
3
Development of Cutting Force Model

3.1 INTRODUCTION
Cutting force is the primary source of multiple faults that deteriorates the quality of

machined component during the endmilling operation. The estimation, monitoring, and control of
cutting force are imperative to avoid or minimize faults such as tool breakage, tool wear, selection
of inappropriate cutting parameters, fixture errors, etc. The reliable estimation of cutting forces
is substantially important in this thesis work while developing a computational framework for
modeling and control of geometric tolerances in the subsequent chapters. The cutting force in
flat end milling operation is contributed by the involvement of flank and bottom cutting edges as
depicted in Figure 3.1.

Figure 3.1 : Schematic Illustration of Cutting Edges and Process Geometry Parameters in End Milling

It was realized that the relative contribution of flank and bottom edges towards total cutting
force in the flat end milling has not been studied in the literature over a range of cutting widths
i.e. ADOC and RDOC. It is necessary to examine the applicability of predictive force models over a
wide range of cuttingwidths, whichwould assist while developing effectivemodels for estimating
and controlling geometric tolerances. It was highlighted in Chapter 2 that the mechanistic
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force model is popular among the researchers and can predict cutting forces with reasonable
accuracy in comparison to other methodologies with the requirement of fewer experiments for the
conditioning. The mechanistic model determines the uncut chip area geometrically and correlates
it with the cutting force components using a set of cutting constants. Also, the determination of
cutting constants is quite complex as the process is solely dependent on experimentally measured
force data and the relationship comprehends the effect of various process attributes.

In this context, a comparative assessment of three different analytical approaches
highlighting the importance of incorporating bottom and flank cutting edges in cutting forcemodel
for flatend milling operation is presented in this chapter. The study focuses on identifying the
most appropriate method that includes the effect of cutting edges and predicts accurately over a
wide range of cutting widths, i.e., ADOC and RDOC. The first approach uses the average cutting
constants directly estimated from the experimental force data [Wan et al., 2008a]. The second
approach preprocesses the experimental data to exclude the contribution of bottom edges and
determine constants associated with the flank for estimation of cutting forces [Ko et al., 2002].
The third approach considers the systematic derivation of independent constants for the flank
and bottom cutting edges followed by summation of individual contributions to determine the
total cutting force [Dang et al., 2010]. The present work implements these approaches in the form
of computational models, and machining experiments are conducted subsequently to examine
the efficacy of proposed methods in estimating cutting force for flatend milling operation. The
primary objective of this analysis is to examine the importance of the flank and bottom cutting
edges over a wide range of cutting widths and select an appropriate variant subsequently.

The application of datadriven or machine learning models is becoming popular in recent
times for analyzing various manufacturing process attributes. The datadriven models use input
and output datasets to evolve relationships similar to human perceptions. The development
of a reliable datadriven model is challenging due to the necessity of conducting numerous
experiments for the generation of datasets, the presence of outliers and noise in the datasets,
process disturbances, etc., but it can be scaled easily by accommodating new variables and
attributes to evolve progressively. Alternatively, physicsbased models establish an explicit
relationship of process variables with the desired attributes based on scientific knowledge and
assumptions, but the scalability is difficult. The present work also explores the development of a
hybrid cutting force model that amalgamates a physicsbased approach to evaluate chip geometry
and a machine learningbased approach to determine cutting constants. The cutting forces
obtained using the proposed hybrid approach are compared with an ideal analytical approach
selected previously by performing a set of computational studies and milling experiments.

3.2MECHANISTIC FORCE MODEL
The mechanistic force model discretizes flatend mill into a finite number of disk elements

having an equal thickness (dz) and evaluates the engagement state of each cutting tooth at a given
cutter rotation angle. Subsequently, themodel correlates the uncut chip areawith elemental cutting
force components using mechanistic cutting constants (KT ,KR and KA). The tangential (FT ), radial
(FR) and axial (FA) cutting force components corresponding to kth engaged flute on jth axial disk
element at cutter rotation angle (ϕi) can be expressed using Eq. 3.1 and as depicted in Figure 3.1.
The instantaneous uncut chip thickness tc(i, j,k) is the shortest distance between two consecutive
tooth passes at a given angular position of the disk element and it can be expressed geometrically
using Eq. 3.2 as a function of feed per tooth ( fpt). The angular position β (i, j,k) of each axial disk
element and cutting teeth is dependent on the tooth spacing angle (θc) and helix angle (θh) of end
mill and it can be determined using Eq. 3.3.
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FT (i, j,k)
FR(i, j,k)
FA(i, j,k)

= dz tc(i, j,k)

KT (i, j,k)
KR(i, j,k)
KA(i, j,k)

 (3.1)

tc(i, j,k) = fpt sin β (i, j,k) (3.2)

β (i, j,k) = ϕi +(k−1) θc +

(
( j−1) dz+

dz
2

)
tan (θh)

Rc
(3.3)

