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Bearing Fault Diagnosis

4.1 INTRODUCTION
Bearing faults are the major contributor of faults with 40-50% [Group et al., 1987] share

in total motor faults. A typical ball bearing (shown in Figure 4.1(a)) can have defects in its outer
race, inner race, cage and balls. Thus, the bearing faults are categorized as: 1. Outer Race Fault,
2. Inner Race Fault, 3. Cage Fault, and 4. Ball Defect. Bearing defects induce vibrations in the
machines, therefore causing predictable frequencies in the vibration spectrum. These vibrations
affect the air-gap eccentricities which perturb flux density. Consequently, there are modulations
in the stator current; which can be observed in the stator current spectrum. As shown by [Schoen
et al., 1995a], the vibration and current frequencies can be related by the following equation,

fbng = | fe ±m. fbea|,m = 1,2,3... (4.1)

where, fe is the supply frequency ( 1440
60 = 24Hz), fbng and fbea are the characteristic fault frequencies

in current and vibration spectrum respectively. The expressions of fbea for various defects are given
by following equations:
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Figure 4.1 : (a) A typical ball-bearing and (b) its schematic diagram
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Table 4.1 : Dimensions of the ball bearings under consideration

Bearing dimensions Type 6205 Type 6204
Pitch Diameter (PD) 38.5 mm 33.5 mm
Ball Diameter (BD) 7.938 mm 7.938 mm
Number of balls (n) 9 8
Basic static load rating 7.8 kN 6.5 kN
Basic dynamic load rating 14.8 kN 13.5 kN

Table 4.2 : Fault frequencies of a ball bearing with frm=24 Hz and ϕ=0◦

Type of fault frequency Fault frequency in vibration
spectrum (Hz)

Fault frequency in current
spectrum (Hz) (for m=1)

6205
fo 85.732 35.73, 135.73
fc 9.525 40.47, 59.53
fc 130.267 180.267, 80.267
fb 111.45 61.45, 161.45
6204
fo 73.252 123.25, 23.25
fc 9.1365 40.84, 59.16
fc 118.747 168.747, 68.747
fb 95.98 45.60, 145.60
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where, frm is the mechanical rotor speed, fo, fc, fi and fb are the fault frequencies for outer-race,
cage, inner-race and ball faults respectively, PD is the pitch diameter, BD is the ball diameter, n is
the number of balls in the bearing and ϕ is the contact angles for the ball on races (in radians). The
schematic diagram of a ball bearing is shown in Figure 4.1(b).

With the help of dimensions of the bearing, the fault frequencies of various bearing faults
can be calculated. The dimensions of the ball bearing taken into consideration in the present study
(Type 6205 and Type 6204) are presented in Table 4.1. Thus, the fault frequencies for all four types
of bearing faults can be computed using Equations 4.2-4.4 and are provided in Table 4.2. These
frequencies are used to analyse the signatures of the bearing faults for their detection, location and
classification.

4.2 FAULT DETECTION
In this section, two methods for detection of bearing faults have been proposed. One is

based on Stockwell transform and other is based on the Total Harmonic Distortion. The details of
each fault detection method are given as follows:

4.2.1 Stockwell transform based fault detection
The fault detection is performed using STmatrix. The analysis involves current acquisition

of a three-phase induction motor with various bearing conditions. Subsequently, the current
signals are transformed to time-frequency plane using ST and further the resultant complexmatrix
is analysed to identify fault signatures. The details are explained in the following paragraphs:
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Experimental set-up
The experimental-set up used has a three-phase four-pole induction motor ratings 3.0 HP,

415 V, 4.5 A, 1440 rpm. The rotor of the motor is mounted on two ball bearings with Type 6205
on driving-end and Type 6204 on fan-end. The three-phase current signals were recorded using
Yokogawa WT3000 Power Network Analyzer. These current signals were sampled at 5.0 kHz
i.e., 100 samples per cycle. Figure 4.2 shows the picture of experimental set up for recording stator
current signals of the inductionmotor. The bearingswith various defects used for the experimental
study are shown in Figure 4.3. Initially the motor was run with healthy bearings on both the ends
in order to obtain reference features which would be utilized for detection and further diagnosis.
Later, the bearings with various defects were mounted on driving-end (Figure 4.3(a)) keeping
healthy bearing on the fan-end. In order to study the effect of defective bearing position on fan-end
(Figure 4.3(b)), the bearing of same defects are used on the fan-end keeping healthy bearings at the
driving-end.

