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Introduction

The study of dynamical systems originated as a tool to investigate various natural and
physical systems around us. In the process, several phenomena were modelled as discrete dynamical
systems and their long term behaviour were approximated. One of the early studies were carried
study by Johannes Kepler and Galileo Galilei during the early seventeenth century, where they
investigated the qualitative analysis of planetary motion. Later, Newton formulated the fundamental
laws of motion using the ordinary differential equations. Since then, mathematical tools have been
extensively used to model various systems and predict their long term behaviour. The theory in
the topological setting was first used by Henri Poincare in the late nineteenth century where he
investigated three-body problem in a celestial mechanism. Birkhoff, in the early twentieth century
used the qualitative theory of dynamical systems to investigate some of the fundamental problems
in ergodic theory. In 1937, Pontryagin introduced the concept of structural stability for dynamical
systems. He investigated the qualitative behaviour of dynamical systems under small perturbations.
The investigations have answered some of the fundamental questions in this area and have found
applications in various branches of sciences and engineering.

Symbolic dynamics originated as a tool to investigate the qualitative behaviour of general
dynamical systems arising in various fields of science and technology. The simpler visualization and
easy computability makes it an effective tool to determine the long term behaviour of the underlying
system. In one of the seminal work in 1898, Jacques Hadamard used the theory of symbolic systems
to study the geodesic flows on surfaces of negative curvature [Hadamard, 1898]. Claude Shannon
used symbolic dynamics to develop the mathematical theory of communication systems [Shannon,
1948]. Since then, the topic has gained attention of several researchers around the world and has
found applications in various branches of sciences and engineering. In particular, the topic has found
applications in areas like control networks, biomedical engineering, anomaly detection in mechanical
systems and computational modelling of gene networks. In [Hochma et al., 2013], the authors
used symbolic dynamics to investigate the dynamics of Boolean control networks. In [Patankar
et al., 2008], the authors used symbolic dynamics to develop a technique to detect and monitor
failure precursors and anomalies in electrical systems. The technique resulted in robust detection
and was observed to be superior to conventionally known techniques for anomaly detection. In
[Khatkhate et al., 2006], the authors used symbolic time-series analysis for anomaly detection in
mechanical systems. The method used principles of automata theory, information theory and
pattern recognition to examine the efficacy of the proposed method. The proposed method was
observed to perform better in many aspects when compared to some of the known methods in the
literature. In [Mallapragada et al., 2008], the authors used symbolic dynamics filtering to investigate
automated behaviour recognition in mobile robots. The work introduced the dynamic data driven
method using symbolic dynamics for signature detection in mobile robots. The authors validated
the proposed method by experimentation on a networked robotics test bed to detect and identify
the type and motion profile of the robots under investigation. In [Voss et al., 2000], the authors used
symbolic dynamics to characterize the dynamics of heart rate variability (HRV) and blood pressure
variability (BPV). The authors used symbolic dynamics for risk stratification after myocardial
infarction for characterization of different cardiovascular diseases and for phenotyping in genetic
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studies. In recent times, tiling spaces and their cohomology have found applications in investigating
structural properties of quasicrystals. In [Forrest et al., 2002], the authors used quasiperiodic tilings
to investigate properties AI-Mn type quasicrystals. They also use tiling patterns for indexing of the
diffraction patterns. A detailed investigation on the relation between the properties of the tilings
patterns and structural properties of the quasicrystals is available in the literature [Steinhardt and
Ostlund, 1987; Janot and Mosseri, 1995; Axel and Gratias, 1995; Moody, 1997].

These studies highlight the importance of investigating the general theory of multidimensional
symbolic systems. Although the topic has been investigated by many researchers around the world,
many of the natural questions for multidimensional symbolic dynamics need to be answered. For
example, can the elements of the multidimensional shift space be characterized by a square matrix?
What is the minimal cardinality of the square matrix required to characterize the elements of
the multidimensional shift space? In case the dimension of the desired matrix is infinite, can
the elements be characterized by a sequence of finite matrices? Under what conditions does a
multidimensional shift space posses a periodic point? When can the representation of a periodic
(general) point for the given shift space X be obtained using elements of the full shift? Under what
conditions, does a point of the full shift belong to a given multidimensional shift space X? In this
thesis, we provide answers to some of the natural questions raised above. Before we move further,
we first give some of the basic definitions and concepts required.

