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Multidimensional Shift Spaces and Infinite Matrices

In this chapter, we address the problem of characterizing the elements of a multidimensional
shift of finite type X using a square matrix. In the process, we characterize the elements of the
multidimensional shift space using an infinite square matrix. We prove that a multidimensional
shift of finite type is nonempty if the characterizing matrix is of positive dimension. Further, we
prove that any submatrix of the characterizing matrix generates a proper subshift and hence the
characterizing matrix is minimal in this sense. We prove that the elements of a shift of finite type
can equivalently be characterized by limits of periodic configurations arising from cubes allowed
for the shift space X . We introduce the concept of complementary set for a multidimensional shift
space. Recall that, for a matrix M indexed by the set {i : i ∈ I}, a nonempty subset K of the index
set I is said to be complementary if for each i ∈ K, there exists j,k ∈ K such that j is u-related to i
and k is d-related to i. Generalizing the notions, for any two infinite strips P,Q of height l, we say

that P is u-related (d-related) to Q for the shift space X if
(

P
Q

)
(

(
Q
P

)
) is allowed for X . Further,

a collection of infinite strips A (of height l) is complementary if for any P∈A there exists Q,R∈A
such that Q is u-related to P and R is d-related to P. We prove that a shift space is nonempty if
the set of indices of the characterizing matrix is a complementary set. We also characterize the
periodic points of the shift space using complementary sets.

2.1 A BASIC OBSERVATION

Proposition 2.1.1 X is a d-dimensional shift of finite type =⇒ there exists a set C of d-dimensional
cubes such that X = XC .

Proof. Let X be a shift of finite type and let F be the minimal forbidden set of patterns for the
shift space X . It may be noted that F contains finitely many patterns defined over finite subsets
of Zd . For any pattern p in F , let li

p be the length of the pattern p in the i-th direction. Let
lp = max{li

P : i = 1,2, . . . ,d} denote the width of the pattern p and let l = max{lp : p ∈F}. Let Cl be
the collection of d-dimensional cubes of length l and let EF denote the set of extensions of patterns
in F . Let C =Cl∩EF . It may be observed that if p is a pattern with width l, forbidding a pattern
p for X is equivalent to forbidding all extensions q of p in Cl. Thus, each pattern in the forbidden
set of width l can be replaced by an equivalent forbidden set of cubes of length l and C is an
equivalent forbidden set for the shift space X . Consequently, X = XC and the proof is complete.

Remark 2.1.1 The above result proves that every d-dimensional shift of finite type can equivalently
be generated by a set of cubes of fixed finite length. The proof constructs an equivalent forbidden set
by considering all the cubes which are extension of the set of patterns in F . Such a consideration
leads to an equivalent forbidden set for the multidimensional shift space X , which in general is not
minimal. However, the cardinality of the new set can be reduced by considering only those cubes
which are not proper extensions of patterns in F (but are of same size l). Such a construction
reduces the cardinality of the forbidden set considerably and hence reduces the complexity of the
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system. It may be noted that the forbidden set obtained on reduction is still not minimal. However,
the d-dimensional cubes generating the elements of X are of same size and can be used for generating
the shift space X . We say that a shift of finite type X is generated by cubes of length l if there exists
a set of cubes C of length l such that X = XC .

2.2 CHARACTERIZATION OF TWO DIMENSIONAL SHIFT OF FINITE TYPE

Proposition 2.2.1 Every 2-dimensional shift of finite type X can be characterized by an infinite
square matrix.

Proof. Let X be a 2-dimensional shift of finite type and let F be the equivalent set of forbidden
cubes (of fixed length, say l) for the space X . Let A be the generating set of cubes (of length l) for
the space X . It may be noted that as cubes of length l form a generating set for the shift space X ,
to verify whether any x ∈ AZd belongs to X , it is sufficient to examine strips of height l in x.

Let A 2 = {
(

S1
S2

)
: S1,S2 ∈A ,

(
S1
S2

)
is allowed in X}.

By construction, A 2 is a finite set of 2l× l allowed rectangles, say {a1,a2, . . . ,ak}, generating
the shift space X .

