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Mathematical Tools

3.1 STOCKWELL TRANSFORM
Stockwell Transform (or S Transform or ST)[Stockwell et al., 1996] is a phase corrected

version of Continuous Wavelet Transform (CWT) which magnifies the information-specific
frequency bands with proper dilation and contraction of the Gaussian mother wavelet. The ST
has found a number of application in distribution systems with renewable energy sources [Mishra
et al., 2008; Uyar et al., 2009; Behera et al., 2010; Mahela and Shaik, 2017b,a; Yang et al., 2014] and
in transformer protection applications [Moravej et al., 2010].

It is a multi-resolution analysis based technique which provides frequency-dependent
transform in direct relation to Fourier transform. It is also known to be an extended form of
CWT with a Gaussian window as the mother wavelet. In addition to good resolutions at low
frequencies (with wide window size) and high frequencies (with small window size) like CWT,
it also provides referenced phase information. The local phase spectrum information delivers
enhanced distinguishing features when used for classification cases. CWT can be used to derive
S-transform with the addition of a phase term.

S-transform of signal h(t) is defined as the CWT of h(t) with a Gaussian mother wavelet
multiplied by a phase factor, ei2π f τ ,

S(τ, f ) = ei2π f τW (τ,d). (3.1)

where, τ is the translation parameter, d is the dilation parameter which determines the width of
the wavelet andW (τ,d) is the CWT of the signal h(t) and is given as,

W (τ,d) =
∞∫

−∞

h(t)w(t − τ,d)dt. (3.2)

and the mother wavelet is defined as,

w(t, f ) =
| f |√

2π
e−

t2 f 2
2 ei2π f t . (3.3)

The dilation factor d is the inverse of the frequency f . The S-transform S(τ, f ) of the signal h(t) is
written as,

S(τ, f ) =
∞∫

−∞

h(t)
| f |√

2π
e−

(τ−t)2 f 2
2 ei2π f tdt. (3.4)

The S-transform can also be defined by shifting operations on Fourier Transform H( f ) of signal
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h(t) as,

S(τ, f ) =
∞∫

−∞

H(α + f )e
− 2π2α2

f 2 ei2πατdt. (3.5)

where, f ( f ̸= 0) is the shifting parameter in frequency domain and α is the frequency.

In correlation with Equation 3.5, its discrete analog is utilized to compute discrete
S-transform which takes the advantage of high computational efficiency of the FFT.

The S-transform of the discrete-time signal h[kT ] for k = 0,1,2, ...N − 1 of continuous
counter-part h(t) is defined as,

S
[

jT,
n

NT

]
=

N−1

∑
m=0

H
[

m+n
NT

]
e−

2π2m2

n2 e
i2πm j

N ,n ̸= 0 (3.6)

where, τ and f are replaced with jT and n
NT respectively. H[.] is the Discrete Fourier Transform of

signal h(t) given as,

H
[ n

NT

]
=

1
N

N−1

∑
k=0

h [kT ]e−
i2πnk

N (3.7)

where, j,m and n = 0,1,2, ...N −1, N and T is the period of the discrete-time and continuous-time
signal; and for n = 0, it is defined by the constant as,

S [ jT,0] =
1
N

N−1

∑
m=0

h
[ m

NT

]
(3.8)

The inverse of the Discrete S-transform is given as,

h [kT ] =
N−1

∑
n=0

{ 1
N

N−1

∑
j=0

S
[

jT,
n

NT

]
}e

i2πnk
N (3.9)

The Discrete Stockwell Transform can be computed easily with the combination of the
FFT algorithm and convolution. Thus, for computation purposes, shifted DFT of the signal and
DFT of the Gaussian window are evaluated, then inverse DFT of their product is performed to
obtain S-transform of the given signal. The resultant matrix provides the features of a signal in the
time-frequency plane. The steps to determine ST are given below:
1. Calculate Fourier Transform of the signal, x(t) using FFT.
2. Determine the shifted frequency response.
3. Multiply with the Gaussian window.
4. Take the inverse transform of the resultant signal.

Following these steps, a complex two-dimensional matrix (ST matrix) is obtained whose
y-axis is the frequency and x-axis is the time. Thus, the ST matrix depicts the information in the
time-frequency plane. With the help of contour plots, the significant differences can be observed
between various cases. The S-transform localizes real and imaginary components separately, thus,
providing a localized phase spectrum along with amplitude spectrum.

Applications of ST can is found in distribution systems, transmission line protection, power
quality analysis, in some other fields such as in artefacts removal from fMRI, analysis of EEG and
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brain signals, signal filtering, geophysical data analysis and image processing applications.

