectors and the class sizes may not affect the
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class boundary too much. Similar is the case with other classifiers also. When the data is imbalanced,

the algorithm may put unknown data into the majority class, which leads to wrong classification. In

literature, the methods for addressing the class imbalance problem are primarily categorized into Data

Level Methods and Algorithmic Level Methods. The data level methods are useful in changing the

distribution of training set into uniform (Phua, Alahkoon, Lee 2004). These are resampling methods

applied in the data pre-processing stage. This creates a new relatively balanced data set based on the

original (imbalanced) one.

The idea behind data pre-processing is, before the training data is presented to the learning algorithm

several techniques canbeapplied soas tomake the learningalgorithmproperly learned fromthe imbalanced

data. They include reduction inmajority class samplepoints, under samplingormagnificationofmajority

class sample points, over sampling. Both methods have obvious drawbacks: under sampling results in

somevaluable information loss about the characteristic conceptsof themajority class,whileoversampling

increases the risk of over fitting significantly.

A straightforward way is random re-sampling which means random replication of minority class data or

random elimination of majority class data. However, exactly replicating sample points multiple times

can bias the algorithm to believe that certain examples of the predictor space are directly linked to the

outcome of interest. This risk of over fitting is the main issue when performing oversampling. To force

algorithms to focus more on the patterns instead of individual configurations, certain techniques of

generating synthetic training data are used. We discuss the sampling techniques next.

4.2 SAMPLING TECHNIQUES

We assume that the data needs to be classified into two classes only. The sampling techniques

dependson thenumberof underlying samples. If there aremore samples,wego forunderlying sampling.

In the other case, oversampling will be preferred.

4.2.1 Oversampling techniques
These techniques considerdeveloping synthetic databy increasing the samplesofminority class.

A very commonlyusedandefficient algorithm in this category isSyntheticMinorityOversampling technique

(SMOTE). This is cluster based algorithm which uses K-nearest neighbors in following manner.

For theminority classAand for each x∈A, the k-nearest neighborsof x areobtainedby calculating
the Euclidean distance between x and every other sample in set A. The sampling rate N is set according

to the imbalanced proportion. For each x ∈ A, N examples (x1,x2, · · · ,xN) are randomly selected from

its k-nearest neighbors, and they construct the set A1.

For eachexample l ∈A1(l = 1,2, · · · ,N), the following formula is used togenerate anewexample:

Xnew = x+ rand(0,1)∗d(x,xl)

where rand(0,1) is a random number between 0 and 1. To get rid of the risk due to over-generalization,

SMOTE is sometimes combined with certain data cleaning techniques.

4.2.2 Under Sampling techniques
- The objective here is to remove a set of majority class data that creates difficulty for a classifier

to learn over imbalanced data set. Some of the common approaches under this category are:

1. NearMissAlgorithm - This undersamplingmethod selects examplesbasedon thedistanceofmajority

class examples tominority class examples. There are threeversionsof the technique - i)NearMiss-1:

select examples from the majority class that have the smallest average distance to the three

closest examples from the minority class, ii) NearMiss-2: select examples from the majority class

that have the smallest average distance to the three farthest examples from the minority class,
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andNearMiss-3 that involve selecting a given number ofmajority class examples for each example

in the minority class that are closest.

The NearMiss-3 seems desirable, given that it will only keep those majority class examples which

lie on the decision boundary.

2. Tomek Link removal Let x be an instance of positive class A and y be an instance of negative class.

Let d(x,y) be the euclidean distance between x and y. (x,y) is a T(Tomek)-Link, if for any instance

z,d(x,y)< d(x,z) or d(x,y)< d(y,z).

If any two examples are T-Link then one of these examples is a noise or otherwise both examples

are located on the boundary of the classes. Resampling can occur by either removing all such pairs

or, more commonly, only the majority class sample points that form a Tomek link with a minority

class point. It is more of a data cleaning method but it is considered as under-sampling.