Figure 4.2 : Experimental set up for recording of current signals with bearing faults in a three-phase
induction motor

(a) (b)

Figure 4.3 : Set of the bearings with fault in (1) outer-race, (2) inner-race, (3) cage and, (4) ball, at (a)
driving-end, (b) fan-end

Methodology
The proposed methodology to diagnose bearing faults with the help of Stockwell

Transform is explained in Figure 4.4. The recorded signals are analysed using Stockwell transform
to obtain complex ST-matrix, S( f , t). The maximum magnitude Amax = max(| S( f , t) |) and
maximum phase Θmax = max(∠S( f , t))matrices are obtained from this ST-matrix.

39



Figure 4.4 : Block diagram of the proposed methodology for analysis of bearing faults
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Figure 4.5 : Current signals for various bearing cases where outer-race1 at driving-end and outer-race2
at fan-end

Various statistical properties such as maximum, minimum, mean, mode, standard
deviation and variance of these magnitude and phase angle of ST matrix were analysed in the
viewpoint of fault detection. Out of these properties, the standard deviation of these matrices
were found to be effective in the detection and analysis of various bearing faults.

The stator current signals recorded at 5 kHz sampling frequency are shown in Figure 4.5 for
the driving-end bearing samples. They are decomposed using Stockwell-transform, to obtain ST
matrix for various bearing defects whose contour plots are as shown in Figure 4.6 and Figure 4.7 for
the defective bearings mounted at driving-end and fan-end respectively. From these figures, it can
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be observed that the various bearing defects possess different densities in highlighted areas. Thus
these contours help in detecting bearing faults and analysing them. For this purpose themaximum
magnitude and the maximum phase angle plots are obtained and analysed in the domain of
statistics.
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Figure 4.6 : Contours based on S-transform for various bearings conditions on driving-end. Highlighted
areas depict differences in density of contour plot in various cases.
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Figure 4.7 : Contours based on S-transform for various bearings conditions on fan-end. Highlighted
areas depict differences in density of contour plot in various cases.

Results and Discussion
The maximum magnitude plots in Figure 4.8(a) present a clear discrimination among

various bearing conditions whereas the maximum phase plot in Figure 4.8(b) fails to provide
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Figure 4.8 : (a) Maximum magnitude plot, (b) Maximum phase angle plot; Standard deviation for (c)
Max. magnitude and (d) Max. phase plots for various bearing conditions on driving-end.

such discrimination. However, the standard deviation computed for maximum magnitude and
maximumphase angle vectors as shown in Figure 4.8(c) and 4.8(d) provide a discrimination among
various bearing conditions. It is also evident that the healthy bearings possess minimum standard
deviation and various bearing defects are characterized by different values of the same.

Figure 4.9(a) and Figure 4.9(b) present themaximummagnitude andmaximumphase angle
plots for various bearings conditions on fan-end respectively. The maximum magnitude plots
in Figure 4.9(a) provide a discrimination among various bearing conditions. But the maximum
phase angle plots fail to do the same as evident from Figure 4.9(b). However, the standard
deviation computed for maximum magnitude and phase angle vectors help in discriminating
various bearing conditions as shown in Figure 4.9(c) and Figure 4.9(d).

From Figure 4.8(c) and 4.8(d), Figure 4.9(c) and 4.9(d), it is evident that the maximum
magnitude values associated with fan-end bearing defects have higher values compared to those
associated with driving-end bearing defects. It can also be observed that the standard deviation
values of maximum phase angle for the defective bearings on fan-end are higher in comparison
with defective bearings on driving-end.

These observations could be supported by the fact that damping caused due to loading,
suppress the vibrations induced by defective bearings at shaft-end while such loading could not
provide sufficient damping to the vibrations caused by bearing defects at fan-end [Schoen et al.,
1995a]. Hence, the standard deviation associated with fan-end defective bearings are bound to
have large values.

In this method, the features extracted from the ST matrix of the Stockwell-transform can
be effectively utilized for the detection and analysis of various bearing faults. The standard
deviation of maximum magnitude and maximum phase angle vectors help in discriminating
different bearing conditions. Healthy bearings are characterized by minimum standard deviation
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Figure 4.9 : (a)Maximummagnitude plot and (b)Maximumphase angle plot;Standard deviation for (c)
Max. magnitude and (d) Max. phase plots for various bearing conditions on fan-end.

values whereas different higher values characterize various defects. The standard deviations for
fan-end bearing defects are found to be higher than those obtained for driving-end bearing defects.

