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Validation of the instrumented chair part one: a comparison

of four approaches to evaluate the STS movement

An article based on the results given in this chapter has been accepted for publication by IEEE

Transactions on Neural Systems and Rehabilitation Engineering. The version presented here is similar

to that submitted for publication with some additional information related to the thesis. The citation

for this work is presented below:

Shukla, B.K, Jain, H., Vijay, V., Yadav, S.K., Mathur, A., Hewson, D.J. A Comparison of Four

Approaches to Evaluate the Sit-To-Stand Movement. Accepted by IEEE Trans Neural Syst Rehab Eng.

6.1 INTRODUCTION
The importance of the STS test has been highlighted in previous chapters that have used the

assessment as a means of screening older adults at risk of falling. Two main variations of the test have

been described in which the person either performs 5 STS as quickly as possible or the person performs

as many STS as possible within 30 seconds.

Performance in the 5STS is typically measured using a stopwatch. Recently, instrumented

versions of both tests have been developed as a means of improving the accuracy of measurement,

but also to extract additional information about STS performance that could improve accuracy of

predictions. Such tests have used a range of techniques including body-worn accelerometers [Kang

et al.Weiss et al. [2010]], pressure sensors [Arcelus et al. [2011]], and visual sensors, often usingmultiple

cameras [Banerjee et al. [2013],Allin and Mihailidis [2009]]. In addition to the possibility of such

automatic detection, in one study a Kinect was used to evaluate the 5STS [Ejupi et al. [2016]], with

parameters extracted from the STS more closely related to strength than overall STS time. Such a

finding indicates that extracting data on the way in which the STS is performed, rather than simply the

time taken to perform the 5STS, could be beneficial.

Here, we analyse the performances of two novel approaches to evaluate the STS and compare

them to two previously used instrumented systems to evaluate the STS, the Kinect and a force plate.

The contributions are two-fold:

(1) We propose a design of a novel device inwhich four force sensors are built into a chair tomeasure

individual STS cycles, which removes the requirement for participants to wear body sensors

throughout the experiment.

(2) We propose a low-cost video framework tomeasure STS time using only a single inexpensive RGB

camera. The human skeleton from the frames captured with the RGB camera is extracted using a

deep learning network, with frame sequences then segmented into STS cycles using the change

in the location of the head.

This framework provides following advantages:
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(1) A single RGB camera is a low-cost setup that can be easily extended to android phones [Ejupi

et al. [2016], Pirsiavash et al. [2014], Jain and Harit [2016]].

(2) Themethoddoesnot involvebackground subtraction toextract thehumansilhouette,which

although used previously with an RGB-based camera setup [Banerjee et al. [2013]], fails in a cluttered

environment when silhouette extraction becomes difficult. In contrast, the proposed method uses a

deep pose library to extract body position.

(3) The use of visual sensors allows monitoring of both the time taken to perform the STS and

the way it is performed, which is not possible in sensor-based approaches alone.

(4) While both STS performance and STS time can be analyzed using an RGB camera, the

instrumented chair provides additional information related to the transfer of mass, which could be

useful in predicting muscle power as discussed in Chapter 3.

In the next section,webriefly set the context to highlight the needof such comparison. Further,

we present the complete chair design and pose estimation using RGB camera. Next, we describe the

methodology used to determine STS time and STS velocity using both the visual sensors (RGB and

Kinect) and the force-based sensors (chair and force plate). We then present our experimental results,

compare the performance of the methods for the four systems, and conclude the work.

6.2 EVALUATION OF STS

Previous techniques to evaluate the STS have included the use of wearable and visual sensors.

For instance, a waist-mounted triaxial accelerometer was able to classify activities such as sitting,

lying, standing, running, as well as transitional activities such as STS and falling [Kang et al. [2010]].

Accelerometers have also been used to distinguish between subjects with Parkinson’s disease and

normal subjects with respect to their STS performance as part of the TUG test [Weiss et al. [2010]].

Although, sensor-based tests canbeeffective, theuser is required towear sensorswhen the test is being

performed, which can be inconvenient. The preferred location of wearable sensors has been reported

as the wrist, on glasses, or the arm [Cho [2019]]. In such cases, sensors are not good at detecting the

movement of the entire body, such as that performed in the STS [Matsuyama et al. [2019]].

Other studies have used visual sensors to evaluate the STS movement. For instance, Allin et al.