3. Condensed Nearest Neighborhood (CNN) - The objective here is to form a subset of the original

(unbalanced) data set such that all original samples are correctly classified by this subset when

using Nearest Neighbor classification rule. This subset becomes much smaller than the original

data set is advantageous also due to less required computation time and storage capacity.

The algorithm is as follows -

Choose any sample point x1 randomly. Now pick another point x2 closest to this sample point

by using Nearest Neighbor. If the point is classified correctly, set aside. Otherwise, put them

together in a set x1,x2. Now repeat the process until each point is either set aside or included

in the set U = x1,x2, · · · ,xN . Repeat the process again with the points set aside or one loop is

completedwithout adding extra points toU . Discard leftover points, useU as the desired subset.

As this method is practically very useful for data reduction, many useful variations such as GCNN

(GeneralizedCondensedNearestNeighbor) byChou, KuoandCheng in 2006, FCNN(Fast Condensed

Nearest Neighbor) by Angiulli (2007) have been seen in the literature.

Note that all of the resampling methods only allow resampling the data to a desired ratio, and it

is not necessary that they exactly produce the balanced samples.

4.2.3 Machine Learning Classification Approaches
Wefirst discuss, inbrief, someof the commonlyusedclassification techniques. These techniques,

along with resampling methods, will be used for sarcopenia data classification in the later section.

Instance Based Learning Instance based learning is a class of machine learning models that

instead of performing a generalization over the training data, compares the new test data with the

training instances stored in the memory, that is, there is no hypothesis learning on such algorithms and

the hypothesis are training examples themselves. It is thus a non-parametric approach of classification.

The complexity of model increases as the number of training examples increases. One of the

most popular example of Instance based learning is the K-nearest neighbor (KNN) algorithm. In KNN,

the label associated with the majority of the K neighbors to any test sample is considered as its final

label. The nearest neighbors can be estimated using some distance metrics such as Euclidean distance

or cosine distance or Manhattan distance.

NaiveBayes It is a classification technique that is basedonBayes’ Theorem that considers strong

independence assumptions between the features, that is, a Naive Bayes classifier assumes that the

presence of a particular feature in a class is not related to the presence of any other feature. For
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Figure 4.1 : Sigmoid function of logisitic regression

example, a fruit like applemay be red, round and 3 inches in diameter. All these featuresmay depend on

the existence of the other but all of these properties are considered to be independently contributing

to the probability of a fruit being an apple and that iswhy it is known as ‘Naive’. Bayes theoremprovides

a way of calculating posterior probability of observing a class c given a feature vector x = (x1, · · · ,xn)
(P(c|x)) using theprobability ofobserving certain features,P(x)and theprobability of observing features
x given a class c, P(x|c). This is given by:

P(c|x) = P(x|c)∗P(c)
P(x)

where P(x|c) = P(x1|c)∗P(x2|c)∗P(x3|c)∗ ....P(xn|c) is referred to Naive assumption.

Logistic Regression Logistic regression is named after logistic function or the sigmoid function.

Sigmoid function is an S-shaped function (Figure 4.1) that maps a real value z to the range (0,1). Using
the formula

sigmoid(z) = 1/(1+ e−z)

Logistic regression uses an equation as the representation like linear regression. The input value

x is transformed to an output value z using weights w and bias b using the linear regression equation

z = θ ∗ x+ b which is then transformed to the final hypothesis using the sigmoid activation over z, i.e.
hθ (x) = sigmoid(z). The output value hθ (x) represents the probability of the input to belong to the

default class. Thus the logistic regression takes its name froma combinationof logistic functions applied

to the regression equation to finally provide the probability output. If hθ (x)> 0.5, label 1 is assigned to

the sample, and 0 otherwise.

The coefficientsθ andbare learned fromthe trainingdatausingmaximum-likelihoodestimation.

The best coefficients would result in a model that predicts a value close to 1 for the default class and 0
otherwise. Maximum likelihood is the search procedure that seeks the value that minimizes the errors

in probabilities predicted by the model and the ground truth labels.

