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Stator winding fault diagnosis

5.1 INTRODUCTION
One of the main causes of motor breakdown is the failure of insulation in the stator

windings. With the insulation failure, the faults in the stator can grow to serious faults, which are
hazardous for the motor. The faults share about 30-40% of total motor faults [Group et al., 1987;
Thorsen and Dalva, 1995]. The general cause of insulation failure is the breaking of turn to turn
insulation or shorting between turns [Grubic et al., 2008; Siddique et al., 2005]. It is caused due to
a combination of effects including vibrations caused by electromechanical forces, frequent motor
start-ups and stops, high dv/dt voltage surges, mechanical stresses, thermal overload, and/or
contamination.

The long persistence of local shorting of turns may lead to coil to coil faults, phase to coil
faults and ground faults. These faults are very severe and can burn off the motor winding within
no time. Thus, monitoring of the stator winding inter-turn shorts at an early stage of inception is
of prime importance.

For high voltage motors up to 4kV , the partial discharge based methods are utilized for
stator related faults. However, for low-voltage motors, the fault detection methods are still in
the process of finalization [Sharifi and Ebrahimi, 2011]. Nevertheless, in general, there is some
lead time between turn-shorts to complete failure in case of low-voltage motors [Jover Rodriguez
and Arkkio, 2008]. This lead time is sufficient enough for diagnostic techniques to detect shorting
of turns in the motor. The timely detection of fault would help in scheduling maintenance in
advance without compromising with the production and financial intricacies. Thus, an efficient
fault diagnostic algorithm for stator winding fault is an essential requirement for the induction
motor protection.

It has been reported in [Thomson and Morrison, 2002] that the frequency components in
the air-gap flux arise due to stator shorted turns, that can be observed in the current spectrum.
These components in the air-gap flux are given by the following Equation 5.1:

fa =

[
n
p
(1− s)± k

]
fm (5.1)

where, fa are the frequency components arise due to shorting, fm is the supply frequency, p is the
pair of poles, s is the slip, n = 1,2,3... and k = 1,3,5.... For different values of n and k, the fault
frequency components are calculated and provided in Table 5.1. The frequencies 25 Hz and 75 Hz

Table 5.1 : Harmonics present due to stator winding inter-turn faults

n|k 1 3 5
1 75/25 Hz 125/25 Hz 175/75 Hz
2 100/0 Hz 200/150 Hz 300/200 Hz
3 125/25 Hz 225/75 Hz 325/175 Hz
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Figure 5.1 : Experimental set-up to record current signals for stator winding fault diagnosis

cannot be utilized for fault diagnostic purposes as they also arise due to machine asymmetries
present in healthy conditions also. It has been reported that stator turn faults affect twice the
supply frequency, i.e. 100Hz, but, this frequency is also affected by other variations in themachine
dynamics such as load variations. The frequencies 125Hz and 175Hz are found to be varying with
the turn-faults [Thomson and Morrison, 2002], thus, can be used for the analysis of stator winding
faults. Also, other frequencies like 225 Hz and higher can also been used.

The stator winding faults considered under the present study are, stator winding inter-turn
faults and phase to ground faults. With the help of Stockwell transform, the stator current signals
are decomposed into complex STmatrix whosemagnitude has been utilized for the fault detection.
After fault detection, discrimination between the turn-faults and the ground faults is performed
with the help of zero sequence currents. Following this, two Support Vector Machine (SVM)
models are used to identify the location of the fault i.e., the faulty phase for both turn-faults and
ground faults. The features in specific frequency bands determined by Table 5.1 are used as input
to the SVM to detect faulty phase in case of turn-faults. For ground faults, features are extracted in
awider frequency bands as input to the SVMmodel. Under both cases, a heuristic feature selection
approach is utilized to find the optimal features for classification purpose. A good classification is
achieved for both types of faults.