Let A = {ai : i ∈ I} be a finite set and let d be a positive integer. Let the set A be equipped
with the discrete metric and let AZd , the collection of all functions x : Zd → A be equipped with
the product topology. Any such function x is called a configuration over A. Any configuration
x is called periodic if there exists u ∈ Zd (u 6= 0) such that x(v + u) = x(v) ∀v ∈ Zd . The set
Γx = {w ∈ Zd : x(v + w) = x(v) ∀v ∈ Zd} is called the lattice of periods for the configuration x.
The cardinality of the largest rationally independent subset of the lattice of periods is called the
dimension of the lattice of periods. It may be noted that the lattice of periods is closed under
integral combinations. The function D : AZd ×AZd → R+ be defined as D(x,y) = 1

n+1 , where n is
the least non-negative integer such that x 6= y in Rn = [−n,n]d , is a metric on AZd and generates the
product topology. Note that if d = 1 then AZd is the collection of all bi-infinite sequences over A. For
any a ∈ Zd , the map σa : AZd → AZd defined as (σa(x))(k) = x(k+a) is a d-dimensional shift and is a
homeomorphism. For any a,b ∈ Zd , σa ◦σb = σb ◦σa and hence Zd acts on AZd through commuting
homeomorphisms. A set X ⊆ AZd is σa-invariant if σa(X)⊆ X . Any set X ⊆ AZd is shift-invariant if it
is invariant under σa for all a ∈ Zd . A nonempty, closed shift-invariant subset of AZd is called a shift
space. A shift space X is called irreducible if for any pair of nonempty open sets U,V in X there exists
n ∈ Zd such that σn(U)∩V 6= φ . If Y ⊆ X is a closed, nonempty shift-invariant subset of X , then Y is
called a subshift of X . For any nonempty S⊂Zd and any configuration x : Zd→ A, let x|S denote the
projection of x on S. The map πS : AZd → AS defined as πS(x) = x|S is the projection map and projects
any element of AZd to AS. Any element in AS is called a pattern over S. A pattern is said to be finite
if it is defined over a finite subset of Zd . A pattern q over S is said to be an extension of the pattern p
over T if T ⊂ S and q|T = p. The extension q is said to be a proper extension if T ∩Bd(S) = φ , where
Bd(S) denotes the boundary of S. Let F be a given set of finite patterns (possibly over different
subsets of Zd) and let X = {x ∈ AZd : any pattern from F does not appear in x}. The set X defines
a subshift of Zd generated by set of forbidden patterns F . If the set F is a finite set of finite patterns,
we say that the shift space X is a shift of finite type. For the one dimensional case, a shift space is
called M-step if it can be characterized by a finite collection of forbidden blocks of length M+1. We
say that a pattern is allowed if it is not an extension of any forbidden pattern. We denote the shift
space generated by the set of forbidden patterns F by XF . Two forbidden sets F1 and F2 are said
to be equivalent if they generate the same shift space, i.e. XF1 = XF2 . A forbidden set F of patterns
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is called minimal for the shift space X if F is the set with least cardinality such that X = XF . It is
worth mentioning that a shift space X is of finite type if and only if its minimal forbidden set is a
finite set of finite patterns. For any n ∈ Zd , let S X

n denote the set of all d dimensional cuboids of
size n allowed in X . Let BX

n denote the set of all multidimensional sequences obtained by repetitive
arrangement of a fixed element of S X

n (in each of the d directions). It may be noted that the shift
space can equivalently be defined in terms of the allowed patterns. For a shift space X and any set
S⊂ Zd , let LS = {x ∈ AS : x = πS(y), for some y ∈ X}. Then, LS is the set of allowed patterns (for
X) over S. The set L =

⋃
S⊂Zd

LS is called the language for the shift space X . Given a set S ⊂ Zd

and a set of patterns P in AS, the set X = X(S,P) = {x ∈ AZd : πS ◦σn(x) ∈P for every n ∈ Zd}
is a subshift generated by the (allowed) patterns P. For any multidimensional shift space X , the
topological entropy is defined as

htop(X) = lim
n→∞

|LCn(X)|
|Cn|

where Cn(X) (LCn(X)) denotes the set of cubes (allowed cubes) of size n. A sequence (an) of integers
is recursive if there is an algorithm T (formally a Turing machine) that, upon input n ∈N, outputs
an. A set of integers is recursively enumerable if it is the set of elements of some recursive sequence.
A subset X ⊆ {0,1}N is effectively closed if its complement is the union of a recursive sequence of
cylinder sets. A subset X ⊆ ({0,1}N)Zd is an effectively dynamical system if it is effectively closed
and invariant under the shift action [Quas and Trow, 2000; Ban et al., 2015; Beal et al., 2005;
Boyle et al., 2010; Hochman and Meyerovitch, 2010; Hochman, 2009; Lightwood, 2003; Pavlov and
Schraudner, 2015] for more details.