Loss function: Loss Function: For a single training instance, let hθ (x) be the logistic regression
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Figure 4.2 : Loss function

output and let y be the groundtruth label of the training instance, then loss is defined as follows.

Cost(hθ (x),y) =

{
−log(hθ (x)), if y = 1
−log(1−hθ (x)), if y = 0

The loss can be explained using the plots as in figure 4.2

As can be seen from theplots, on the leftwehave the function−log(hθ (x)) , where hθ (x) ranges
between zero to one. In case the ground truth label for the training instance is 1 and the predicted

hypothesis is hθ (x) is also 1, the loss is zero and incase thepredictedhypothesis is zero, the loss increases
to a very large value. The reverse scenario is seen when y=0 in the plot on right.

We can re-write the loss as

Cost(hθ (x),y) =−y∗ log(hθ (x))− (1− y)∗ log(1−hθ (x))

The overall cost function over all training examples thus becomes,

− 1
m

m

∑
i=1

yi ∗ log(hθ (xi))+(1− yi)∗ (1− log(hθ (xi))

The cost function is then minimized with respect to θ which gives us the following update

equations for θ

θ j := θ j − α

m

m
∑

i=1
(hθ (xi)− yi)xi

j

Which is exactly what we have for linear regression. Thus logistic regression is similar to linear

regression in terms of weight update rules. However the hypothesis function in the two algorithms is

different.

Support Vector Machines Support Vector Machines (SVM) is a widely used preferred machine

learning algorithm used for classification problems, which is especially effective in small sample sizes.

The SVM method works by finding a hyperplane in an N-dimensional space that classifies the points in

this space. In practice, there are large number of hyperplanes that could separate any two classeswithin
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Figure 4.3 : Support Vector Machine optimal hyperplance example

a set of data. Therefore, the aim of SVM is to find the hyperplane that has the biggest margin from all

of the points from both classes, which means taking the distance of all of the points from each class

from the hyperplane. The greatest value among all the possible hyperplanes is used to classify data

into classes, whichmeans that any future data points should also be classifiedmore accurately with this

hyperplane than any of the other choices.

In SVM, support vectors are the points that are the closest to the hyperplane, as shown by the

circled data points in Fig 4.3. These points have the greatest influence on the hyperplane and can affect

both the orientations and the position of the plane. In SVM the output of the linear function is taken,

with values greater than 1 classified as a single class, while those less than -1 are grouped into a separate

class.

The loss function that maximizes the margin in SVM analysis is hinge loss, which is defined as:

c(x,y, f (x) =

{
0, if y∗ f (x) = 1
1− y∗ f (x), otherwise

Hinge losswill be 0 for caseswhere both the predicted value and the actual value have the same

sign (−1or+1)or is otherwise non-zero. Theweights are then updated using gradients computed using

the partial derivative of losswith respect toweights. These updates continue until the loss isminimized,

or until there are no more misclassifications. There are a range of different kernels that can be used in

SVM analysis such as Linear kernels to determine linear hyperplane and the Radial Basis Function (RBF)

kernel that find non-linear hyperplane.

Decision Trees

Decision tree is an easy to implement classification algorithm that can take both numerical and

categorical features together. The root nodes constitute the entire training dataset and the tree is

designed using step-by-step splits, where at each split the dataset is divided into categories based on a

criteria. The simplest split decision is made using the Information Gain criteria where the tree is split on

thebasis of a condition thatmaximizes the information gain. Information gain is defined as the decrease

in the entropy from the stage i to stage i+ 1, where entropy is the degree of randomness of the data

and is defined as
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H(X) =−
n
∑

i=1
pilog2 (pi)

Other measures include Gini index which considers the goodness of the split by checking how

mixed the response classes are in the groups created by the split. The Gini score is defined by :

G = ∑(p2
k) for k ∈C

A perfect split is the one in which there is only on class is probable and hence pk = 1 and G = 0
. The worst split is the one in which both the classes are equally probable and it is difficult to take a

decision i.e. pk = 0.5 and G = 0.5

If decision trees are prone to overfitting for the scenarioswhen there are toomany features and

the tree becomes too complex. To overcome the problem of overfitting, we either restrict the length

of the tree or restrict the decision splits where every decision made has atleast N number of samples,

where N is what we specify.