(a) Straight (b) Concave (c) Convex

Figure 3.2 : Illustration for End Milling of Different Geometries

The present thesis work considers the machining of straight, concave and convex
thinwalled components, which differs in cutting configurations as depicted in Figure 3.2. The
circular geometry has a constant radius of curvature in comparison to straight geometries having
no curvature. Therefore, a generic cutting force model incorporating the effect of variation in
workpiece geometry is used in the present study. The fpt in the case of circular component is
not the identical to the actual or programmed feed per tooth ( fa) and depends upon the nature
of workpiece curvature (concave or convex) and magnitude of the radius of curvature. Similarly,
the engagement angle (θen) also changes with the geometry of the workpiece due to change in the
dimensions of the transition area as depicted in Figure 3.2. The mathematical formulation for fpt

and θen during machining of straight, concave and convex geometry are given in Table 3.1 Here,
R f and Rc represents the final radius of the curvature of the workpiece and radius of the cutter
respectively.

Table 3.1 : Process Geometry Parameters for Straight and Circular Components

Geometry Feed per tooth ( fpt) Engagement Angle (θen)

Straight fa cos−1
(

1− RDOC
Rc

)
Concave fa

(
R f −RDOC

R f −Rc

)
cos−1

(
R2

c+(R f −Rc)
2−(R f −RDOC)2

2Rc(R f −Rc)

)
Convex fa

(
R f +RDOC

R f +Rc

)
cos−1

(
R2

c+(R f +Rc)
2−(R f +RDOC)2

2Rc(R f +Rc)

)
The total cutting force acting in the Feed (FF ), Normal (FN) and Axial (FA) directions at a

cutter rotation angle (ϕi) can be obtained by resolving the elemental components into feed, normal,
and axial directions using 3D transformations. Equation 3.4 represents mathematical formulation
to transform the forces into the feed and normal directions at an element level. Equation 3.5
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represent mathematical formulation to determine the total cutting force at the cutter rotation angle
(ϕi) by summation of forces acting on each engaged disk element and cutting teeth. Themagnitude
of cutting force in the axial direction (FA) is negligible in comparison to the feed (FF ) and normal
(FN) components for flatend milling operation. Therefore it is not considered in the present work.
Equation 3.6 presents the cutting force system reduced to two components. The cutting force
obtained in the normal (FN) direction subtends an angle θ with the X axis as shown in Figure
3.2 for all three geometries. The angle facilitates the transformation of feed (FF ) and normal (FN)
component of the forces into the global coordinate system (X and Y forces) using Eq. 3.7. The
cutting force components in the global coordinate system are used subsequently while developing
an overall framework.

FF(i, j,k)
FN(i, j,k)
FA(i, j,k)

= dz tc(i, j,k)

cos β (i, j,k) −sin β (i, j,k) 0
sin β (i, j,k) cos β (i, j,k) 0

0 0 1

FT (i, j,k)
FR(i, j,k)
FA(i, j,k)

 (3.4)

FF(ϕi)
FN(ϕi)
FA(ϕi)

= ∑
j,k

dz

cos β (i, j,k) tc(i, j,k) −sin β (i, j,k) tc(i, j,k) 0
sin β (i, j,k) tc(i, j,k) cos β (i, j,k) tc(i, j,k) 0

0 0 1

KT (i, j,k)
KR(i, j,k)
KA(i, j,k)

 (3.5)

[
FF(ϕi)
FN(ϕi)

]
= ∑

j,k
dz

[
cos β (i, j,k) tc(i, j,k) −sin β (i, j,k) tc(i, j,k)
sin β (i, j,k) tc(i, j,k) cos β (i, j,k) tc(i, j,k)

][
KT (i, j,k)
KR(i, j,k)

]
(3.6)

[
FX(ϕi)
FY (ϕi)

]
=

[
−sin θ cos θ
cos θ sin θ

][
FF(ϕi)
FN(ϕi)

]
(3.7)

The cutting constants Kq(i, j,k) (q = T,R) correlate instantaneous uncut chip thickness with
cutting forces that are determined by conducting experiments at various cutting conditions for
a given toolworkpiece pair. It has been reported in the literature that the prediction accuracy
of the mechanistic force model greatly depends on the correctness of cutting constant. The
cutting constants capture the effect of various process attributes such as shearing and ploughing
phenomenon, toolworkpiece material properties, cut geometry parameters (radial and axial
immersions), etc. Therefore, the determination of cutting constants is considered as a critical
step in the development of the cutting force model. This thesis work employs analytical and
machine learning methods to correlate cutting constants as a function of uncut chip thickness for
establishing a nonlinear relationship. The uncut chip thickness is a function of cutting parameters
such as feed rate, spindle speed, axial and radial immersions, number of flutes, helix angle and
diameter of the cutter. Therefore, cutting constants predicted in this study can accommodate
variation of these parameters while predicting forces. The subsequent subsections discusses
various approaches employed in the thesis work to establish the relationship between cutting
constants and instantaneous uncut chip thickness.