4.2.2 Total Harmonic Distortion based fault detection
In the proposed fault detectionmethod, the stator currents of a three-phase inductionmotor

are analysed with the Fast Fourier Transform. The Total Harmonic Distortion (THD) for voltage
and current signals are computed using FFT.

Methodology
A fault index given by the following relation is calculated and compared with a threshold

value which is nothing but the fault index of healthy bearing. If the fault index is greater than the
threshold then the bearing is identified as defective bearing. The fault index (FI) is defined as:

FI = T HD(current)−T HD(voltage) (4.6)

Using this fault index, a threshold can be defined such that healthy would be low from this
threshold, while faults would have higher fault index. The experimental set-up used and the
results are described below:

Experimental Set-up
The experimental set-up comprises a 3HP, 3-phase, 4-pole, 440 V, 50 Hz induction motor

whose rotor is supported by two bearings, Type 6204 (fan-end) and Type 6205 (driving-end) as
shown in Figure 4.10. The data acquisition system includes NI cDAQ9178 chassis, NI 9247 current
module (50Amp),NI 9225 voltagemodule and an interfacing software LabView 2012. The defective
bearings collected from the industry are batched into three categories i.e. bearings with ball fault,
cage fault and outer-race fault as shown in Figure 4.11 for fan-end and driving-end. Each batch has
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14 number of bearings per category. Thus a total of 42 defective bearings belonging to different
conditions are used for the study. Apart from these defective bearings, experiment has been
conducted with a set of new bearings also. A total of 49 case studies have been conducted with the
variations in the type of defect and location of each bearing defect. In each case, the three-phase
stator current signals are sampled at 6.4 kHz with 128 samples per cycle.

3-phase
Induction Motor

Multimeter

cDAQ 9178 chassis,
NI9225 voltage module &
NI9247 current module

Laptop

3-phase supply

Figure 4.10 : Experimental set up for the measurement of current signals of induction motor under
normal and faulty conditions.

(a)

(b)

Figure 4.11 : Bearings of Type (a) 6204 and (b) 6205 with (1) ball fault, (2) cage fault, and (2) outer-race
fault

Results and Discussion
The Fourier Transform of supply voltage and stator current signals (for healthy and bearing

with ball defect) are presented in Figure 4.12(a) and 4.12(b) respectively.

Based on these FFT plots, fault indices are calculated. Figure 4.13(a) depicts the fault index
FI computed for fault detection for healthy and bearing with ball fault. From this figure, it is
evident that the fault index FI for ball fault is higher than that of a healthy bearing. Figure 4.13(b)
illustrates fault indexes of ball, cage and outer-race faults along with those of the healthy bearings.
It can also be observed that all types of faults have fault index greater than the fault index of a
healthy bearing. Thus a threshold value of 0.0041 can be selected to discriminate defective bearing
from the healthy bearings.
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Figure 4.12 : FFT of (a) Supply voltage and (b) current signals (healthy and ball fault).
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Figure 4.13 : Fault index (FI) for (a) healthy and ball fault and (b) all bearing conditions
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4.3 LOCATION OF FAULTY BEARING
The fault detected and classified may be present in either fan-end bearing or driving-end

bearing. Thus, it is important to identify the defective bearing such that it can alone be replaced.
In this case study, location of the faulty bearing i.e., driving-end or fan-end has been investigated
with the help of Stockwell transform and Support vector machine. In the literature, the detection
and classification of bearing faults have been reported under various case studies. However,
identifying the location of a bearing fault is also amajor problem. The knowledge of locationwould
lead to reduction in maintenance and cost since it would not involve unnecessary dismantling of
motor.

There are two methods suggested for locating the faulty bearing. First method is based on
decomposing current signals using Stockwell transform, followed by feature extraction and then
feature reduction technique with Principal Component Analysis (PCA), followed by classification
using Support Vector Machine (SVM). In the second method, the location is determined with the
help of features from ST matrix. The details are described below:

4.3.1 Location based on Stockwell transform and SVM
In this work, an effort has been made to locate the defective bearing using features

extracted from ST on which PCA is applied to reduce the dimensions. The resultant high-variance
components are fed to SVM to classify the samples on the basis of their locations. In the following
sub-sections, methodology of the proposed detection of location is explained in detail, followed by
experimental set-up details and then the results.