Random Forests A random forest, as the name implies, is whenmany decision trees are formed

to operate as a forest. In this case, each of the trees in the forest has its own predictive model, with the

overall decision chosen by maximum votes. Given that the final decision of the random forest method

is based onmultiple decision trees, it is more accurate as even if one tree gives awrong ans it is rectified

by the other. To develop multiple trees we may set random subsets of features every time in each tree

to make the splits. Random forest is a type of Bagging ensemble technique i.e. it takes a bag of trees

and estimates the final decision while considering themajority decision by all the trees and the decision

of all the trees are given equal importance.

Adaboost Adaboost is used in conjunction with many other types of learning algorithms to

improve or boost their performance. Unlike the bagging ensemble algorithms like random forest that

gives an equal weightage to all the models while predicting the label for a test sample, in adaboost the

output of the learning algorithms is combined into a weighted sum that represents the final output of

the boosted classifier. The weights are assigned to each model based on how accurate a model is. A

model that predicts the test instances with a highest accuracy is assigned a highest weight while the

one which is least accurate is assigned the lowest weight. In this way the predictions are influenced by

stronger models than by the weaker examples.

XG Boost The XGBoost implements the gradient boosting decision tree algorithm. Boosting as

we discussed previously is an ensemble technique where new models are added with an objective of

correcting the errorsmade by the existingmodels. The addition of thesemodels is done until no further

improvements can bemade. Adaboost that we discussed previously was one such technique. Gradient

boosting is an approach where new models are created that predict the residuals or errors of prior

models and then added together to make the final prediction. It is called gradient boosting because it

uses a gradient descent algorithm to minimize the loss when adding newmodels.

Next, we define the evaluation metrics over which the performance of various classification

algorithms is measured.

4.3 EVALUATIONMEASURES

In general, Accuracy is the most commonly used measure for classification. However, in case of

imbalance data, it is not a proper measure as the accuracy will be dominated by the majority class and

the minority class will have less impact on it.

Literaturehas shown thatdifferent accuracymeasures aregenerated formany studies reported,
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with each study needing to take into account the misclassification cost with respect to the condition

being studied [Maratea, A..et al. 2014]. In the present study, we are interested in sarcopenia, which is

a condition thought to be present in around 15-20% of the Indian population. Although the long-term

effects of sarcopenia can lead to disability and death, it is a treatable condition, with the treatment

including physical activity. Accordingly, it is more important to detect all cases of sarcopenia, with no

particular problem if controls are mistakenly classified as sarcopenic. Accordingly, the performance

metrics privileged in the first stage of this analysis using the imbalanced data set is recall in theminority

data set.

Consider the confusion matrix –

Observed
Predicted

Positive Negative

Positive TP FN

Negative FP TN

Following measures can be now derived -

Accuracy :
(T P+T N)

(T P+T N +FP+FN)

The accuracy is the most important measure but could be misleading for non-uniform distribution of

classes.

ErrorRate : 1−Accuracy

Sensitivity(Recall) :
T P

(T P+FN)

Recall is a measure of completeness, that is, how often a test correctly generates a positive result for

peoplewho have the condition being tested for. More sensitive testwill flag almost everyonewho have

the disease and not generate many false-negative results.

Speci f icity :
T N

(T N +FP)

Specificity measures the ability to correctly generate a negative result for people who don’t have the

condition being tested for.

Precision :
T P

(T P+FP)

Precision is ameasureof exactness, that is, outof all predictedpositives, howmanyare correctly classified.

False Positive Rate :
FP

(T N +FP)
= 1− speci f icity

F-Score (Harmonic Mean of Precision and Recall)

F −Score = (1+β
2)(PR∗RE)/(β 2 ∗PR+RE)

Where, β is to adjust the relative importance of PR and RE. For balance data, the most common value

of β is 1. With 0 < β < 1 we care more about precision and so the higher the threshold the higher the

F-score. When β > 1 our optimal threshold moves toward lower thresholds.