3.3 ANALYTICAL APPROACHES FOR ESTIMATION OF CUTTING CONSTANTS
The primary objective of the present thesis work is to predict cutting forces over a wide

range of cuttingwidths, i.e. ADOC andRDOC therefore, the precise calibration of cutting constants
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relationship is of utmost importance. This section presents the procedure for establishing the
relationship between cutting constants and instantaneous uncut chip thickness through three
different analytical approaches adapted from the literature. The first approach establishes the
relationship between average chip thickness and cutting constants derived frommeasured cutting
forces [Wan et al., 2008a]. The second approach considers preprocessing of measured cutting
force signal to extract the component contributed by the flank while obtaining cutting constant
relationship [Ko et al., 2002]. The third approach considers the determination of flank constants and
associated cutting forces similar to the second approach but it considers an additional contribution
from the bottom edge while determining total cutting forces [Dang et al., 2010]. These three
analytical approaches aim to correlate cutting constants with uncut chip thickness using a curve
fitting technique. The fundamental difference among these analytical approaches lies in the process
of extracting the experimental cutting force values required for the estimation of cutting constant.
The subsequent subsections elaborate on these approaches with appropriate modifications for the
consistency and clarity.

3.3.1 Approach 1: Average Cutting Constants
Wan et al. [2008a] proposed a systematic procedure to determine average cutting constants

directly from the measured force without any preprocessing. This approach uses experimentally
measured forces at a given cutter rotation angle, Fm

s (ϕi) (s = X ,Y ) to determine cutting constants
using Eq. 3.8. It is important to note that the measurement of experimental cutting forces at the
element level Fm

s (i, j,k) (s = X ,Y ) is not feasible at the present. The experiments will provide the
total cutting forces Fm

s (ϕi) (s = X ,Y ), acting in X and Y direction at a given instance viz. cutter
rotation angle (ϕi). The measured cutting forces Fm

s (ϕi) (s = X ,Y ) are substituted in Eq. 3.8 to
determine cutting constant Kq(ϕi) (q = T,R) at the cutter rotation angle (ϕi).

[
Fm

X (ϕi)
Fm

Y (ϕi)

]
= dz

[
∑ j,k cosβ (i, j,k) tc(i, j,k) −∑ j,k sinβ (i, j,k) tc(i, j,k)
∑ j,k sinβ (i, j,k) tc(i, j,k) ∑ j,k cosβ (i, j,k) tc(i, j,k)

][
KT (ϕi)
KR(ϕi)

]
(3.8)

The process of determining cutting constants Kq(ϕi) (q = T,R) is to be repeated for one
complete revolution of the cutter. The relationship between Kq(ϕi) (q = T,R) and average chip
thickness at various angular rotations of the cutter tavg(ϕi) is expressed using Eq. 3.9. The
coefficients of relationship can be determined using a nonlinear curve fitting technique. The
average chip thickness tavg(ϕi) at each cutter rotation angle (ϕi) is computed using Eq. 3.10. The
approach proposes averaging of the chip thickness at discrete cutter rotation angle using w(i, j,k)
as a weighting factor given by Eq. 3.11. The relationship between Kq(ϕi) and tavg(ϕi) is used to
predict cutting forces subsequently by replacingKq(i, j,k) (q= T,R) and tc(i, j,k) in Eq. 3.9 to obtain
instantaneous cutting forces acting on each disk element. The relationship between instantaneous
chip thickness and cutting constants used in the determination of cutting force is expressed using
Eq. 3.12.

Kq(ϕi) = aq e−bq tavg(ϕi)+ cq (q = T,R) (3.9)

tavg(ϕi) =
∑ j,k tc(i, j,k) w(i, j,k)

∑ j,k w(i, j,k)
(3.10)
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w(i, j,k) =
j dz tan (θh)

Rc
(3.11)

Kq(i, j,k) = aq e−bq tc(i, j,k)+ cq (q = T,R) (3.12)

Figure 3.3 : Flowchart showing Comparison of Different Analytical Approaches

3.3.2 Approach 2: Instantaneous Flank Edge Constants
Ko et al. [2002] highlighted that the flank edge is a significant contributor to the total force,

and the inclusion of data associated with the bottom edge while establishing cutting constant
relationship lowers the prediction accuracy. The study proposed exclusion of the bottom edge
data systematically from themeasured cutting force signalwhile determining flank edge constants.
Figure 3.3 shows a twostep procedure to exclude cutting force data related to the bottom edge from
the measured signal. The first step proposes to conduct machining experiments and recording of
cutting force data at two differentADOC (da1 & da2)with identicalRDOC and feed rate. The second
step proposes synchronization and preprocessing of the cutting force data. The synchronization
process requires adjustment of phases between both measured force signals. The synchronization
follows preprocessing stage involving subtraction of forces measured at smaller ADOC (da1)
from the larger ADOC (da2) to exclude the contribution of the bottom cutting edge from the
experimental data. The cutting forces obtained after the subtraction are associated with a flank
cutting edge Fm f

s (ϕi) (s = X ,Y ) only and used for determining cutting coefficients Kq f (ϕi) (q = T,R)
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using Eq. 3.13. The subsequent steps determining the relationship between cutting constant
Kq f (i, j,k) (q = T,R) and instantaneous uncut chip thickness tc(i, j,k) are similar to the approach
discussed in the Section 3.3.1. Equation 3.14 shows analytical expressions to determine flank forces
F f

s (ϕi) (s = X ,Y ) at a cutter rotation angle (ϕi).