Let M be a square 0−1 matrix (possibly infinite) with indices {i : i ∈ I}. We say that the
index i is u-related to j if Mji = 1. Let the collection of indices u-related to j be denoted by Ru

j . We
say that the indices j is d-related to i if Mji = 1. Let the collection of indices d-related to i be denoted
by Rd

i . It may be noted that i is u-related to j if and only if j is d-related to i. A nonempty subset
K of the index set I is said to be complementary if for each i ∈ K, there exists j,k ∈ K such that j
is u-related to i and k is d-related to i. For any two distinct k-tuples (a1,a2, . . . ,ak),(b1,b2, . . . ,bk)
over R, we say that (a1,a2, . . . ,ak)< (b1,b2, . . . ,bk) if ar < br where r = min{i : ai 6= bi}. The relation
defines a total order on Rk and is known as the dictionary order on Rk. Let OH (and OV ) be

the restriction of the dictionary order on the set of 2× 2 matrices, when any matrix
(

a b
c d

)
is

represented as (a,b,c,d) (and (a,c,b,d) respectively). Analogously, let OH and OV be the orders
defined on the set of r× s matrices obtained by restricting dictionary order, when any matrix is
represented as a tuple by reading entries row-wise (left to right) and column-wise (top to bottom)
respectively.

Let M be a k2× k2 matrix of the form

M =


M11 M12 . . . M1k
M21 M22 . . . M2k
...

...
...

Mk1 Mk2 . . . Mkk



where each Mi j is a k× k matrix. For a pair of matrices (Mi j,M), assign a 1× k4 matrix
(Mi j

⊗
M) as

(Mi j
⊗

M)1r = (Mi j)αβ (Mαβ )γδ
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where α,β ,γ,δ ∈ {1,2, . . . ,k} and (α,β ,γ,δ ) is the unique solution to the equation r =
αk3 +βk2 + γk+δ − (k3 + k2 + k).

It may be noted that the if the 1× k4 row vector is visualised as k2 groups of k2 elements,
then the first k2 entries of the resultant (Mi j

⊗
M) are obtained by multiplying (Mi j)11 with k2 entries

of M11 (entries read row-wise), next k2 entries are obtained by multiplying (Mi j)12 with k2 entries of
M12, and so on. In general, for n∈ {1,2, . . . ,k2}, the n-th group is determined by multiplying (Mi j)wz

by k2 entries of Mwz where (w,z) ∈ {1,2, . . . ,k}2 is unique solution to the equation n = (w−1)k+ z.
Consequently, the operation

⊗
is well defined and assigns a k4 row vector for any input pair (Mi j,M).

It may be noted that although the operation is defined for the pair (Mi j,M) where Mi j is a submatrix
of M, the operation is well defined for any pair (P,Q) where P and Q are square matrices of order k
and k2 respectively.