G−Mean =
√

SENS∗SPEC
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The G-mean measures the balanced performance of a learning algorithm. It actually measures the

overall accuracy. Mathew’s correlation coefficient

MCC =
(T P∗T N −FP∗FN)√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)

It always lies between -1 and +1 and takes into account all four values in the confusion matrix. A high

value means that both classes are predicted well, even if the data is imbalanced. AUC (Area under the

curve) – ROC (Receiver Operating Characteristics) curve - The ROC curve is plotted with Recall against

the False Positive Rate where Recall is on y-axis and False Positive Rate is on the x-axis. Higher value of

AUC indicates that the measure of classification is able to separate the classes nicely.

4.4 SARCOPENIA DETECTION

In order for the Sit to stand test to diagnose sarcopenia, it needs to be able to replicate all

the stages of the updated EWGSOP algorithm (Figure 1.1) [Cruz-Jentoft et al. [2018]]. This includes

an evaluation of muscle strength, muscle quantity or quality, and physical performance. The recent

development of the EWGSOP which has included the 5STS as a measure of muscle strength has also

seen the change from the SPPB to gait speed for the recommended test of physical performance

[Cruz-Jentoft et al. [2018]].However, a recent study has shown that chair stand tests can be used as

a surrogate test for gait speed[Nishimura et al. [2017]]. This would suggest that, rather than using two

different tests for muscle strength and physical performance, it might be possible to use the STS for

both components of the sarcopenia diagnosis algorithm (Figure 1.1).

Prediction of an older person as meeting or not meeting the physical performance threshold

for sarcopenia can be considered to be a classification problem, which in the medical field has become

an important application. However, disease detection using classification techniques is problematic as

identifying rare disease is by definition an unlikely event, meaning it is hard to find cases of the condition

being studied. This means that, in practice, most cases of medical data are imbalanced, meaning that

the distribution of the target class is not uniform between cases and controls. If we use the predicted

prevalence of sarcopenia in India from the WHO SAGE dataset as an estimate of sarcopenia likely to be

found, there are 18% of older people with sarcopenia[Tyrovolas et al. [2016]]. This means that a random

sample of older peoplewill have a ratio of 4:1 between cases and controls andwould this be imbalanced.

A solution to the problem of imbalanced data sets is to use machine learning classifiers,

which are designed to maximize accuracy and minimize error. Despite this, imbalanced medical data

classification accuracy for the minor class (usually cases) is very low, meaning that the prediction of

disease is rare and often wrong.

A standard solution in machine learning is to use random under/ over sampling on the data

to solve the problem of imbalanced data. However, for such data sets it is advisable to have deep

knowledge of the different features to extract valuable information by using advanced classification

techniques.

As previously discussed, in order to detect the prevalence of sarcopenia we need to consider

three parameters: muscle strength/power, physical performance and muscle mass. The power

estimated using the STS equation had a strong relationship with muscle mass (r= 0.70), see Chapter

3. This was despite only using a standard STS test, without using measurements specifically related

to muscle power or STS movement velocity, meaning that this relationship could be stronger were an

iSTS to be used. Given the strong link between power and muscle mass, the aim of this discussion is to

use muscle power as a surrogate for muscle mass, and accordingly try to predict muscle power. Other

studies have also shown that STS is a good measure of physical performance such as gait velocity.
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The objective is to evaluate the performance of the STS to predict physical performance

against the three physical performance components of the EWGSOP algorithm, which contains tests

and corresponding thresholds for the Timed-up-and-go (TUG), gait speed, and the Short Physical

Performance Battery (SPPB). A range of different models are tested and compared, with a focus on

methods to balance the data sets to include more participants with sarcopenia. This section concludes

with a prediction on the prevalence of sarcopenia in the dataset on the basis of threshold values of

different physical performances and anthropometric equation on power using the STS. This finding

could indicate that the STS is a sufficient measure for the prediction of the prevalence of sarcopenia.