5.2 EXPERIMENTAL SET-UP
A three-phase induction motor ratings 0.75 kW (1 HP), 415 V, 4-pole, 50 Hz, 2 Amp, 1380

rpm has been used under the experimental study. The rotor is suspended with two bearings viz.
6204 ZZ and 6203 ZZ. Themotor is run under no-load conditions. For reference, the current signals
for a healthy motor (without any fault) are recorded. The experimental hardware set-up used for
the study is shown in Figure 5.1. The faults in the windings are emulated in the motor. To create
turn-faults, wires are soldered on the three adjacent turns of the middle of each phase winding.
The ends of these wires are taken out as taps on the panel mounted over the top of the motor. This
way there are three turns per phase i.e. nine taps available for experiments of turn-faults. For the
ground faults, a wire-end is taken out from the stator core and mounted over the top of the motor.

The current signals are recorded using National Instruments based data acquisition system
which comprises of NI-9178 chassis, NI-9247 current module (50 A) and an interfacing LabVIEW
software with the personal computer. The sampling rate was set at 6.4 kHz.

Since, there are three taps available for a single phase winding of the motor, three
turn-shorts can be emulated for three phases. Suppose, if A1, A2 and A3 are three taps of phase-A,
then shorting betweenA1-A2, A2-A3 andA1-A3 are conducted and current data is recorded. Thus,
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there are nine cases of turn-shorts performed. For ground faults, each turn-tapping is shorted with
ground connection (G) taken out from stator core through a shorting resistor (R). The details of this
winding faults emulated is shown in Table 5.2. Stator current signals are recorded under both case
studies with proper annotation of location of the corresponding faulty phase. In each experiment,
a sample is recorded consisting of all three-phase current signals.

Table 5.2 : Details of the emulated stator winding faults

Fault Type Details
Turn faults taps from three adjacent turns

total nine taps available
1.6% turns shorted at a time
nine possible combinations of turn-shorts

Ground faults nine connections to ground through shorting resistor (R)
R = 500 kΩ
100 kΩ
50 kΩ
10 kΩ
5 kΩ
1000 Ω
500 Ω

5.3 STATORWINDING FAULT DIAGNOSIS
The stator current signals recorded for all conditions of statorwindings (healthy, turn-faults

and ground faults) in a three-phase induction motor are shown in Figure 5.2. Spectral analysis is
performed using FFT to identify the variation of frequencies in different conditions of the motor.
The FFT of stator current signals for phase-A and phase-B are shown in Figure 5.3 respectively.

It can be observed that under the faults in the stator winding has changed the current
spectrum as evident from the Figure 5.3. The quantification of these changes is difficult due to
limitations of FFT. Thus, multi-resolution based analysis using Stockwell transform would be
useful in extracting information in the time-frequency plane.

Stockwell transform is used to analyse the stator current signals recorded under various
conditions of winding faults. A complex matrix with information in both time and frequency
is obtained. Various statistical properties are calculated for the magnitude of the ST matrix.
These properties include mean, maximum, standard deviation, kurtosis, mean absolute deviation,
skewness, energy and entropy. The most discriminating characteristics were found in the
standard deviation (SD) of the magnitude of ST matrix obtained with respect to frequency axis.
Subsequently, SD is used as a fault diagnostic parameter in the proposed algorithm. The algorithm
consists of following steps:
1. Fault detection
2. Distinguishing turn-faults from ground-faults
3. Detection of faulty phase in turn-faults
4. Detection of faulty phase in ground-faults

5.3.1 Winding Fault detection
For the detection of a fault, the standard deviation of each phase for all frequencies has been

calculated. A frequency range is set according to Equation 5.1 and Table 5.1. Three frequencies
have been utilized, 125 Hz, 175 Hz and 225 Hz for the fault detection. To encompass the minor
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Figure 5.2 : Stator current signals for (a) healthy, (b) turn-fault, and (c) ground fault for a three-phase
induction motor
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Figure 5.3 : FFT of stator current signals of (a) Phase-A, and (b) Phase-B under healthy, turn-fault and
ground faults conditions

fluctuations around these frequencies, the narrow bands centred around the chosen frequencies
are defined. Frequencies ranging between ± 10 Hz around the above-mentioned frequencies are
taken into consideration. Therefore, the resultant frequency ranges are Fr1 = [115−135]Hz, Fr2 =
[165−185] Hz, and Fr3 = [215−225] Hz. The SD of magnitude matrices is calculated under these
pre-defined frequency ranges. Based on the SDs of each phase, the first fault index for detection of
fault is defined in Equation 5.2:

FI1 =
3

∑
i=1

std(|Si(τ, f )|))|Fr1,Fr2,Fr3 (5.2)
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where, Si(τ, f ) is the ST matrix for ith phase and i = 1,2,3 for all three phases. Thus, the fault index
(FI1) includes the summation of standard deviation of magnitude matrices for three phases. Using
this index, detection of fault (turn-shorts or ground-fault) can be performed.

5.3.2 Discrimination of turn-faults from ground-faults
Post fault detection, the following step is to identify whether the cause of the fault is due

to turn-faults or ground-fault. For this purpose, the second fault index based on zero-sequence
current has been defined. Zero sequence currents (I0) are prominent in case of the ground faults in
the motor. This can be utilized in distinguishing turn-shorts and ground faults. Based on this, the
fault index, FI2 is defined in Equation 5.3:

FI2 = std(|I0|) (5.3)

where, I0 is the zero sequence current and is given as, I0 = (Ia + Ib + Ic)/3, and Ia, Ib, Ic are the phase
currents of winding A, B and C respectively. Once the type of fault is identified as turn-faults or
ground-faults, the objective is to identify the faulty phase. For this purpose, a machine learning
based approach using two SVM models, for each fault type has been proposed. The detailed
methodologies for both classification strategies are explained in the following sub-sections.

5.3.3 Detection of faulty phase with turn-faults
The faulty phase is identified with the help of a classifier based on the features extracted

from ST matrix of each sample of fault (consisting of three-phase current signals). Feature
extraction and selection is followed by classification into three fault classes.

Feature extraction
For the classification purposes, the features are curated from the SD of the magnitude of ST

matrix calculated for current signals of each phase. The SD is obtained for the selected frequency
ranges, Fr1, Fr2, and Fr3 identified in Section 5.3.1 which are the presumed to be affected by
winding faults. These ranges are termed as, Fr1

1 = 115 Hz, Fr2
1 = 135 Hz, Fr1

2 = 165 Hz, Fr2
2 = 185

Hz, Fr1
3 = 215 Hz, and Fr2

3 = 225 Hz. The SD is calculated within these frequency ranges for each
phase ST matrix, followed by the features formation given as:

f eatn =
Fr2

i

∑
Fr1

i

std(|S j(τ, f ))| (5.4)

where, f ean is the nth feature with n = 1,2,3, ..9, i = 1,2,3 is the chosen three frequency ranges and
j = 1,2,3 representing three-phases phase-A, phase-B and phase-C respectively. Thus, for each
sample of fault with three phase current signals, there are nine features to represent the fault. The
details of the features are provided in Table 5.3.

Feature selection and classification
Not all features might be useful for the purpose of classification. Therefore, selection of

relevant features is an important task before feeding them to the classifier. For this reason, a
heuristic approach is utilizedwhere all possible combinations of n features (n= 2,3,4....9 is number
of features) are trained and tested. Thus, a total of C9

n ∼C9
2 +C9

3 + ...C9
9 = 502 combinations are fed

to SVM, the one with the best accuracy is utilized. This is performed as per follows:
Step 1: Initialize n = 2 , and make the feature set with first n features.
Step 2: Compute the classification accuracy using SVM.
Step 3: If the accuracy is less than 100%, take another combination of n features.
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Table 5.3 : Features list for faulty phase detection in turn-faults

Feature Name Phase Frequency range
f eat1 A Fr1

f eat2 A Fr2

f eat3 A Fr3

f eat4 B Fr1

f eat5 B Fr2

f eat6 B Fr3

f eat7 C Fr1

f eat8 C Fr2

f eat9 C Fr3

Step 4: Repeat the above procedure with n = n+1 till all features are exhausted. The whole process
of feature extraction, selection and classification has been illustrated in Figure 5.4

5.3.4 Detection of faulty phase with ground-faults
In order to detect the faulty phase, in case of ground faults, another SVMmodel is trained.