Methodology
The current signals are recorded from the experimental set-up for different bearing

samples. With the help of Stockwell transform, the signals are decomposed into magnitude and
phase angle of ST matrix. Features are extracted from these matrices to form a feature matrix of
the samples. PCA is used to reduce the dimension of the feature matrix. The components giving
more than 90% variance in the data are chosen to feed SVM classifier. With these input features,
SVM is trained and tested using k-fold cross validation with RBF kernel. The detailed steps are
explained below:

Feature Extraction and PCA
The stator current signals are analysedwith Stockwell Transform (ST) which results in a STmatrix.
This complex two-dimensional matrix (in time-frequency plane) can be split into magnitude and
phase angle for further analysis. The statistical properties such as mean, maximum, standard
deviation and kurtosis of these matrices are calculated along time and frequency axes to form
statistical vectors which will be 16 in number. The length of each vector along time axis is equal
to the number of samples collected over two cycles. Similarly, the vector along frequency axis
has a length depending on the chosen frequency range. These statistical vectors are presented in
Table 4.3. Further, properties such as mean, maximum and standard deviation are computed for
these statistical vectors which give rise to 16*3 = 48 features.

To extract most significant features, Principal Component Analysis (PCA) is used to extract
the principal components of the obtained feature vector. On the basis of cumulative variance of
components, the significant principal components are chosen such that they capture more than
90% variability of the data. These selected components are fed to SVM as input features to first
train and then identify the locations of the test defective bearings.

Location of Defective Bearing with SVM classifier
SVM is utilized to predict the location of pre-determined faults from two locations. SVM is fed
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Table 4.3 : Statistical Properties of Magnitude and Phase Angle of ST matrix

S.no Statistical Vectors of ST Matrix
1 Maximum of Magnitude on time axis
2 Standard deviation Magnitude on time axis
3 Kurtosis of Magnitude on time axis
4 Mean of Magnitude on time axis
5 Maximum of Magnitude on freq. axis
6 Standard deviation Magnitude on freq. axis
7 Kurtosis of Magnitude on freq. axis
8 Mean of Magnitude on freq. axis
9 Maximum of Phase Angle on time axis
10 Standard deviation of Phase Angle on time axis
11 Kurtosis of Phase Angle on time axis
12 Mean of Phase Angle on time axis
13 Maximum of Phase Angle on freq. axis
14 Standard deviation Phase Angle on time axis
15 Kurtosis of Phase Angle on freq. axis
16 Mean of Phase Angle on freq. axis

with input features of both locations in its training phase and later the trained model is utilized
to predict location of fault for test data. Radial Basis function has been popularly used as the
kernel function for SVM. The parameters such as cost parameter (C) and gamma parameter (γ)
are found using k-fold cross-validation method. Using varied values of C and γ , optimal values
are found using cross validation with k = 4. The training set with chosen components are used as
input to train the SVM. The steps of the proposed strategy are detailed in the flowchart shown in
Figure 4.14.

Figure 4.14 : Flowchart of the proposed algorithm for detecting the location of faulty bearings

Experimental Set-up
The experimental set-up described in Section 4.2.2 has been used. In this case, two types of

faults are taken into consideration, ball fault and outer-race fault, whose prototypes are shown in
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Figure 4.15. There are 14 set of bearingswith ball fault located at driving-end and fan-end locations
(i.e, 7 on each end of themotor). Similarly, 14 set of bearings with outer-race fault at both locations.
Thus, a total of 28 faulty bearings are used for this study, out ofwhich 14 bearings belong to fan-end
and remaining 14 belong to driving-end.