The above definitions provide some of the basic notions and concepts needed for investigating
some of the fundamental problems for a multidimensional shift space. The topic has attracted the
attention of several researchers around the globe and some interesting results have been obtained
[Quas and Trow, 2000; Ban et al., 2015; Beal et al., 2005; Boyle et al., 2010; Hochman and
Meyerovitch, 2010; Hochman, 2009; Lightwood, 2003]. In 1961, Hao Wang conjectured that if
a plane can be tiled using a finite set of Wang tiles then there exist a periodic tiling for the given
plane [Wang, 1961]. The conjecture implies the existence of an algorithm to decide whether a given
finite set of Wang tiles can tile the plane. The algorithmic problem of tiling the plane with a given
set of Wang tiles is known as Domino problem. In 1966, Robert Berger answered the problem in
the negative and showed that no such algorithm for the problem can exist in general. In particular,
he proved that for a multidimensional subshift, it is algorithmically undecidable whether an allowed
partial configuration can be extended to a point in the multidimensional shift space [Berger, 1966].
Consequently, he observed that it is algorithmically undecidable to verify the nonemptiness of a
multidimensional shift defined by a set of finite forbidden patterns. In [Robinson, 1971], the author
gives examples to show that a multidimensional shift space may or may not contain any periodic
points. These results unravelled the uncertainty associated with a multidimensional shift space
and motivated further research in this area. In [Quas and Trow, 2000], the authors proved that
multidimensional shifts of finite type with positive topological entropy cannot be minimal. In
fact, if X is subshift of finite type with positive topological entropy, then X contains a subshift
which is not of finite type, and hence contains infinitely many subshifts of finite type. In the same
paper, the authors proved that every shift space X contains an entropy minimal subshift Y , i.e., a
subshift Y of X such that h(Y ) = h(X). While [Ban et al., 2015] investigated the mixing properties
of multidimensional shift of finite type, [Beal et al., 2005] investigated minimal forbidden patterns
for multidimensional shift spaces. In [Boyle et al., 2010], authors exhibit mixing Zd shifts of finite
type and sofic shifts with large entropy. However, they establish that such systems exhibit poorly
separated subsystems. They give examples to show that while there exists Zd mixing systems such
that no nontrivial full shift is a factor for such systems, they provide examples of sofic systems
where the only minimal subsystem is a single point. In [Hochman and Meyerovitch, 2010], for
multidimensional shifts with d ≥ 2, authors proved that a real number h ≥ 0 is the entropy of a
Zd shift of finite type if and only if it is the infimum of a recursive sequence of rational numbers.
In [Hochman, 2009], the author improved the result and showed that h ≥ 0 is the entropy of a Zd

effective dynamical system if and only if it is the lim inf of a recursive sequence of rational numbers.
The problem of determining which class of shifts have a dense set of periodic points is still open.
For two-dimensional shifts, Lightwood proved that strongly irreducible shifts of finite type have
a dense set of periodic points [Lightwood, 2003]. However, the problem is still open for shifts of
dimension greater than two.
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Before we move further, we give some of the notations used in the literature Let X be
multidimensional shift space and let Fn(X) denote the set of forbidden cubes (for X) of size n. Let
XFn(X) denote the shift space generated by set of forbidden blocks Fn(X). For a two dimensional
shift space, let Fm,n(X) denote the set of forbidden rectangles (for X) of size m×n and let XFm,n(X)

denote the shift space generated by forbidding the elements of Fm,n(X). Let M1
n(X) denote the set of

minimal forbidden patterns of size n (i.e. set of forbidden patterns of size n such that each subsquare
of size n− 1 is allowed). An element x is called strongly periodic of period n > 0 if Γx = nZ2. An
element x is 1-periodic of period u∈Z×N if Γx = uZ. An element x is horizontally periodic of period
n > 0 if n is the least positive integer so that nZ×{0} ⊆ Γx. We now give some of the known results
for symbolic dynamics.

Theorem 1.0.1 [Vries, 2014] Let X be a shift space and x∈ AZ. Then x∈ X if and only if all blocks
occuring in the point x are in the language L (X) of shift space X .

Theorem 1.0.2 [Lind and Marcus, 1995] If X ∈ AZ is shift of finite type, then there exists an
integer M ≥ 0 such that X is M-shift of finite type.

Theorem 1.0.3 [Lind and Marcus, 1995] A shift space X ∈ AZ is M− step shift of finite type if
and only if whenever au,ub ∈L (X) and |u| ≥M then aub ∈L (X).

Theorem 1.0.4 [Berger, 1966] A domino problem is decidable or undecidable according to whether
there exists or does not exist an algorithm which, given the specifications of an arbitrary domino
set, will decide whether or not the set if solvable.

Example 1.0.1 [Schmidt, 2001] (The Chessboard Problem): Let n≥ 2 and A= {0, 1, 2, · · · , n−
1} be the given set of colours. Let X be the collection of all configurations in which adjacent lattice
points have different colours. As the shift constructed can be described by a finite set of forbidden
blocks (adjacent placement of same colours), X is a shift of finite type. While X consists of precisely
two points for n = 2, X is uncountable for any higher value of n. Also, as any finite allowed square
can be extended periodically, the set of periodic points is dense in X for any value of n(≥ 2). It is
worth mentioning that for n≥ 3, as any adjacent position (to be filled) has more than one option,
the shift generated contains both periodic and nonperiodic points (and hence the plane can be tilled
in both periodic and nonperiodic manner using the given colours).