For this purpose, the features are extracted from ST matrix, followed by heuristic feature selection
using SVM to identify the faulty phase i.e., phase-A fault, phase-B fault and phase-C fault. These
steps are detailed in the following sub-sections below:

Feature Extraction
The ground faults are emulated in the experiments with the help of various shorting

resistors as mentioned as detailed in Table 5.2. There were 189 samples collected with all resistors
such that 63 samples were collected pertaining to each fault class. The features were extracted
from the SD of magnitude of ST matrix for each phase current. Figure 5.5 (a), (b), and (c) show the
standard deviation plots for ground faults in phase-A, phase-B and phase-C respectively.

It can be observed that at specific frequency ranges (highlighted), the values of SD for the
faulty phase are higher as compared to other phases. These frequency ranges are either different
or coincide for all three locations of faults. This is due to the reason that fault in one phase affects
the currents in other phases, as neutral current flows back in the phases through the ground. This
causes a simultaneous effect on other phases also. This inter-phase effect does not change a small
set of frequencies in the faulty phase which leads to a wider range of frequencies getting affected
due to the ground faults. To encompass all such fault affected frequency ranges, a set of frequency
ranges are chosen on the basis of observation done for many samples of fault. First, frequencies are
identified for each faulty phase such that only that phase has higher SD values than other phases.
Based on individual frequency ranges for each phase, the final frequency ranges are selected such
that all useful frequencies are covered for all three-phases. All these frequency ranges are shown in
Table 5.4. Thus, the final frequency ranges are named as f 1 = [280-350 Hz], f 2=[100-120 Hz], and
f 3=[190-240 Hz]. The features extracted within these frequency ranges for each phase are given

Table 5.4 : Frequency ranges useful for detecting the faulty phase

Faulty Phases Useful frequency ranges Selected frequency ranges
Phase-A 300-350 Hz 280-350 Hz,
Phase-B 90-120 Hz, 280-350 Hz 100-120 Hz,
Phase-C 100-160 Hz, 190-240 Hz 190-240 Hz
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ST matrix

features =   StandardDeviation(|S(τ,f)|)

nC
9 ~ 2C

9+3C
9 +  +9C

9=502 combinations 

of features

Make feature set with n=2 features

SVM

If n=502 

OR

Accuracy=100%

Model is trained with 

optimal features

Yes

No

Figure 5.4 : Block diagram summarizing feature extraction, selection and classification process for
stator faults
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Figure 5.5 : Standard deviation of STmatrix of stator current signals along frequency axis under ground
fault conditions when the fault is in (a) Phase-A, (b) Phase-B, and (c) Phase-C windings
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by Equation 5.5:

Fn = ∑std(|S j(τ, f ))|| f1, f2, f3 (5.5)

where, n = 1,2,3, ..9 is the index of 9 features, and j = 1,2,3 represent three-phases. In this way,
each sample consists of nine features (three features for each phase). The details of the features are
provided in Table 5.5. For the purpose of feature selection and classification, the same procedure

Table 5.5 : Feature list for Ground fault phase classification

Feature Name Phase Frequency range
F1 A f1

F2 A f2

F3 A f3

F4 B f1

F5 B f2

F6 B f3

F7 C f1

F8 C f2

F9 C f3

is repeated as explained in Section 5.3.3.