[Allin and Mihailidis [2009]] used three cameras to extract 3-D features such as the distance between

the feet and head, to construct body centroids. Ellipsoid trackingwas then used to follow the individual

positions of the head, torso, and feet using the Weka Machine Toolkit for classification [Witten et al.

[2016]], with an excellent correlation observed between measured rise time of the STS and the Berg

Balance Score. However, the body parts for each subject had to be manually labeled for at least one

image in order for the system to learn the color information for the individual. Moreover, three carefully

positioned cameras were required to measure the STS time, such a system is difficult to use in an

ecological setting. In another study, pose-based descriptors from volumetric image data were used to

identify the STS movement, with features including the number of circles and the area of outer circles

from each layer [Pehlivan and Duygulu [2011]]. The nearest neighbormethodwas used for classification

of activity identification, including the STS. More recently, STS time was estimated using 3-D modeling

of a human body in voxel space with an ellipse-fitting algorithm and image features used to capture the

orientation of the body [Banerjee et al. [2013]].

The voxel height, in conjunction with the ellipse fit, gave the best segmentation accuracy for

this method. Although, this framework could be used as part of a continuous video monitoring system

in the homes of older adults and thus provide valuable information to help detect fall risk, it required

two cameras to calculate human voxels. Furthermore, the accuracies of background subtraction are
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Figure 6.1 : Interface with load cell

highly dependent on the type of background, with a cluttered background leading to false silhouette

extractions and thus a non-robust solution [Aggarwal and Cai [1999]].

Our goal in the proposed approach is to validate a framework that is suitable for continuous

monitoring in an unstructured home setting, without requiring human intervention. This approach is

described in the following section.

6.3 THE FRAMEWORK

In this section, we propose two new methods to estimate STS time and STS velocity during

the STS movement. Firstly, an instrumented chair is designed using four load cells that eliminates the

need of subjects to wear body sensors while performing the STS test. Next, we introduce a single RGB

camera-based system to capture the STS movement and propose a technique to estimate STS time. A

detailed description of both modules follows.

6.3.1 Instrumented Chair Design
An Instrumented wooden chair has been designed and comprehensively discussed in previous

chapter. Four load cells weighted 40 kg with a precision of 8 g were fixed to the seat of the chair

and covered by an piece of wood. Each pair of load cells on one side of the chair was connected to

digital converter to convert analog data in to digital data for the analysis.ADC were connected to a

microcontroller board (Arduino Mega 2560), with data acquired at 80Hz using a custom-built software

(python) program(Figure 6.1). Vertical ground reaction force Fzwas taken as the sumof the four ground

reaction forces measured by the individual load cells.

Calibration of the chair was carried out for this study separately using a series of knownmasses,

which were placed at different locations on the seat of the chair. This was used to verify the CoP and Fz
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Figure 6.2 : The 15-segment model of a pose used to estimate the STS

data, with all values accurate to within the load cell manufacturer’s specifications of ± 32 g for the mass

and ± 1mm for the CoP.

6.3.2 Single Camera-based Posture Analysis
Cameras are readily available in the form of android devices or installed surveillance cameras.

These visual sensors can be a useful resource in health care monitoring. Typically, multiple cameras

are used in order to extract human silhouettes from video recordings [Banerjee et al. [2013],Allin and

Mihailidis [2009]]. In the method developed for this study, only a novel single camera solution is used

to calculate STS time.

A key step toward identifying people in the frames of a video is an accurate pose estimation.

Given a single RGB image, we wish to determine the location of a human body. One way of

accomplishing this is by background subtraction and extraction of the human silhouette. Although this

technique is relatively simple, it gives false boundaries when the background is cluttered, while the

silhouettes do not define body joints distinctively. In contrast, the precise pixel location of important

key-points of the body, also referred to joint points, are required for an accurate clinical test [Chen et al.

[2018]].

A well-established problem in the computer vision community is pose estimation, which has a

variety of challenges to researchers. A good pose estimationmethodmust be robust to occlusion, view

angles, lighting conditions, clothing and background. With the advent of deep-learning techniques,

many solutions to human pose estimation have been introduced, such as the recently-introduced

Stacked Hourglass Networkmethod [Newell et al. [2016]]. Poses estimated using this library have been

shown to be accurate at assessing human movement [Jain and Harit [2017]].