Data set

The dataset, briefly described in Chapter 3, is taken from two studies carried out in Jodhpur in

2015 and 2019 for the Culturally Appropriate Geriatric Screening study, in partnershipwith theUniversity

of Bedfordshire (UK). Participants in this combined dataset were 111 community-dwelling older people,

with 26% of the sample having fallen in the previous 6 months and 39% having fallen in the previous

two years. Subjects were required to be aged 60 years and over. The data included basic subject

characteristics of age, gender, height and weight, from which BMI was calculated. In addition, a

hand-timed 5STSwas performed alongwith three of the four performancemeasures from the EWGSOP

algorithm (gait speed, SPPB, and TUG).

Testing protocol

The participants were asked to participate in three tests of physical function, which were

administered in a randomized order and interspersed with sections of a questionnaire that included

questions about past medical records, health, fear of falling, and falls history. Fall history was recorded

using the History of Falls questionnaire [Myers et al, 1996], which has 17 questions related to not only

the number of falls within the last 6-24months, but also information about how, when, andwhere each

fall occurred. The three tests of physical function were all from the EWGSOP2 algorithm, namely the

TUG, gait velocity, and the SPPB, which includes the 5STS. It should be noted that the fourth test of

physical performance included in the EWGSOP2 algorithm, the 400mwalk test, was not included in the

study as it was a part of the original EWGSOP algorithm thatwas availablewhen the studywas designed

and submitted for ethical approval.

In the TUG test participants are asked to stand up from a chair, walk for 3 meters (9.84 feet)

and return to the chair and sit. The gait velocity test requires participants to walk for a distance of

15 feet (4.57 meters) at their normal pace, without overreaching themselves. Each of these tests was

performed twice, with the best value used in all subsequent analyses. Finally, participants performed

the SPPB, which has three components. Firstly, participants perform four balance tests for 10-seconds

using different feet positions, the last of which is a one-leg stance (OLS). Successful completion of

each test scores one point, with failure meaning the balance tests are discontinued with the number

of successful tests used as the balance score for the SPPB. In practice, this means someone who failed

to complete a 10-sec OLS would score three points on the four-point scale. The SPPB also includes a

separate gait-velocity test carried out over eight feet (2.44 meters), with the best of two times used in

the study. The gait velocity test is scored from 0-4, depending on the time taken to complete the test.

The final component of the SPPB is the 5STS, which has been previously described. Participants were

briefly instructed to fold their arms across their chest, stand up and sit down as quickly as possible five

times, without stopping, keeping their arms in the original position. The fastest of the two attempts

was taken as their STS performance. The 5STS is also scored from 0-4, depending on the time taken to

complete the test. Each of the three SPPB component scores is added to provide a final score from 0-12,

with 12 indicating good physical function and with scores from 0-6 indicating poor physical function.
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Table 4.1 : Distribution of dataset

Gait SPPB TUG

Majority Minority Majority Minority Majority Minority

Train 71 7 69 9 74 4

Test 17 16 17 16 32 1

Total 88 23 86 25 106 5

4.5 ANALYSIS

The EWGSOP-2 algorithm specifies cut-off points of 20 sec for the TUG, eight points on the SPPB,

and gait speed of less than or equal to 0.8m/s. Each participantwas classified for the three performance

variables using the cut-offpoints specifiedby the EWGSOP-2 algorithm,with failing tomeet the standard

scored as one and meeting the standard scored as zero. These labels become our ground truth for the

machine learning approaches that we discuss next.

4.5.1 Experimental Section
The sarcopenia data in the study is clearly an imbalanceddata set,with 5 (4.5%), 25 (22.5%), and 23

(21%) in the sarcopenia groups for the TUG, SPPB, andgait velocity categories respectively. Theobjective

of any classification in an imbalanced data set is to have a better recall for the minority class data and

high precision on majority class data.

We discuss the sampling techniques in the previous section. In our case the dataset is not large

enough for this with only 111 participants, which means that under-sampling would reduce the total

sample count and lead to an extremely poor performance of any classification algorithm developed.