[
Fm f

X (ϕi)

Fm f
Y (ϕi)

]
= dz

[
∑ j,k cosβ (i, j,k) tc(i, j,k) −∑ j,k sinβ (i, j,k) tc(i, j,k)
∑ j,k sinβ (i, j,k) tc(i, j,k) ∑ j,k cosβ (i, j,k) tc(i, j,k)

][
KT f (ϕi)
KR f (ϕi)

]
(3.13)

[
F f

X (ϕi)

F f
Y (ϕi)

]
= ∑

j,k
dz

[
cosβ (i, j,k) tc(i, j,k) −sinβ (i, j,k) tc(i, j,k)
sinβ (i, j,k) tc(i, j,k) cosβ (i, j,k) tc(i, j,k)

][
KT f (ϕi, j,k)
KR f (ϕi, j,k)

]
(3.14)

3.3.3 Approach 3: Independent Flank and Bottom Edge Constants
Dang et al. [2010] demonstrated the significance of bottom cutting edge on cutting forces

for certain cutting conditions, e.g., small ADOC. The study showed that the contribution of the
bottom cutting edge is small on total cutting forces but it cannot be neglected in the model. The
forces contributed by the flank edge are determined similarly to the previous approach. However,
the forces contributed by the bottom edge are included in the model independently. Figure 3.3
depicts the process for extracting the bottom edge forces to estimate associated cutting constants.
The study assumes a linear relationship between uncut chip thickness associated with the bottom
disk element and cutting constant. The cutting force data corresponding to the bottom edge
can be determined by subtracting flank force F f

s (ϕi) (s = X ,Y ) determined using Eq. 3.14 from
experimentally measured cutting forces Fm

s (ϕi) (s = X ,Y ) estimated for ADOC (da2 − da1) after
synchronization of the phase for each cutter rotation angle (ϕi). The expressions determining
cutting force associated with the bottom edge are expressed using Eq. 3.15. The bottom edge
cutting constant Kqb(ϕi) (q = T,R) at (ϕi) can be determined by substituting the forces in Eq. 3.16
for the bottommost disk element ( j = 1). The constant corresponding to the bottom edge is
determined as an arithmetic mean of values at each cutter rotation angle for one revolution of
the cutter expressed using Eq. 3.17. The cutting force components acting on the bottom edge can
be computed using Eq. 3.18. The total cutting force at a given cutter rotation angle FT

s (ϕi) (s = X ,Y )
are determined by adding bottom edge force (Fb

s ) and flank force (F
f

s ) acting on each disk element
and it is expressed using Eq. 3.19.

[
Fmb

X (ϕi)
Fmb

Y (ϕi)

]
=

[
Fm

X (ϕi)
Fm

Y (ϕi)

]
−

[
F f

X (ϕi)

F f
Y (ϕi)

]
(3.15)

[
Fmb

X (ϕi)
Fmb

Y (ϕi)

]
= dz

[
∑ j,k cosβ (i, j,k) tc(i, j,k) −∑ j,k sinβ (i, j,k) tc(i, j,k)
∑ j,k sinβ (i, j,k) tc(i, j,k) ∑ j,k cosβ (i, j,k) tc(i, j,k)

][
KT b(ϕi)
KRb(ϕi)

]
(3.16)

Kqb = avg (Kqbi) (q = T,R) (3.17)

[
Fb

X (ϕi)
Fb

Y (ϕi)

]
= ∑

j,k
dz

[
cosβ (i, j,k) tc(i, j,k) −sinβ (i, j,k) tc(i, j,k)
sinβ (i, j,k) tc(i, j,k) cosβ (i, j,k) tc(i, j,k)

][
KT b(ϕi, j,k)
KRb(ϕi, j,k)

]
(3.18)
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FT
s (ϕi) = F f

s (ϕi)+Fb
s (ϕi) (s = X ,Y ) (3.19)

The consistency of the relationship between chip thickness and cutting constants obtained
using the aforementioned analytical approach is dependent on the accuracy of the best fit curve
obtained using the data points. These data points are prone to have numerous uncertainties and
noisy values as they are extracted from the machining experiments. In order to improve the
fitness of these relationships several attempts were reported in the literature such as excluding
the “size effect” [Ko et al., 2002], removal of “jump points” at lower chip thickness region [Wan
et al., 2008a], extraction of different relationships for “bottom and flank edge” [Dang et al., 2010],
etc. However, limitations associated with the curve fitting techniques might result in the poorly
fitted relationship that deteriorates the overall prediction accuracy of the cutting force model. In
the subsequent subsection, a novel machine learningbased approach is discussed to replace the
analytical relationship by overcoming these limitations.