For each frame the network estimates a pose with 15 joint locations (right ankle, right knee,

right hip, left hip, left knee, left ankle, pelvis, neck, head, right wrist, right elbow, right shoulder, left
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Figure 6.3 : Example of pose estimation during the STS movement

shoulder, left elbow, left wrist) as shown in(Figure 6.2). A sample estimation for a subject performing

the STS is shown in Fig. 3, with the skeleton on the left and heat maps of joint estimation probability on

the right.

Calibration of the camera was performed using the chair as a reference, with the back of the

chair measuring 0.5m. This was used to ensure that the pixels within the image that covered the chair

corresponded to 0.5m when the other measurements were taken. For all recordings, the camera was

placed at a distance of 2.3 m on a line perpendicular to the front of the chair.

6.3.3 STS Parameter Calculation
The total time taken for each 5STS was estimated for each of the four recording systems. The

method used to estimate STS time for both the RGB and Kinect systemswas adapted from that of Ejupi

et al. [Ejupi et al. [2016]]. This consists of an estimation of the head position obtained from the camera

for the duration of the recording, with position data low-pass filteredwith a 4th order Butterworth filter

with a 2Hz cut-off frequency. The peaks identifiedwere taken to be themiddle of the standing positions

while the troughs were taken to be the middle of the sitting positions. If the head position was within

5cm of the nearest peak the subject was considered to be standing, while a position within 5cm of the

nearest valley was taken to be sitting. An example of head position signals during the 5STS for the RGB

and Kinect systems is shown in (Figure 6.4)(a-b).

The mean duration of the 5STS was calculated for the force plate and the chair, as shown

in(Figure 6.4) (c-d). For the force plate, the start of each sit-to-stand phase was taken to be 10% of

the peak force obtained during the transition to a standing position, which corresponds to the same

ratio as the 5cm value used for the two camera-based systems when compared to the mean standing

heightof 50 cm. A subjectwas considered tobe standingwhen their force reached90%ofpeak force for

the individual STS. The standing phase of the STS was considered to have finished when vertical force

decreased below 90% of peak force, with subjects considered to have returned to a sitting position

when vertical force reached 10% of the previous peak.

In addition to total STS time, a worthwhile parameter that can be obtained from an

instrumentedSTS is sit-to stand velocity, which has been shown tobe able todistinguish better between

fallers and non-fallers, than does total STS time [Ejupi et al. [2016]]. STS velocity was calculated for

the two camera-based systems using the method proposed by Ejupi et al. [Ejupi et al. [2016]] for the

period between the end of the sitting phase and the standing phase of each STSmovement. The height

change between these two points were divided by the time taken to obtain STS velocity. With respect

to the force plate and the chair, velocity was derived using Newton’s second law of motion, with STS
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Figure 6.4 : Calculation of STS time and STS phases for RGB camera (a), Kinect (b), force plate (c) and

chair (d).
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Figure 6.5 : Example recording from the instrumented chair during the 5STS test.

velocity calculated as between the timewhen forcewas between 10% and 90% ofmaximal force during

the sit-to-stand movement. The average of STS velocity for the five STS movements was used in all

subsequent analyses.

6.3.4 Comparison of STS Parameters
Comparative performances of the four methods of obtaining STS time and STS velocity were

undertaken using correlation analysis and limits of agreement, using Bland-Altman plots [Bland and

Altman [1999]]. Overall STS time was compared to a reference time that was obtained from analysis of

a frame-by-frame record of each STS from the RGB camera [Banerjee et al. [2013]]. The expert manually

identified the beginning and end of each STS, with the beginning taken to be when the subject began

to move their torso forward in the first STS, while the end of the STS was estimated as the moment

when the subject’s torso returned to vertical after completing the 5th STS movement. These start

and end points were chosen based on the four phases of the STS movement described previously

[Millington et al. [1992]]. All four methods were compared with that of the expert for total 5STS time

using Bland-Altman plots. With respect to STS velocity, no expert velocity was available, therefore

Bland-Altman plots were not used.

All data processing was performed using custom-built software developed using LabVIEW

(Version 2018, National Instruments Corporation, Austin, Texas, USA). Statistical analysiswasperformed

using SPSS (version 25, IBM Corporation, Armonk, New York, USA).