Thus, we require oversampling techniques in order to increase the number of examples in the dataset.

In this work, we use two upsampling techniques: SMOTE and a combination of SMOTE and Tomek link,

where Tomek Link does the cleaning of the upsampled data.

Classification Techniques on Original Data

The first step in the analysis was to use the original data set, which was divided into subsets

for training and testing. The most commonly used ratio between training and testing is 70:30, so

accordingly the data set was randomly sampled into train and test sets. The details of the dataset

and the count of minority and majority class in the dataset is given in Table 4.1. After creating the two

subsets, we applied the classification techniques, given above, on thedataset. The classifications for the

data set were carried out separately for each of the three available measures of physical performance

used in the EWGSOP algorithm, TUG, gait velocity and SPPB. The EWGSOP threshold values were used

for each measure of physical performance, with input data taken as 5STS time and BMI.

Classification Techniques for Upsampled Data

After carrying out classification on the original data set, the two upsampling techniques were

applied to the data, followed by an evaluation of the performance of the different classificationmodels.

The classification for the resampled data sets followed the same system as that for the original data,

with separate classification for each item of the EWGSOP algorithm and 5STS and BMI as inputs.

4.6 RESULTS

The results of our classification techniques on original and the upsampled techniques for Gait

Velocity, SPPB and TUG are presented in Tables ??, ?? and ?? respectively.
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The column headings 1, 2 and 3 in all the tables represent the performance on original data,

SMOTE upsampled data and SMOTE+Tomelink resampled technique respectively.

Our overall analysis of all the classification techniques state that SPPB is the best measure to

identify patients with Sarcopenia. This is better than what we achieve in case of Gait velocity. While for

TUG the performance is reasonably low. This may adhere to the fact that the number of samples of the

minority class was too less in case of TUG and hence reflects in its poor performance.

Further, the upsampling technique SMOTE followed by TOMEK Link gives the best results in all

the cases. In all the three cases, Logistic Regression gives an overall best performance over the other

classification techniques thus giving us an intuition that the Sarcopenia and Non-Sarcopenia data points

are linearly separable.

Table 4.2 : PERFORMANCE ( F-MEASURE, G- MEAN, AUC AND ACCURACY) FOR DIFFERENT CLASSFIERS

FORGAITVELOCITY . EVALUATIONMETRICSOBTAINEDBYTHREEAPPROACHES 1. WITHOUT

PRE-PROCESSING, 2. WITH SMOTE, 3. WITH SMOTE COMBINEDWITH TOMEK LINK

Classifier Accuracy G Mean ROC-AUC F-Measure

1 2 3 1 2 3 1 2 3 1 2 3

Logistic 0.8235 0.6176 0.6176 0 0 0 0.4414 0.3724 0.3655 0 0 0

Random Forest 0.8235 0.7647 0.6471 0 0.5754 0.3806 0.431 0.5966 0.5828 0 0.3333 0.1429

Ada boost 0.7353 0.7941 0.7647 0.4068 0.5872 0.5754 0.4931 0.7655 0.6724 0.1818 0.3636 0.3333

SVM 0.8529 0.5 0.4706 0 0.3322 0.3216 0.5 0.3759 0.3586 0 0.1053 0.1

Decision Tree 0.6176 0.7647 0.7647 0.3714 0.5754 0.5754 0.4448 0.6138 0.6138 0.1333 0.3333 0.3333

Naïve Bayes 0.8529 0.6765 0.6765 0.4394 0.3895 0.3895 0.4759 0.5172 0.4 0.2857 0.1538 0.1538

KNN 0.8235 0.6176 0.5882 0 0.3714 0.362 0.3379 0.4379 0.5069 0 0.1333 0.125

Table 4.3 : PERFORMANCE ( F-MEASURE, G- MEAN, AUC AND ACCURACY) FOR DIFFERENT CLASSFIERS

FOR SPPB. EVALUATION METRICS OBTAINED BY THREE APPROACHES 1. WITHOUT

PREPROCESSING, 2. WITH SMOTE, 3. WITH SMOTE COMBINEDWITH TOMEK LINK

Classifier Accuracy G-Mean ROC-AUC F-Measure

1 2 3 1 2 3 1 2 3 1 2 3

Logistic 0.8529 0.9118 0.9118 0.6124 0.8492 0.8492 0.8894 0.8846 0.8942 0.5455 0.8 0.8