Fault-1 Fault-2

(a)

Fault-1 Fault-2

(b)

Figure 4.15 : Bearings with Fault-1: Ball fault and Fault-2: Outerrace fault at (a) fan-end and (b)
driving-end of the motor

Results and Discussion
The stator current signals acquired from DAQ system are shown in Figure 4.16. The stator
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Figure 4.16 : Current signals of bearings with ball fault and outerrace fault present at either fan-end or
driving-end

current signals are decomposed using Stockwell transform to obtain ST matrix for each bearing
condition. The statistical vectors are computed for two cycles over for a fixed frequency range.
According to Table 4.1, the frequency range for both ball and outer-race fault can be chosen
by observing their minimum and maximum frequencies, which gives us the range as [20 Hz -
160 Hz]. Among these statistical features, standard deviation (SD) of the maximum magnitude
matrix with respect to time and frequency axis are shown in Figure 4.17 and Figure 4.18 for
illustration purpose. Figure 4.17(a) and 4.17(b) show SD of magnitude with respect to time and
frequency axis respectively and Figure 4.18(a) and 4.18(b) show SD of phase angle with respect to
time and frequency axis respectively. It is evident from Figure 4.17(a) that fan-end located faults
have significantly different values than driving-end located faults. Figure 4.17(b) and 4.18 show
similar variations between faults at two locations. Other statistical properties were also found to
be significantly varying under different fault locations. Therefore, these features are collectively
utilized to form a feature vector for each fault case at two locations.

The 48 features extracted from the experiment conducted with each defective bearing are
analysedwith PCA to extract the uncorrelated principal components. The variance and cumulative
variance of principal components are shown in Figure 4.19(a) and 4.19(b) respectively. It can be
observed that more than 90% of the variance is captured in first 9 components. Hence, these 9
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Figure 4.17 : Standard deviation of magnitude of ST matrix with respect to (a) time and (b) frequency
axis
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Figure 4.18 : Standard deviation of phase angle of ST matrix with respect to (a) time and (b) frequency
axis
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Figure 4.19 : (a) Variance of each component extracted by PCA, (b) their cumulative variance

components can be used to represent original feature vector and thereby used for further analysis.
The scatter plots shown in Figure 4.20 illustrates that the selected principal components have clear
boundaries and hence can be efficient inputs to SVM classifier.

The 9 components are used as final features to be fed to SVM. Out of 14 bearings of each
fault type, 8 bearings (4 of each end of the motor) are used as training and remaining 6 (3 of each
end) are used for testing. Thus, training set comprises of 16 bearings dataset while testing set has
12 bearings dataset. Radial basis function (RBF) has been used as the kernel function for SVM. The
optimal values of cost (C) and gamma parameter (γ) are found using 4-fold cross validation. For
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Figure 4.20 : Scatter plot of training set using Principal Component 1 against other Principal
Components

this purpose training dataset has been used and the values ofC and γ withwhich best classification
performance achieved, are selected as optimal values. The obtained values in logarithmic bases of
C and γ are 31.5 and -7.75. With these values of parameters, the trained model is tested with the
test data and the results are shown in Table 4.4. The accuracy of correctly locating the defective
bearing is achieved to be 91.667%.

Table 4.4 : Location of defective bearing with SVM

Class Total Samples Correctly Identified Misidentified
Fan-end 6 5 1
Driving-end 6 6 0

Thus, defective bearings in a three-phase induction motor can be effectively located by
analysing the stator currents with the help of Stockwell Transform. The features extracted from ST
are analysed with PCA for the selection of non-redundant and relevant features. These features
are fed to SVM to find whether the defective bearing is at either fan-end or driving-end. The
performance of the proposed algorithm has been established by the experimental studies on

50



defective bearing collected from the industry. Thus, the proposed algorithm can be used for
online condition monitoring of the bearing so as to minimize maintenance and/or downtime of
the equipment used in the industry.

4.3.2 Location based on Stockwell transform
In this work, another method for locating the faulty bearing is proposed based on the

features of ST matrix. The current signals are decomposed using ST which provides complex
matrix which can be further decomposed into magnitude and phase angle matrices. Statistical
features from these matrices are computed and amongst which some features are found to be
effective for determining location. The proposed location detection method can be implemented
only when the fault is known a priorly.

Methodology
The maximum of maximum magnitude (along the frequency axis) is found to be varying

significantly depending upon defective bearing location in case of ball faults. Similarly, the
maximum of maximum phase angle (along the frequency axis) is found to be varying significantly
depending upon defective bearing location in case of cage and outer-race faults. Hence, these
parameters are named as the fault indexes FI1 and FI2 as given below which will be compared
with respective thresholds to locate defective bearing in case of ball faults and cage/outer-race
faults respectively.