3.2 FISHER SCORE AND CORRELATION BASED FEATURE SELECTION
The feature set may contain members who are redundant or irrelevant features which

may affect a classifier’s performance. The feature selection aims at reducing the number
of features based on irrelevancy and redundancy, thereby improving the performance of the
classifiers [Guyon and Elisseeff, 2003]. The methods for feature selection are (1) Filter methods, (2)
Wrapper methods. Filter methods select features on the basis of their scores obtained in various
statistical tests or ranking algorithms for their relevance towards the output. These tests can be
T-test, F-test, chi-square test, Pearson correlation, linear discriminant analysis, Fisher score. In
wrapper methods, a subset of features is used to train and test the classifier which is formed
by successively adding or removing features (forward or backward selection) [Chandrashekar
and Sahin, 2014] and finally the subset which gives the best classifier performance is selected
for classification. The wrapper methods are more efficient as compared to filter methods as they
measure the worth of features concerning classifier’s performance. However, they also suffer from
computational time and complexitywhereas the filtermethods are fast, simpler and easiermethods
to implement.

In this study, the Fisher score criterion, a ranking based method is chosen for feature
selection, owing to its simplicity. The Fisher score is a supervised feature selection method used to
rank feature based on its score that quantifies its discriminating ability under Fisher criterion [He
et al., 2006]. The Fisher score for the jth feature is given as:

Fj =
∑c

i=1 ni(µi −µ)2

∑c
i=1 niσ2

i
(3.10)

where, for c classes in which the samples are to be classified, and for the jth feature, µi is the mean,
σi is the standard deviation, and ni is the number of samples for ith class, µ is the mean of feature
over the dataset. Thus, for a feature, higher the score, better is the discriminating ability it possess,
higher is the rank among all features.

Further, as explained in [Guyon and Elisseeff, 2003], features should be highly correlated
with the class and less correlated with each other for better classifier performance. Thus, the
Pearson correlation coefficient is used to measure the feature correlation which is given as:

CCF(x,y) =
Cov(x,y)

σxσy
(3.11)

where,

Cov(x,y) =
n

∑
i=1

(xi − x)(yi − y) (3.12)

and, σx and σy are the standard deviations and x and y are means of x and y respectively.

3.3 PRINCIPAL COMPONENT ANALYSIS (PCA)
PCA is a popularly used mathematical tool for dimensionality reduction in modern data

analysis. It helps to extract themost relevant information from a high-dimension dataset. It reveals
the hidden structure of a complex dataset. By reducing the number of variables that represent
a system or a process, first, sufficient information is achieved in fewer variables, second, lesser
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relationships between these variables would reduce the computational burden and complexity.
Thus, PCA is a technique for feature extraction, which does not involve removal of any feature
directly, instead, extraction of the most informative combination of features. These features are
independent of one another. This process transforms the original feature space into a space of
lower dimensions, thus reducing the dimensions and also keeping the original information in each
feature intact.

Thus, it solves the problem of high-dimensionality by finding a new basis, which is a linear
combination of original features, that will transform the original space into new. Suppose X is a
mxn matrix with m are the number of features or dimensions and n are the number of samples or
observations, and Y is a projected matrix which has same dimensions, mxn, such that:

Y = PX (3.13)

where, pi,xi ∈ ℜm, and pi.xi represent simple inner products. The P represents that matrix on the
which the data is going to be projected. Thus, the data in X will be projected on the columns of P.
Thus, rows of P = p1, p2...pm is the new basis and are termed as principal components. This basis
is based on the variance of the data. The aim is to find the principal directions in the data such that
variance is maximized and co-variance is minimized. The variance of each feature when the data
is not zero mean is given as:

σ2 = E[(X −Xmean)
2] (3.14)

Suppose, for the data in X , mean of X i.e. Xmean is subtracted to obtain again X , which has zero
mean, then the co-variance between different features can be given as:

CX = σ2 =
1
n

X.XT (3.15)

CX is the covariance matrix has some properties like:
1. It is a square symmetric matrix of size mxm.
2. Diagonal elements are the variances of each feature.
2. Off-diagonal elements are the co-variances between each feature.
To optimize this matrix, two things are required:
1. Minimize the co-variance i.e. all off-diagonal elements are zero.
2. Maximize the variances of each feature.
For this purpose, the matrix CX has to be diagonalized. This can be done by assuming that all the
basis vectors of P = p1, p2...pm are orthonormal i.e. P is a orthonormal matrix. To solve for this,
co-variance matrix CY for Y is defined as:

CY =
1
n

YYT

=
1
n
(PX)(PX)T

=
1
n

PXXT PT

= P(
1
n

XXT )PT

CY = PCXPT

(3.16)