3.4MACHINE LEARNING‐BASED APPROACH FOR CUTTING CONSTANT
This section presents a datadriven approach employing ANNs in establishing the

nonlinear relationship between cutting constants and instantaneous uncut chip thickness. The
mathematical formulations to compute cutting constants Kq(ϕi) (q = T,R) and average chip
thickness tavg(ϕi) values at different cutter rotation angle (ϕi) is identical to the approach discussed
in Section 3.3.1. The determination of a nonlinear relationship using curve fitting is replaced
with the supervised ANN to learn the behaviour similar to the human brain. The supervised
ANN model uses known combinations of tavg(ϕi) (as an input) and Kq(ϕi) (q = T,R) (as outputs)
to learn the relationship using an architecture depicted in Figure 3.4. The ANN is a computational
model of a human brain that acquires knowledge of performing a certain task by learning through
examples instead of being programmed. The ANN consists of processing constituents termed as
neurons, which develops a regulated network by identifying casual relationships among input and
output. The neurons are organized in wellstructured layers such as an input layer, one or a few
hidden layers and an output layer. The present work necessitates an input layer consisting of a
single neuron representing tavg(ϕi) and the output layer comprising of two neurons representing
Kq(ϕi) (q = T,R).

The study employs a multilayer feedforward ANN, which transfers the information
through a network of interconnected neurons from the input layer to the output layer via hidden
layers. The output value of a neuron (xp,q) for layer (p) is determined by weighted sum of neurons
corresponding to the previous layer (p − 1) as Eq. 3.20. The term σ represents the activation
function, which transforms linear input to the nonlinear output value. Several activation functions
are recommended in the literature, e.g., sigmoid, hyperbolic tangent, Rectified Linear Unit (RELU),
etc. The sigmoid function normalizes output between [0,1] and causes the vanishing of the gradient
at higher and lower input values. It results in increased time for the network to obtain accurate
predictions. The convergence rate of a network is better when the RELU activation function is
used. The gradient of the function converges to zero when inputs are near zero or negative and
the network cannot learn by performing backpropagation. The present study employs hyperbolic
tangent (tanh) function as an activation function to normalize output value between [1,1]. The
hyperbolic tangent activation function is advantageous as it provides the convenience of mapping
model inputs to strongly negative and positive values. The activation function affects the overall
performance ofANNby introducing nonlinear properties. If the activation function is not applied,
themodelwould behave linear andwill not learn the complex behaviour of the endmilling system.
The term bias is added to improve the flexibility of ANN by varying the intercept of the regression
line. The number of hidden layers and neurons in each layer is determined iteratively based on
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Figure 3.4 : Flowchart for Calibration of Cutting Constant using Machine Learning

the performance of the ANN. The satisfactory performance was observed with a network having
two hidden layers having 20 and 10 neurons, respectively.

xp,q = σ ∑
q

Wp−1,q xp−1,q +bias (3.20)

E =
k

∑
i=1

(ti − yi)
2 k = Number o f datasets (3.21)

W n+1
p,q =W n

p,q +α
∂E

∂Wp,q
(3.22)

The training of ANN is accomplished using the LevenbergBackpropagation algorithm in
combination with Bayesian regularization [MacKay, 1992]. This algorithm is ideal for regression
problems as in the present study owing to its efficiency and ability to optimize weight distribution
for avoiding overfitting of the network [Kayri, 2016]. The training was initiated using random
weights (Wp,q) associated with each neuron. The input data is fed to the network to predict the
output (y) which is compared subsequently with the actual value of a target (t). The square
of the difference between predicted (y) and target output (t) value termed as an error (E) is
backpropagated through the network to alter the weights of the neurons using Eq. 3.21 and 3.22.
Here, α is the learning rate that regulates the step size of the gradient for the subsequent iteration.
The backpropagation process is reiterated until themaximumnumber of iterations (n)was reached.