Example 1.0.2 [Robinson, 1971] (Shift of finite type without periodic points): In [Robinson,
1971], the author introduced a set T ′ of six polygonal tiles (Figure 1.1). Consider each of the tiles
as a unit square with bumps and dents on the edges and on the corners of each tile. Let T be the set
of all tiles obtained by allowing horizontal and vertical reflections as well as rotations of elements
in T ′ by multiples of π

2 . Taking the mirror images of all the tiles, we obtain a new set consisting
of 8 tiles, any valid arrangement of which (translation and rotation allowed) is nonperiodic. If
only translation is allowed, the new set consists of 32 tiles any valid arrangement of which is again
nonperiodic. Thus, the set WT ⊂ TZ2 consisting of all tilings of R2 by translates of elements of T
(aligned to the integer lattice) is a shift of finite type and has no periodic points.

Figure 1.1 : Robinson Tiles
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Theorem 1.0.5 [Quas and Trow, 2000] Let X be a shift of finite type. If h(X)> 0, then X contains
a proper subshift of finite type. In particularly, X is not minimal.

Theorem 1.0.6 [Quas and Trow, 2000] If X is a shift of finite type, and Y is a subshift of X which
is not of finite type, then X contains infinitely many subshifts of finite type.

Theorem 1.0.7 [Quas and Trow, 2000] Every shift space X contains an entropy minimal subshift
Y with the property that h(X) = h(Y ).

Theorem 1.0.8 [Quas and Trow, 2000] If X is a shift of finite type and h(X) > 0, then X has a
subshift Y which is not of finite type.

Theorem 1.0.9 [Beal et al., 2005] The set M1(X) is a set of forbidden patterns for X , that is
X = XM1(X).

Theorem 1.0.10 [Beal et al., 2005] A shift space X is of shift of finite type if and only if M1(X)
is finite.

Theorem 1.0.11 [Hochman and Meyerovitch, 2010] For d≥ 2 the class of entropies of d−dimensional
shift of finite type is the class of non-negative right recursively enumerable numbers.

Theorem 1.0.12 [Hochman and Meyerovitch, 2010] For d≥ 2 the class of entropies of d−dimensional
sofic shifts is the same as that of d− dimensional shift of finite type.

Theorem 1.0.13 [Hochman and Meyerovitch, 2010] The entropy of an irreducible shift of finite
type is computable.

Theorem 1.0.14 [Hochman and Meyerovitch, 2010] The entropy of every sofic shift is right
recursively enumerable.

Theorem 1.0.15 [Hochman, 2009] Fix d ≥ 2. Then a real number h≥ 0 is the entropy of a Zd-shift
of finite type if and only if it is the infimum of recursive sequence of rational numbers.

Theorem 1.0.16 [Hochman, 2009] For each d ≥ 1, a real number h ≥ 0 is the entropy of a
Zd-effectively dynamical system if and only if it is the infimum of recursive sequence of rational
numbers.

We now provide a brief summary of work done in subsequent chapters of the thesis.

In chapter 2, we characterize the elements of multidimensional shift space using infinite
strips of fixed height. In the process, we address the nonemptiness problem and existence of
periodic points for multidimensional shift of finite type. We prove that any two dimensional shift
of finite type can be characterized by a square matrix (possibly of infinite dimension). We prove
that the elements of the shift space can also be characterized by limits of periodic configurations
arising from allowed cubes for the shift space X . We extend our result to a general d- dimensional
shift space X . We also give a sufficient condition ensuring the existence of periodic points for a
multidimensional shift space X .

In chapter 3, we address the problem of characterizing the elements of two dimensional shift
space of finite type X using finite matrices. In particular, we provide an algorithm for characterizing
the elements of the shift space using a sequence of finite matrices of increasing size. The algorithm
generates arbitrarily large cubes for the shift space X and hence generates any element valid for
X (as a limit of arbitrarily large allowed cubes). Consequently, the algorithm generates precisely
all the possible elements of shift space under investigation and hence determines the shift space
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completely. We also extend our algorithm for a general d dimensional shift space.

In chapter 4, we address some of the questions related to structural and existential properties
of a periodic point in a multidimensional shift space. We prove that any periodic point in a d
dimensional shift space has a finite orbit if and only if its lattice of periods is d dimensional. We
prove that in a multidimensional shift space, any periodic point with infinite orbit can be represented
as a repetitive arrangement of shifts of lower dimensional strips (of infinite length). We also derive
the relation between the dimension of lattice of periods of periodic points and the lower dimensional
infinite strip. We derive necessary and sufficient conditions for a periodic point of the full shift to
belong to a given multidimensional shift space. We extend our result to a general point of the
multidimensional full shift.
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