With the theorems of Linear Algebra, any symmetric matrixA can be diagonalizedwith the help of
an orthonormal matrix of its eigenvectors. Thus, A = SDST , where S is the matrix of eigenvectors
arranged as columns and D is the diagonal matrix. In the present case, P can be assumed as a
orthonormal matrix whose rows are the eigenvectors of CX = 1

n X.XT . Thus, P can be written as

32



P = ET , and P−1 = pT and hence, we can re-writeCY as:

CY = PCXPT

= P(EDET )PT

= P(PT DP)PT

= (PPT )D(PPT )

= (PP−1)D(PP−1)

= D

(3.17)

Thus, with the assumption of P as orthonormal, P can diagonalize CY and we can summarize PCA
as:
1. The eigenvectors of CX = 1

n X.XT are the principal components of X and the rows of P.
2. The diagonal value of CY corresponds to the variances of X along P.
3. First principal component indicates the largest variance and second to the second largest and so
on.

Thus, with the help of the co-variance matrix CX, their eigenvalues and eigenvectors, one
can compute the principal components of X.

3.4 SUPPORT VECTORMACHINE (SVM)
Support Vector Machine (SVM) is a machine learning technique based on statistical

learning theory given in [Vapnik, 1995]. It maps the input data into high dimensional space
called the feature space, and then it finds an optimal hyperplane to separate the two classes
while maximizing generalization. The chosen hyperplane is such that it maximizes the distance
(margin) between the plane and the nearest data points of the two classes called the support vectors.
Unlike ANN, SVM does not suffer from local convergence as due to the quadratic optimization
problem, it always finds a global minimum. The performance of SVM is better than conventional
pattern recognition techniques such as ANN which works on the principle of empirical risk
minimization (ERM) (reducing the training error). At the same time, SVM is based on structural
risk minimization (SRM) (derived from statistical learning theory).

Suppose there is a set of training samples x which belongs to a class y, {(x1,y1), (x2,y2),...}
where x ∈ Rn and y ∈ {−1,1}, the hyperplane is given as:

wT x+b =
n

∑
i=1

wT xi +b = 0 (3.18)

where,w is a n-dimensional column vector and b is a scalar. The samples are said to be separated by
this optimal decision boundary when the distance between the boundary and the nearest points or
support vectors is maximum such that the following constraint is satisfied ( shown in Figure 3.1):

yi(wT xi +b)≥ 1 (3.19)

This is achieved by minimizing the following parameter,

arg
w,b

min
1
2
∥w∥2 (3.20)

which becomes a convex quadratic optimization problem that is solved using Lagrangian
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Positive class (y = 1)

Negative class (y = -1)

wTx + b >=1

wTx + b <=1

Hyperplane (wTx + b =0)

Maximum margin

d

Figure 3.1 : Optimal hyperplane separating two classes with maximummargin from support vectors

multiplier method. This will lead to:

min
w

L =
1
2
∥w∥2 −

M

∑
i

αiyi(wT xi +b)+
M

∑
i

αi (3.21)

such that ∀αi ≥ 0 and αi are Lagrangian multipliers. This problem is converted from minimizing
w to maximizing the slack variable αi by differentiating L w.r.t w and b and then replacing them
in the equation to achieve the following equation:

max
α

L(α) =
n

∑
i=1

αi −
1
2

n

∑
i, j=0

αiα jyiy jxix j (3.22)

s.t αi ≥ 0, i = 1,2, . . .n,
n

∑
i=1

αiyi = 0 (3.23)

This gives the following non-linear decision function,

f (x) = sign

(
M

∑
i, j=0

αiyi(xi.xj)

)
+b (3.24)

In practice, for overlapping class distributions, a soft margin is provided to allow
misclassification of some points with softly penalizing those points. To obtain this, slack variables
ξi ≥ 0 are introduced for each training sample s.t. ξn = 0 for data points on the boundary and
ξ = |y−(wT ϕ(x)+b)| i.e., ξn ≤ 1 for pointswithin themargin, but ξn ≥ 1, when they aremisclassified
(i.e., on the wrong side of the boundary). This follows minimizing the following equation:

C
n

∑
i=1

ξi +
1
2
∥w∥2 (3.25)

subject to, yi(wT xi + b) ≥ 1− ξi. C is the cost parameter which controls the penalty for the points
outside the margin.

In the case of non-linear classification, non-linear mapping is used and kernel functions are
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employed to transform the input data into high-dimensional space. For a non-linear classifications,
the decision function is written as,

f (x) = sign

(
M

∑
i, j=0

αiyiκ(x,x′)

)
+b (3.26)

where, κ(x,x′) is the kernel function. The kernel functions can be of the form radial basis function,
polynomial, sigmoid functions etc.

For multi-class SVM, One-Against-All (OAA) method can be been employed which
considers one class at a time while combining all other classes.
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