6.4 RESULTS

The performance of the four systems was compared using data collected from a sample of 21

healthy younger subjects and a sample of 16 older fallers. The young subjects were aged 28.3 ± 6.8

years, weighed 67.2 ± 9.6 kg, of height 1.70 ± 0.04 m, with BMI 23.2 ± 3.0 kg/m2, while the fallers were

aged 67.2 ± 6.7 years, weighed 64.3 ± 12.0 kg, of height 1.58 ± 0.07 m, with BMI 25.9 ± 4.2 kg/m2. The

younger participants performed two trials, the first of which was at a self-selected slow speed, while

subjects were instructed to perform the second trial as fast as possible. The older fallers performed a

single trial at a self-selected speed. The ethics committee of the Asian Centre For Medical Education,

Research & Innovation approved the study (ACMERI/18/001), with all subjects giving informed consent.

A typical example recording from the instrumented chair is shown in (Figure 6.5).

6.4.1 Total STS Time
The performances of the four systems for young subjects for 5STS time against the expert time

of 11.7 ± 2.1 s are shown in Table 6.1. The performance for 5STS time for the older fallers compared to the

expert time of 18.0 ± 3.4 s is shown in Table 6.2. Bland Altman plots of the limits of agreement for the

four methods for both groups of subjects combined when compared to the expert values are shown in
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Table 6.1 : Performance of the testing systems for 5 STS time for young

Kinect RGB Force plate Chair

Time (S) 10.8±1.9 10.6±1.9 11.7±2.2 11.8±2.2

Correlation 0.990 0.997 0.979 0.995

95% CI 0.975-0.996 0.993-0.998 0.948-0.991 0.988-0.998

Error (S) -0.84±0.35 -1.01±0.23 -0.05.8±0.33 -0.16±0.17

LOA (S) 1.38 0.91 1.31 0.67

LOA (%) 90.9% 95.5% 97.7% 97.7%
1Times and mean errors are means ± SD; limits of agreement are range and percentage of points within this range. LOA:

Limits of Agreement

Table 6.2 : Performance of the testing systems for 5 STS time for fallers

Kinect RGB Force plate Chair

Time (S) 17.6±3.3 17.7±3.6 17.8±3.5 17.7±3.1

Correlation 0.979 0.983 0.948 0.988

95% CI 0.939-0.992 0.951-0.994 0.854-0.982 0.965-0.996

Error (S) -0.38±0.50 -0.30±0.51 -0.19±0.79 -0.18±0.17

LOA (S) 1.97 1.98 3.08 0.67

LOA (%) 93.8% 93.8% 100 % 100%
2Times and mean errors are means ± SD; limits of agreement are range and percentage of points within this range. LOA:

Limits of Agreement

Figure 6.6).

All systems performed satisfactorily, with the best performance obtained for the chair, which

had the highest correlation, narrowest error SD, the narrowest range for the limits of agreement, and

the highest percentage of points within this range.

6.4.2 STS velocity
Comparisons for STS velocity are shown in Table 6.3 for younger participants and in Table 6.4for

the older fallers. The two camera-based systems obtained higher velocities than the two sensor-based

systems. When the younger and older faller results were compared, greater discrepancies for a given

systemwere observed for the two camera-based systems than for the two sensor-based systems, with

lower correlations and higher mean differences, especially for the fallers. A comparison of the STS

velocity measures from the four devices were made with gait velocity for the group of older fallers.

The highest correlation with gait velocity was obtained for chair STS velocity (r=0.76), followed by the

force plate (r=0.49), RGB camera (r=0.12), and the Kinect (r=0.07).

Table 6.3 : Performance of the testing systems for STS Velocity for young

Kinect RGB Force plate Chair

Velocity (m/s) 0.94±0.16 1.21±0.22 0.89±0.20 0.74±0.20

Correlation 0.811 0.905

95% CI 0.678-0.892 0.832-0.947

Mean diff. (s) -0.28±0.13 -0.16±0.09
3Times and mean differences are mean±SD
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Figure 6.6 : Limits of agreement between expert STS time and the four systems; (a) RGB Camera; (b)

Kinect; (c) Force plate; (d) Chair.

Table 6.4 : Performance of the testing systems for STS Velocity for fallers

Kinect RGB Force plate Chair

Velocity (m/s) 0.59±0.16 1.06±0.28 0.65±0.18 0.53±0.15

Correlation 0.574 0.796

95% CI 0.109-0.833 0.496-0.926

Mean diff. (s) -0.47±0.23 -0.12±0.11
4Times and mean differences are mean±SD
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6.5 DISCUSSION

In this study, two new methods were proposed to evaluate the STS movement, which is an

important functional screening tool in older people. One method used pose estimation from a single

RGB camera, while the other method used an instrumented chair. The findings showed that both

methods performed as well or better than previously reported methods in which a Kinect and a force

plate were used to calculate total STS time and STS velocity, both of which can differentiate between

fallers and non-fallers.