The ANN model is validated using testing datasets after completing the training without
providing the output vector. If the estimation with output dataset is satisfactory, the developed
ANN model can be applied to prediction of instantaneous cutting constants Kq(i, j,k) (q = T,R)
corresponding to input values of instantaneous uncut chip thickness tc(i, j,k). The values of tc(i, j,k)
computed from analytical model can be substituted in ANN to predict cutting forces Fm

s (ϕi) (s =
F,N). Figure 3.4 summarizes the overall procedure of estimating cutting constants and forces using
the proposed approach.
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3.5 DETERMINATION OF CUTTING CONSTANTS
The analytical and machine learningbased approaches outlined in the previous section

are implemented in the form of computational programs using MATLAB 2019b [2019] to establish
cutting constant relationships. The present section summarizes the procedure for determining
the coefficients of the relationship of cutting constants expressed using Eqs. 3.9, 3.12, and 3.17.
Subsequently, an ANN driven machine learning approach is developed to establish the nonlinear
relationship between instantaneous uncut chip thickness and cutting constants. In order to
accomplish these objectives, machining experiments are conducted on a 3axis Vertical Milling
Machine using the solid carbide end mill and Aluminium 6061T6 workpiece material with other
cutting conditions summarized in Table 3.2. The end mill with a small overhang is clamped in
a rigid tool holder with the negligible cutter runout to minimize the effect of tool deflections on
cutting forces. The experiments employed a combination of cutting widths and lower spindle
speeds to ensure stable conditions and reduction of machining chatter. The cutting forces are
recorded as a function of cutter rotation angle using Kistler 9257B table Dynamometer and data
acquisition system with software. Figure 3.5 shows the experimental set up used for end milling
experiments during the present thesis work.

Figure 3.5 : Experimental Setup

3.5.1 Analytical Approaches
The cutting conditions corresponding to the first set (Table 3.2) are used for the

determination of average cutting constants (approach 1). The cutting forces are recorded as a
function of cutter rotation angle (ϕi) for one revolution of the cutter. The values of cutting constants
Kq(ϕi) (q = T,R) and tavg(ϕi) at different instants of cutter rotation are determined using Eqs.
3.8 and 3.10 respectively. Figures 3.6a and 3.6b show values of Kq(ϕi) (q = T,R) and tavg(ϕi) at
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different cutter rotation angles calculated using Eqs. 3.8 and 3.10. It can be seen that the values of
Kq(ϕi) (q = T,R) are significantly larger when uncut chip thickness is small due to “size effect”. The
mathematical relationship between Kq(ϕi) (q = T,R) and tavg(ϕi) is determined using a nonlinear
curve fitting technique. Figures 3.6a and 3.6b show the nonlinear relationship along with value of
coefficients used for the prediction of cutting forces using approach 1.

Table 3.2 : Machining Conditions for Determination of Constants

Test No. RDOC (mm) ADOC (mm) Feed (mm/min)
1 6 0.5 (da2 −da1) 400
2 6 0.3 (da1) 400
3 6 0.8 (da2) 400

Workpiece : Aluminium 6061T6
Tool : Solid Carbide (Kennametal  4CH1600DK022A)
Spindle Speed : 2000 RPM
Cutter Diameter : 16 mm
No. of Flutes : 4
Helix Angle : 30◦

(a) KT vs tavg (b) KR vs tavg

Figure 3.6 : Average Cutting Constants (Approach 1)

The second approach requires conducting machining experiments and recording of the
measured cutting force data at two different values of ADOC (da1 and da2) with other cutting
conditions maintained at the same level. The machining conditions corresponding to set 2 and
3 (Table 3.2) are used to derive cutting constants using approach 2. The recorded force data is
synchronized for the adjustment of phases before preprocessing. The cutting forces measured
at smaller ADOC (da1 = 0.3 mm) are subtracted from the ones at larger ADOC (da2 = 0.8 mm)
subsequently. The subtraction process determines measured cutting forces associated with the
flank edge Fm f

s (ϕi) which is used further to determine flank edge coefficients. The subsequent
process for deriving values of Kq f (ϕi) (q = T,R) and tc(ϕi) is similar to the approach 1. Figures 3.7a
and 3.7b show cutting constant values determined using Eq. 3.13 along with fitted relationships
and values of coefficients.

37



(a) KT f vs tavg (b) KR f vs tavg

Figure 3.7 : Flank Edge Cutting Constants (Approach 2)

The third approach requires the computation of independent flank and bottom edge cutting
constants. The method adopts a constant relationship derived using approach 2 to estimate forces
contributed by the flank edge. The flank forces calculated for conditions corresponding to set 1
(Table 3.2) are subtracted from experimentally measured forces to determine bottom edge forces.
The bottom edge forces are substituted in Eq. 3.16 with j = 1 to calculate bottom edge coefficients
Kqb(ϕi) (q = T,R). Figures 3.8a and 3.8b show bottom edge cutting coefficients along with the fitted
relationship computed as the arithmetic mean of cutting constant values corresponding to each
data point. The broader spread of the datapoints in Figure 3.8 is due to the bottom edge rubbing
with the component. The total cutting force at the given cutter rotation angle is determined by the
summation of flank and bottom edge cutting forces.