1. Ball Fault

FI1 = max(max(|S(τ, f )|)) (4.7)

2. Cage Fault and Outerrace Fault

FI2 = max(max(ϕ(S(τ, f )))) (4.8)

Thus, for ball faults, one fault index FI1 is proposed and for other two faults, cage and
outer-race faults, FI2

Experimental Set-up
The same experimental set-up as described in Section 4.2.2 has been used here. Same

number of bearings were used. Once the type of fault is known, the following method can be
used to identify the location.

Results and Discussion
The fault index (FI2) is calculated for bearings with ball faults are shown in Figure 4.21(a).

From this figure, it can be seen that FI2 is smaller for fan end defective bearings compared with
that of driving-end. Hence, a threshold of 1.5933 can be set for FI2 to locate whether the defective
bearing is located either on fan-end and driving-end. Similarly, the fault index FI3 computed for
bearings with cage and outer-race faults is shown in Figure 4.21(b) and 4.21(c) respectively. It
can be observed that in case of cage faults, except two samples (which belong to driving-end), all
samples have significantly larger values of FI3 as compared to fan-end faults. On the other hand,
in outer-race faults, the load-end faults have larger values than fan-end faults. Thus, a threshold
of 8.5e-15 can be set for FI3 to locate whether the defective bearing is located either on fan-end and
driving-end for both cage and outer-race faults.

Thus, the location of defective bearing can be effectively be carried outwith the help of fault
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Figure 4.21 : Fault indexes to locate (a) ball fault, (b) cage fault, and (c) outer-race fault either at fan-end
and driving-end.

indexes FI2 and FI3 by comparing with their respective threshold followed by fault classification.
The accuracy of locating the defective bearing is given in Table 4.5.

Table 4.5 : Details of location identification

Fault Type Correctly Identified Misidentified Accuracy
Ball Fault 14 0 100%
Cage Fault 12 2 85.7%
Outer-race Fault 14 0 100%

4.4 FAULT CLASSIFICATION
In this work, an algorithm has been proposed for classification of various bearing faults

such as outer-race, cage and ball faults in a three-phase induction motor. For fault classification
current signals are decomposed with Stockwell Transform and features are extracted. Feature
selection is performed before feeding to the classifier. The same features are fed to ANN in order
to establish the superiority of SVM over ANN in terms of classification efficiency.

Methodology
The current signals are analysed with ST to extract possible features based on statistical

properties of phase and magnitude plots of the ST matrix. These features along with FFT of
current signals are combined to form a feature matrix. These features are ranked by using Fisher
Score algorithm. The correlation of these features is computed and compared with a pre-set
threshold in order to select non-redundant features. These features are fed to SVM in order to
finalize the feature selection with maximum possible accuracy. This methodology has following
steps:
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Stockwell Transform provides a complex matrix whose rows represent variation in time
and columns represent variation in frequency. The statistical parameters such asmaximum, mean,
standard deviation and kurtosis of magnitude and phase angle of the ST matrix are computed
along time and frequency axes. The analysis has been restricted to a specific range of 20 to 165
Hz as illustrated in Section A of Theoretical Background and the duration of signal considered
is 2 electrical cycles (40 ms). Thus, the number of rows of the ST matrix becomes 59 on the
frequency axis with the frequency resolution of 2.5 Hz and the number of columns become 256
(128 samples per cycle) leading to a size of 59x256. Consequently, each statistical parameter
computed based on magnitude of ST matrix on frequency axis would give rise to a vector of
length 256 whereas the same computed along time axis would lead to a feature vector of length 59.
Eventually, each statistical parameter would yield a total of 315 (256 + 59) features. Similarly,
each statistical parameter computed based on phase angle of ST matrix will yield another 315
(256 + 59) features. Thus for the four statistical parameters (maximum, mean, standard deviation
and kurtosis) computed based on the magnitude and the phase angle would yield a total of 2520
(2x315x4) features. Apart from 2520 features extracted from ST matrix, the 59 magnitudes of each
frequency component obtained fromFFT are utilized tomake a total of 2579 features. The statistical
properties utilized for the extraction of these features are presented in Table 4.6.