All four of the methods had excellent agreement with an expert estimation of STS in terms of

the number of data points that fell within 2SD of the mean difference. However, both camera methods

underestimated the total STS time compared to the expert by around one second. In contrast, the

force-based methods had an average error within 0.2 sec of the expert time. This suggests that the

newlydevelopedchair canaccurately detect STS timeandcouldoffer analternative toamanualmethod.

The reason for the differences is most likely due to the difficulty in using head height to detect the start

of the STS, which begins with a forward movement of the trunk, before the second phase of vertical

movement occurs [Millington et al. [1992]]. In order to improve the accuracy of the camera-based

techniques, it might be necessary to include detection of forward movement, rather than the vertical

movement described previously [Ejupi et al. [2016]]

The four methods were also compared with respect to the STS velocity parameter. In this case,

itwasn’t possible to use an expert for comparative purposes as it isn’t possible to calculate velocity from

a non-instrumented STS test. When the four methods were compared, differences in STS velocity were

observed between the four systems. The RGB camera obtained higher values for the younger subjects

than the other systems, followed by the Kinect, then the force plate, and finally the chair. When the

older fallers were considered, the relative order of velocities differed slightly, with the Kinect values

being lower than those of the force plate. The differences between the RGB and the Kinect would have

been due to the differences in head height between sitting and standing for the two systems, which

differed by around one third due to the scale used for each system.

For all four systems, lower STS velocities were observed for the older fallers, as would be

expected. When the estimates of STS velocity for the four devices were compared with measures

of physical function, the two force-based measures performed far better than those based on visual

analysis. A high correlation was found with gait velocity for the chair, with a moderate correlation for

the force plate, suggesting that the force-based measures might be superior, although a larger study

is needed to confirm this finding. The differences between the two camera-based systems and the

sensor-based systems could be further investigated using an opto-electronic system to record human

movement, such as the Vicon, which would confirm the accuracy of the four systems presented here

and act as a gold standard.

Results of this study show that the chair could be used to evaluate the STS in clinical settings,

providing a potentially cheaper alternative than a force plate. The total cost of the components in the

chair was approximately 100 $, which although not the commercial cost of a final product, would be

substantially cheaper than a standard force plate, which typically cost thousands of dollars. The use

of a force plate would also require the chair to be placed in a specific position in front of the force

plate, which would make the protocol more complex than when using a chair with built-in sensors. In

addition, when detecting STS time it was also possible to estimate STS velocity, which has been shown

to distinguish between older controls and those with a history of hip fracture [Houck et al. [2011]]. It

would also be possible to estimate the power produced during the STS using the method proposed by

Lindemann et al., in which the difference between seated height and standing height is combined with

rate of force development to estimate power [Lindemann et al. [2007]]. Power during the STS has been

shown to be a strong predictor of overall muscle power and even cross-sectional area of the quadriceps

[Smith et al. [2010],Takai et al. [2009]], which means the instrumented chair might be able to estimate
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muscle mass.

This study also has some limitations. Firstly, the system has thus far only been tested on young

healthy subjects and one cohort of older fallers, so needs to be validated on a wider range of older

participants to determine the predictive ability of the system in terms of other conditions associated

with ageing, such as frailty and sarcopenia. In addition, the present chair design does not enable all of

individual phases of the STS to be detected, particularly when the user is no longer in contact with the

chair. The absence of a gold standard against which to compare STS velocity obtained from the four

systems is also a limitation. Finally, the analysis performed was not automated, which would make the

tests more widely applicable in clinical settings.

The limitations in terms of STS phase detection will be addressed in future work using infrared

sensors to detect body position and joint angles, such as hip flexion. Future work could also

examine whether a fusion of both chair and RGB systems would be of benefit. Finally, it would be

worth evaluating whether the system could predict muscle power and/or muscle mass, as has been

demonstrated by previous work with STS test [Smith et al. [2010],Takai et al. [2009]].

6.6 CONCLUSION

This chapter presented the development of two novel systems to evaluate the STS movement.

The instrumented chair performed the best at detecting the STS when compared to an expert, with

encouraging results also obtained when STS velocity was compared to physical function. Future work

will use additional sensors to estimate muscle power during the STS.

…
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