(a) KT b vs tavg (b) KRb vs tavg

Figure 3.8 : Bottom Edge Cutting Constants (Approach 3)

3.5.2 Machine Learning Approach
Themachine learning toolbox ofMATLAB 2019b [2019] has been used to develop the ANN

model outlined in Section 3.4 for determining cutting constant relationships. The test 3 is used
to train the ANN model as it requires a large number of datasets for effective extraction of the
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relationship between input and output parameters. The cutting forces were recorded at a higher
frequency of 3600 readings per revolution for cutting conditions corresponding to Test 3 (Table 3.2).
The forces associated with one flute of the cutter (900 readings) are used to determine Kq(ϕi) (q =
T,R) and tavg(ϕi)using Eqs. 3.8 and 3.10 respectively. The flute is partially engaged in the cut during
test 3 which yielded about 786 discrete combinations of Kq(ϕi) (q = T,R) and tavg(ϕi) that are chosen
as the training datasets. The dataset obtained was normalized between [0, 1] using the MaxMin
method and rearranged randomly before dividing into training (70%) and testing (30%) datasets.
The datasets were presented to the ANNmodel using topology summarized in Section 3.4. Figures
3.9a and 3.9b shows the performance and regression plots obtained for the ANNmodel developed
in the present study.

(a) (b)

Figure 3.9 : ANNModel ‐ (a) Performance Plot and (b) Regression Plot

3.6 COMPUTATIONAL AND EXPERIMENTAL RESULTS
The mechanistic force model discussed in Section 3.2 has been implemented in the form of

computational program using MATLAB 2019b [2019] to predict cutting forces during end milling
operation over a range of cutting widths i.e. ADOC and RDOC. The relationships between
mechanistic cutting constants and uncut chip thickness derived using analytical and machine
learning approaches outlined in Sections 3.33.5 are used to estimate cutting constant relationship.
Thereafter, a series of end milling experiments are conducted to examine the effectiveness of these
approaches in predicting cutting forces under variousmachining conditions. The attributes related
to the experimental setup, cutting tool and workpiece are kept identical as outlined in Section
3.5. Table 3.3 summarizes the values of ADOC and RDOC used during tests with other cutting
conditions similar to Table 3.2.

Table 3.3 : Machining Conditions for Experimental Verification

Test No. RDOC (mm) ADOC (mm) Feed (mm/min) Remarks
1 2 2 400 Constant ADOC
2 6 2 400 (lower value)
3 1.5 4 400 Constant RDOC
4 1.5 10 400 (lower value)
5 4 10 400 Higher ADOC and
6 6 6 400 RDOC (Roughing)
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3.6.1 Performance Assessment of Analytical Approaches
Figures 3.10 and 3.11 present a comparison of cutting forces predicted using three different

approaches with experimentally measured values for cutting conditions corresponding to Test 1
and 2 (Table 3.3). The objective of these tests is to examine the prediction ability of these approaches
with the change of RDOC at lower ADOC values.

Figure 3.10 : Comparison of Measured and Predicted Forces (Test 1)

Figure 3.11 : Comparison of Measured and Predicted Forces (Test 2)

It can be seen that approach 3 considering independent flank and bottom edge cutting
constants predict cutting forces accurately for both test cases. The prediction results of approaches
1 and 2 are comparable for Test 1. But, the prediction ability of the second approach incorporating
flank edge constants is substantially lower compared to approach 1 considering average cutting
constants for Test 2. The same can be attributed to larger RDOC and thereby substantial
contribution from the bottom edge to the total cutting force. The approach 2 does not include
bottom edge forces in the cutting force model, whereas approach 1 uses the raw data with the
bottom edge contribution in predicting cutting constants. Based on the combined outcomes of
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experiments and computational studies, it can be inferred that the contribution of the bottom edge
is significant when a combination of larger RDOC and smaller ADOC is used during the flatend
milling operation. As approach 1 and 2 does not incorporate bottom edge effects independently
into the model, it yields inferior prediction accuracy.

Figures 3.12 and 3.13 present a comparison of cutting forces predicted using three different
approaches along with experimentally measured values for conditions corresponding to Test 3
and 4 (Table 3.3). The objective of these tests is to examine the prediction accuracy of these three
approaches with the change of ADOC at lower RDOC values.

Figure 3.12 : Comparison of Measured and Predicted Forces (Test 3)

Figure 3.13 : Comparison of Measured and Predicted Forces (Test 4)

It can be seen that the forces predicted using approach 3 are in good agreement with
measured values in comparison to the other two methods. The prediction accuracy of approach 2
is considerably better in this case in comparison to the cases involving higher RDOC. The smaller
value of RDOC reduces the length of the bottom edge engaged in the cut lowering its contribution
to the total forces during these tests. The same can be substantiated further using results shown in
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Figure 3.13 which corresponds to Test 4 where ADOC is considerably large in comparison to Test
3. The contribution of flank edge forces is much higher in this case due to larger ADOC yielding
almost identical predictions using approach 2 and 3. The slight deviations of FX and FY among
both methods are attributed to the engagement of the bottom edge at a particular instant. The
prediction accuracy of approach 1 is the lowest for both these tests due to the use of combined
flank and bottom edge force data while determining the single cutting constant relationship. The
difference between instantaneous uncut chip thickness from bottom to top axial disk element is
substantial for larger values of ADOC. It is not realistic to incorporate such variation into a single
average constant which yields reduced prediction accuracy for approach 1.