5.4 RESULTS AND DISCUSSION
The current signals are decomposed using Stockwell transform to obtain complex

2D-matrices (ST matrices). These matrices reflect the variation of different frequencies (changed
due to stator winding faults) with respect to time. Based on these matrices, a fault detection
scheme is designed to detect the presence of fault, which can further detect the faulty phase in
both turn-faults and ground-faults.

Figure 5.6 shows the standard deviation vector of a ST matrix of the current signals,
calculated along frequency axis with respect to time for a frequency range of [1-400 Hz](above
this range, no significant variations were observed). Figure 5.6 (a)- (c) show the SD for healthy,
turn faults and ground faults conditions when the faulty phase is Phase-A, Phase-B, and Phase-C
respectively. Evidently, there are high values of standard deviations at certain frequency ranges
under fault conditions in comparison to healthy state. These changes in SD can be utilized to
form a fault diagnostic algorithm for stator winding faults. For this purpose, SD of each phase
current signal is calculated for a specified frequency ranges. For all three-phases, the values of
SD are added in accordance with Equation 5.2 to determine fault index-1, FI1 for all samples of
turn-faults and ground faults. The mean values calculated for all samples of both fault types, with
their respective error bars are shown in Figure 5.7.

Evidently, the value of this fault index is significantly low for healthy reference as compared
to both fault cases. The high error bars reflect the standard deviation of these faults. Within the
boundaries of the error bars, healthy is the lowest. Thus, the FI1 of the reference healthy can be set
as a threshold to compare FI1 such that any value above this thresholdwould indicate the presence
of fault.

Subsequent to the detection of fault, the other task is to identify the type of fault, i.e.,
turn-fault or ground fault. This step is done using fault index, FI2 which is based on standard
deviation of zero-sequence current for each sample of both fault conditions. The mean and
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Figure 5.6 : Standard deviation of ST matrix of stator current signals along frequency axis for a healthy,
turn-fault and ground fault condition in (a) Phase-A, (b) Phase-B, and (c) Phase-C
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Figure 5.7 : Fault index for identifying faults in the stator windings

standard deviation values of all samples under both faults are shown in Figure 5.8. It can be
observed that there is a significant difference in fault index, FI2 for turn-shorts and ground faults.
A threshold can be set as the mid value of the FI2 for both faults. Post fault type detection i.e.,
turn-fault or ground fault, two SVM models, one for each are trained and tested. In the case of
turn-faults, a total of 54 sets of samples are collected consisting all three-phase current signals. The
sets comprises of signals with faults in one of the three phases. With this, three classes are defined
for the classification purpose, i.e., phase-A, phase-B and phase-C, under which samples would be
classified. For each class, a total of 18 samples are collected. For the classification, SVM classifier is
used whose training is done using 36 samples (12 samples from each class) out of 54 samples. The
remaining 18 samples (6 samples for each class) are used for testing purposes.

Amulti-class SVMwithOne-Against-All approach is undertaken for classification purpose.
Radial basis function is used as the kernel function on the basis of better performance than other
kernels such as linear, polynomial etc. This is a widely used kernel on the fault diagnosis platform.
The optimal values of the tuning parameters Gamma, γ which is width of the Gaussian function
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Figure 5.8 : Fault index for discriminating turn-faults and ground-faults in stator windings

and Cost, C which sets soft-margin in the classifier are determined using k-fold cross validation.
Over the grid of γ and C, the training is performed and the pair of γ and C giving the highest
average cross-validation accuracy is chosen. A heuristic approach is used to find the optimal
features such that for every combination of features, the SVM-1 model is trained and validated.
At first, the optimal values of C and γ are obtained and then the trained model with these values
are tested on the unknown/testing dataset. For turn-faults, the cross validation is performed with
k = 4. The maximum accuracy obtained under n feature combinations is shown in Figure 5.9.
The combination of features giving the maximum accuracy is provided in Table 5.6. Thus, these
six features from three-phases can be used for identification of faulty phase in turn-faults. The
optimal values of C = 2048 and γ = 0.004 are found. The confusion matrix for this classification is
provided in Table 5.7.