Random Forest 0.8529 0.8529 0.8824 0.6934 0.6934 0.7752 0.7933 0.7933 0.7885 0.6154 0.6154 0.7143

Ada boost 0.8235 0.7647 0.8529 0.6005 0.576 0.6934 0.8245 0.8053 0.8413 0.5 0.4286 0.6154

SVM 0.8824 0.9118 0.9118 0.7752 0.8492 0.8492 0.7933 0.8558 0.8558 0.7143 0.8 0.8

Decision Tree 0.8529 0.8235 0.8529 0.6934 0.6005 0.6934 0.7308 0.6683 0.7308 0.6154 0.5 0.6154

Naïve Bayes 0.8529 0.9118 0.9118 0.6124 0.8492 0.8492 0.8798 0.875 0.851 0.5455 0.8 0.8

KNN 0.8824 0.8824 0.8824 0.7752 0.8321 0.8321 0.8486 0.851 0.8413 0.7143 0.75 0.75

4.7 DISCUSSION
The aimwas to evaluate the performance of the STS to predict physical performance against the

TUG, gait velocity, and SPPB physical performance components of the EWGSOP algorithm. The analysis

used both the original data set aswell as two different resamplingmethods and 8 different classification
methods. The classification obtainedwere better for the SPPB test than for TUG and gait velocity. None

of the classification methods were successful for the original data set, which was highly imbalanced.
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Table 4.4 : PERFORMANCE ( F-MEASURE, G-MEAN, AUC ANDACCURACY) FORDIFFERENT CLASSFIERS

FOR TUG. EVALUATION METRICS OBTAINED BY THREE APPROACHES 1. WITHOUT

PREPROCESSING, 2. WITH SMOTE, 3. WITH SMOTE COMBINEDWITH TOMEK LINK

classifier ACCURACY GMean ROC-AUC F-Measure

1 2 3 1 2 3 1 2 3 1 2 3

Logistic 0.9412 0.9412 0.9412 0 0.696 0.696 0.9688 0.9844 0.9844 0 0.5 0.5

Random Forest 0.9412 0.9118 0.9118 0 0 0 0.5703 0.5313 0.5313 0 0 0

Ada boost 0.9412 0.9118 0.9118 0 0 0 0.4844 0.7031 0.6094 0 0 0

SVM 0.9412 0.9412 0.9412 0 0.696 0.696 0.5 0.7344 0.7344 0 0.5 0.5

Decision Tree 0.9412 0.9118 0.9118 0 0 0 0.5 0.4844 0.4844 0 0 0

Naïve Bayes 0.9412 0.9118 0.9118 0 0 0 0.5781 0.4844 0.4844 0 0 0

KNN 0.9412 0.9118 0.9118 0 0 0 0.5 0.4844 0.4844 0 0 0

However, for all resampling methods, the performance improved with the best performance observed

when a combination or SMOTE and TomekLink were applied.

This classification study was given only two parameters for classification, namely 5STS time and

BMI. It is expected that better results would be obtained with addition of other descriptive parameters

such as age, sex, or even simple body compositionmeasures such as calf circumference. In addition, the

use of iSTS parameters such as velocity, power would also be likely to improve the performance of the

classification methods used. This was shown by the results of Chapter 3 (iSTS Systematic Review), in

which better results for discrimination between fallers and non-fallers and or frailty classification were

obtained when using iSTS parameters such as STS velocity.

The finding of this study suggests that the STS could be a sufficient measure for the prediction

of the severity of sarcopenia using the EWGSOP algorithm. Future work will focus on the effect using

iSTS parameters and simple measures of body composition to enhance classification performance.

…
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