Figures 3.14 and 3.15 show a comparison of cutting forces predicted using these three
approaches with experimentally measured results for conditions corresponding to Test 5 and 6
(Table 3.3). The primary objective of these tests is to examine the prediction accuracy of approaches
under roughing conditions, e.g., higher values of ADOC and RDOC.

Figure 3.14 : Comparison of Measured and Predicted Forces (Test 5)

Figure 3.15 : Comparison of Measured and Predicted Forces (Test 6)
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It can be seen that the contribution of the bottom edge is insignificant as the flank edge is
a major contributor to the total cutting force. It results in identical cutting force predictions using
approach 2 and 3 for roughing conditions. An important point to note is the variation of tangential
force (FX) predicted using approach 1 in both cases. It can be seen that the application of average
cutting constants and raw force data in the determination of cutting constants have a significant
influence on the prediction accuracy. The tangential force is not predicted accurately for both tests,
while the other two approaches predict the same very well.

Based on the combined results for each test and various approaches presented above, it
can be concluded that the bottom edge does not have a marked effect on the tangential force
(FX) as predictions are identical for each combination. Meanwhile, the influence of the bottom
cutting edge on normal cutting force (FY ) is significant and it must be incorporated independently
in the model for the improved prediction accuracy. It justifies the fundamental contribution of
this chapter to compare the prediction accuracy of three approaches, as the cutting force in normal
direction contributes considerably towards the generation of distorted machined surface. Based
on computational studies and experimental results conducted over a variety of cutting conditions,
it can be concluded that analytical approach 3 predicts cutting forces very well over a wide
range of cutting widths. The improved prediction accuracy of the model can be attributed to
the independent inclusion of the bottom edge using separate cutting constants. Meanwhile, the
prediction accuracy of the other two approaches is dependent on cutting widths, i.e., the poor
prediction accuracy of approach 2 at higher RDOC and lower ADOC values. The development
of generic model to estimate and control geometric tolerances during milling of thinwalled
components in the subsequent chapters require accurate estimation of cutting forces over a range
of cutting widths. Therefore, the reliable accuracy of approach 3 over a range of cutting widths
enables it as a suitable approach.

3.6.2 Experimental Verification of Machine Learning Approach
The effectiveness of machine learningbased approach as an alternative to the analytical

relationship between cutting constants and instantaneous uncut chip thickness is also examined
by conducting end milling experiments. The cutting forces are estimated computationally using
the approach outlined in section 3.5.2 and compared with the analytical approach applying
independent constants for flank and bottom cutting edges (Approach 3) as well as experimental
results.

Figure 3.16 : Comparison of Predicted Forces from Analytical and Machine Learning Model (Test 1)
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Figure 3.163.18 depicts the comparison of cutting forces predicted computationally using
both approaches and experimentally measured values for conditions corresponding to Test 1,3
and 6 (Table 3.3). It can be observed from Figure 3.163.18, that the machine learning approach
predicts the profile andmagnitude of cutting forces accurately for all cases. Based on the outcomes
of the present study, it can be inferred that the machine learningbased model is able to realize the
relationship between uncut chip thickness and cutting constant effectively, thereby it can be used
as an alternative to the analytical models employing nonlinear curve fitting techniques. However,
it is observed that the normal component (FY ) of the cutting force is predicted consistently higher
which needs further investigation and analysis. It can be explored as subsequent study of the
present work by employing new generation machine learning models with better abilities.

Figure 3.17 : Comparison of Predicted Forces from Analytical and Machine Learning Model (Test 3)

Figure 3.18 : Comparison of Predicted Forces from Analytical and Machine Learning Model (Test 6)
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3.7 SUMMARY
This chapter presented different computational approaches for establishing cutting

constant relationships during the end milling operation. Firstly, three different analytical
approaches adopted from the literature are compared to highlight the importance of incorporating
bottomand flank cutting edges in cutting forcemodels for endmilling operation. The study focuses
on identifying the most appropriate method for predicting cutting forces over a range of cutting
widths i.e., ADOC and RDOC. The first approach determines cutting constants directly from the
experimental force data. The second approach preprocesses the experimental data to exclude
the contribution of bottom edge and determines cutting constant associated with flank edge
only. The third approach derive independent cutting constants for flank and bottom edges. The
cutting constant obtained through the three analytical approaches are applied to predict cutting
forces computationally and compared with experimentally measured values. The comparative
assessment realizes the importance of both, bottom and flank edges towards cutting forces in
the end milling over a range of cutting widths. Thereafter, a hybrid approach is presented that
combines the strengths of the physicsbased mechanistic model and machine learning to mimics
the relationship between cutting constants and instantaneous uncut chip thickness. The hybrid
approach was implemented in the form of computational programs and a series of machining
experiments were carried out to examine the effectiveness of this approach in predicting cutting
forces.

…
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