Table 4.6 : Features for fault diagnosis

S.no. Parameters of ST Matrix Formula
1. FFT of the current signal f f t(x(t))
2. Maximum of Magnitude matrix max(S(τ, f ))
3. Mean of Magnitude matrix mean(S(τ, f ))
4. Std. dev of Magnitude matrix std(S(τ, f ))
5. Kurtosis of Magnitude matrix kurtosis(S(τ, f ))
6. Max of Phase matrix max(∠S(τ, f ))
7. Mean of Phase matrix mean(∠S(τ, f ))
8. Std. dev of Phase matrix std(∠S(τ, f ))
9. Kurtosis of Phase matrix kurtosis(∠S(τ, f ))
10. Maximum of Magnitude matrix on freq. axis max(|S(τ, f )|)
11. Mean of Magnitude matrix on freq. axis mean(S(τ, f ))
12. Std. dev of Magnitude matrix on freq. axis std(S(τ, f ))
13. Kurtosis of Magnitude matrix on freq. axis kurtosis(S(τ, f ))
14. Max of Phase matrix on freq. axis max(∠S(τ, f ))
15. Mean of Phase matrix on freq. axis mean(∠S(τ, f ))
16. Std. dev of Phase matrix on freq. axis std(∠S(τ, f ))
17. Kurtosis of Phase matrix on freq. axis kurtosis(∠S(τ, f ))

Fisher score criterion is used to order (or rank) the features based on the scores. These
features are further shortlisted based on minimum correlation of 50%. The final selection of
features fed to SVM are selected based on amaximum efficiency of classification as detailed below:
Step 1. Initialize the feature set with the top two ranked features.
Step 2. Compute the classification accuracy of the SVMs with the combination of features in Step
1.
Step 3. If the accuracy is less than 100%, add next ranked feature and update the possible
combinations.
Step 4. Repeat Step 2 and 3 until all testing data is successfully classified or all features are
exhausted.

Thus, the features which yield maximum accuracy are finalized as the features required by
the SVMs for proposed fault diagnosis. Since the defects have to be classified into three categories
using SVM i.e. ball fault, cage fault and outer-race fault, two SVMs namely SVM1 and SVM2 are
proposed for this purpose. SVM1 separates ball fault from other faults (cage and outer-race fault)
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and SVM2 separates cage fault and outer-race fault. The block diagram of fault diagnosis using
two-stage SVM is shown in Figure 4.22.

SVM1

SVM2

Training data 

For Class-1 (Ball fault)
Class-2 (Other faults)

Training data 

For Class-1 (Cage fault)
Class-2 (Outer-race fault)

Testing data 

Testing data 

Class-1 (Ball fault)

Class-2 (Other faults)

Class-1 (Cage fault)

Class-2 (Outer-race fault)

Figure 4.22 : Fault classification using OAA-SVM

Experimental Set-up
The same experimental set-up as described in Section 4.2.2 has been used. The number of

bearings used for the experiments are kept same.

Results and Discussion
Features extracted from 42 bearings are divided into two databases. One database

containing the features of 24 bearings (different conditions and locations) is utilized for training
SVM1 and 16 bearings (different conditions and locations) are utilized for training SVM2. The
second set of database used for testing are obtained from the experiments conducted on 18
bearings for SVM1 and 12 bearings for SVM2. SVM with various kernels such as linear,
Gaussian, polynomial and sigmoid have been tried and found no significant differences in the
performances. Hence, linear SVM is chosen because of its low computational burden and speed in
convergence. The cost parameter (C) which sets soft margin in the classifier is chosen using 10-fold
cross-validation. The training dataset has been used for cross-validation process. The values of C
found to be 101 and 7.5 for SVM1 and SVM2 respectively.
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Figure 4.23 : Accuracy for various combinations of four features for classification of ball fault and other
faults using SVM1

A classification accuracy of 100% is achieved by SVM1 with the four features detailed
in Table 4.7 as per the proposed algorithm. Figure 4.23 represents the performance of different
combinations of four features.

Similarly, a classification accuracy of 91.667% is achieved by SVM2 with two features
described in Table 4.8 as per the proposed algorithm. The classification performance of various
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Figure 4.24 : Accuracy for various combinations of two features for classification of cage fault and
outer-race faults using SVM2

Table 4.7 : Selected Features for SVM1

S.no. Rank Index Feature Time point Frequency (Hz)
1. 1 2233 Std. deviation of magnitude NA 17.5
2. 9 2455 Mean of Phase Angle NA 150
3. 11 1036 Kurtosis of Magnitude 209 NA
4. 13 2337 Kurtosis of Magnitude NA 142.5

Table 4.8 : Selected Features for SVM2

S.no. Rank Index Feature Time point Frequency (Hz)
1. 6 2289 Kurtosis of Magnitude 56 NA
2. 7 1145 Maximum of Phase Angle NA 30

combinations of two features in SVM2 are shown in Figure 4.24. The performances of both SVMs
are summarized in Table 4.9.