2 3 4 5 6
80

85

90

95

100

Number of features

M
ax

im
um

 a
cc

ur
ac

y

 

 

Accuracy

Figure 5.9 : Maximum accuracies for each set of feature combinations (n) for faulty phase detection in
case of turn-faults

Table 5.6 : Features selected (giving highest accuracy) with each set of combinations for turn faults

Number of
features (n) Selected features Accuracy (%)

2 f1, f4 83.33
3 f3, f4, f8 94.44
4 f1, f3, f6, f9 94.44
5 f1, f2, f3, f4, f8 94.44
6 f1, f2, f3, f4, f6, f8 100

For ground fault phase classification, a total of 189 samples are collected from the
experiment, with 63 samples for each faulty phase. Out of 189 samples, 153 samples are used
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Table 5.7 : Confusion matrix for SVM-1

Phase-A Phase-B Phase-C
Class
Accuracy
(%)

Overall Accuracy

Phase-A 6 0 0 100%
100%Phase-B 0 6 0 100%

Phase-C 0 0 6 100%
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Figure 5.10 : Maximum accuracies for each set of feature combinations (n) for faulty phase detection in
case of ground faults.

for training/validation and remaining 36 samples are used for testing purposes for SVM-2.
Using Equation 5.5, nine features are determined for all samples. Similar, heuristic searching of
optimal features as mentioned above is implemented here.For ground-faults, the cross validation
is performed with k = 10.

Figure 5.10 shows the maximum accuracy obtained for n = 1,2,3...9 combinations of
features to classify three classes. Thus, with six features as mentioned a classification accuracy
of 91.66% is obtained with C = 64 and γ = 0.5. Table 5.8 shows the features giving the highest
accuracy for each set of n. Table 5.9 shows the confusion matrix for the classification giving the
highest accuracy.

Hence, with these features the faulty phase can be identified in case of ground faults. With
this step, a complete algorithm is established which first identifies the presence of fault and the
type, followed by detection of faulty phase in both cases using machine learning approach. The
flowchart of the fault detection algorithm for stator winding faults is shown in Figure 5.11.

5.5 CONCLUSION
In this work, a fault detection, classification and location of stator winding faults in a

three-phase induction motor is proposed. The stator current signals are decomposed using
Stockwell transform, whose magnitude is statistically analysed. Standard deviation of the
magnitude matrices is found to be useful for fault diagnosis purposes. A fault index is defined
based on this parameter to identify the presence of fault (turn-fault or ground fault). Post fault
detection, the aim is to identify the type of fault which is done with the help of zero sequence
current based fault index. Subsequently, the identification of faulty phase is done using SVM
models for both turn-faults and ground faults. These SVM models are trained with features
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Table 5.8 : Features selected (giving highest accuracy) with each set of combinations for ground faults

Number of
features (n) Selected features Accuracy (%)

2 f1, f4 69.44
3 f3, f5, f9 80.55
4 f2, f3, f5, f8 80.55
5 f1, f2, f5, f7, f9 80.55
6 f1, f2, f3, f4, f6, f8 91.66
7 f1, f2, f4, f5, f6, f7, f9 88.89
8 f1, f2, f3, f5, f6, f7, f8, f9 77.78
9 ALL 77.78

Table 5.9 : Confusion matrix for SVM-2

Phase-A Phase-B Phase-C
Class
Accuracy
(%)

Overall Accuracy

Phase-A 12 0 0 100%
91.66%Phase-B 1 10 1 83.33%

Phase-C 0 0 12 100%

obtained from SD of magnitude matrix under pre-defined frequency ranges. A heuristic approach
is used to obtain the best combination of features for classification. A k-fold cross validation is
used to train and validate the SVM models, with k = 4 and k = 10 for turn-faults and ground
faults respectively. An accuracy of 100% and 91.66% is obtained for turn-fault and ground fault
respectively.
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Figure 5.11 : Flowchart of the fault diagnosis strategy for stator winding faults
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