Table 4.9 : Classification using SVM1 and SVM2

Class Total Samples Correctly Classified Misclassified
SVM1
#features = 4
Ball Fault 6 6 0
Others 12 12 0
SVM2
#features = 2
Cage Fault 6 5 1
Outerrace Fault 6 6 0

Table 4.10 : Details of ANN

Layer No. of Neurons Transfer function Accuracy
Input 6 linear 77.78%

Hidden layer 8 logsig
Output layer 3 tansig

The performance of the proposed method of classification is compared with that of ANN
whose architecture is presented in Figure 4.25.The details of ANN are provided in Table 4.10.The
selection of features fed to the ANN is carried out in the same way followed with SVM classifier.
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Figure 4.25 : Architecture of the ANN used

Table 4.11 : Selected Features for ANN

S.no. Rank Index Feature Time point Frequency (Hz)
1. 2 5 FFT NA 30
2. 4 2345 Maximum of Phase Angle 74 NA
3. 9 1265 Maximum of Phase Angle NA 182.5
4. 10 1312 Maximum of Phase Angle 27 NA
5. 11 1229 Maximum of Phase Angle 110 NA
6. 12 2569 Std. dev. of Phase Angle NA 22.5

The features as shown in Table 4.11 are fed as input to the ANNwith 8 neurons in the hidden layer.
ANN is trained to yield output [O1O2O3] as [1 0 0] for ball fault, [0 1 0] as cage fault and [0 0 1] as
outer-race fault. The maximum efficiency achieved using ANN is found to be 77.78%which is less
than the efficiency achieved with SVM classifier. The learning rate and momentum constant are
chosen on trial and error basis.

The final algorithm for the detection, classification and locating the faulty bearings have
been proposed using the following steps:
1. Fault detection is performed using the THD based method (Section 4.2.2).
2. Fault classification (Section 4.4).
3. Location of the faulty bearing is identified based on features from Stockwell transform
(Section 4.3.2).

The performance of the algorithm has been established from the experimental data of
defective bearings collected from the industry. The flow chart of the the proposed algorithm is
shown in Figure 4.26. Table 4.12 presents the comparison of our proposed methodology with the
existing literature. It is evident that the proposedmethodology is more efficient with three number
of faults.
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Figure 4.26 : Flowchart of the proposed algorithm

Table 4.12 : Comparison with the existing literature

Strategy Data Source References Avg. Accuracy Bearing
Faults

FFT, SVM Current [Pandarakone et al., 2017] 96.67 2
Fourier Bessel,
ARTMAP Current [Tran et al., 2013] 100 1

Discretized signal,
SMO, kNN Current [Palácios et al., 2016] 90 3

WPD, ANN Current [Schmitt et al., 2015] 96.67 2
HHT,FFT-PCA Vibration/Current [Esfahani et al., 2014] 95 2
FFT,ANN/AFNIS Vibration/Current [Ertunc et al., 2013] 90-92 2
ST,SVM Current Proposed work 95 3

4.5 CONCLUSION
The final algorithm for the detection, classification and locating the faulty bearings have

been proposed using the fault detection based on THD, fault classification using SVM and location
of the faulty bearing is identified based on features fromStockwell transform. Because of simplicity
of these independent algorithms, they are combined together to form a single algorithm. Thus,

57



detection, classification and location of faulty bearing in a three-phase inductionmotor is achieved
by FFT and ST analysis of stator current signals with the help of SVM classifier. Fault detection
is carried out by comparing a fault index with a predefined threshold which is computed based
on THD of current and voltage signals. A set of features are selected from Stockwell Transform
of current signals with the help of Fisher score ranking method and correlation techniques. These
features are fed to SVM for the purpose of fault classification. Location of faulty bearing is achieved
with the help of faulty indexes computed based on features extracted from ST.Hence, the proposed
technique has been established with the experimental data obtained from the bearings collected
from industry. Thus, it can be successfully utilized for online monitoring of bearing conditions
and fault diagnosis of three-phase induction motor used in the industry. However, the proposed
algorithm needs to be established for other faults such as inner race, spalling, brinelling etc. The
feature selection in proposed algorithm is based on a minimum correlation of 50%, and can be
verified for lower values as a part of future investigation.
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