Define a k× k matrix M as

Mi j =

{
0, (aia j) is forbidden in X ;
1 (aia j) is allowed in X ;

Let ΣM = {(xn) : Mxixi+1 = 1, ∀i} be the shift of finite type generated by M. Note that for any
(xn) in ΣM, (axn) is a valid infinite strip of height 2l for the shift space X . Consequently, elements
of ΣM precisely generate the infinite strips (of height 2l) allowed for the shift space X . It may be

noted that any element in ΣM is an element of the form
(

P
Q

)
, where P and Q are allowed infinite

strips of height l.

Generate an infinite matrix M, indexed by allowed infinite strips of height l, using the
following algorithm:

1. Pick any
(

P
Q

)
∈ ΣM and index first two rows and columns of the matrix by P and Q. Set

mQP = 1.

2. For each
(

P
Q

)
∈ ΣM, if the rows and columns indexed P and Q exist, set mQP = 1. Else,

label next row and/or column as P and/or Q (whichever required) and set mQP = 1.

3. In the infinite matrix generated in step 2, set mQP = 0, if mQP has so far not been assigned a
value.

4. In the infinite matrix obtained, if there exists an index P such that the P-th row or column is
zero, delete the P-th row and column from the matrix generated.
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The above algorithm generates an infinite 0-1 matrix where mQP = 1 if and only if
(

P
Q

)
is

allowed in X , where P and Q are allowed infinite strips (of height l) in X . Let ΣM be the sequence
space associated with the matrixM. Consequently, any sequence in ΣM gives a vertical arrangement
of infinite allowed strips (of height l) such that the arrangement is allowed in X and hence generates
an element in X . Conversely, any element in X is a sequential (vertical) arrangement of infinite
strips of height l and hence is generated by a sequence in ΣM. Consequently, X = ΣM and the proof
is complete.

Remark 2.2.1 The above result characterizes elements of the shift space X by an infinite square
matrix M. It may be noted that if the row/column corresponding to an index A is zero, the proposed
algorithm deletes both (the row and the column) corresponding to the index A from the generating
matrix M. Such a criteria reduces the size of the matrix M and results in a matrix of dimension
(size) 0, if the shift space is empty. Further, the characterization of the space may yield a matrix
of infinite (uncountable) dimension. Consequently, it is undecidable whether a shift of finite type
generated by a set of cubes A is nonempty (as observed in [Berger, 1966]). It may be noted that
although the algorithm does not guarantee a positive dimensional matrix if the shift space X is
nonempty the matrix generated is definitely of positive dimension and characterizes the elements in
X . Further, as each row/column of the matrix generated has at least one nonzero entry, each block
indexing the matrix can be extended to an element of X . Consequently, any submatrix of the matrix
M cannot generate the shift space X and hence the matrix M is minimal in this sense. In light of
the remark stated, we get the following corollary.

Corollary 2.2.1 A 2-dimensional shift of finite type is nonempty if and only if the characterizing
matrix M is of positive dimension (of nonzero size). Further, any proper submatrix of the matrix
M generates a proper subshift and hence the matrix M is minimal.

Remark 2.2.2 For a shift space X , with generating set of cubes of height l, let L denote set of all
allowed infinite strips of height l. Thus, the algorithm generates u-related (d-related) infinite strips
for the shift space X which in turn generates an arbitrary element of X . As any element of the shift
space is a sequential arrangement of u-related (d-related) infinite strips, the characterization of the
elements of the space X by a matrix M is equivalent to finding all the u-related (d-related) pairs
of infinite strips for the space X . As any infinite strip of height l (say P) can be extended to an
element of X only if there exist infinite strips Q,R of height l such that Q is u-related to P and R is
d-related to P, only members of complementary family can form the building blocks for an element
of X . As a result, we get the following corollary.

Corollary 2.2.2 Let X be a two dimensional shift space generated by cubes of length l and let B
be the infinite strips of height l allowed in X . Then, the shift space X is nonempty if and only if
there exists nonempty set of indices B0 ⊆B such that B0 is complementary.

Example 2.2.1 Let Σ2 be the two dimensional full shift over two symbols {0,1} and let X be the
shift of finite type generated by the forbidden set F1 =

{
1
1 , 11

}
. Then, X is also generated by the

frobidden set
F2 =

{
0 1
0 1 ,

0 0
1 1 ,

1 1
0 0 ,

1 0
1 0 ,

0 1
1 1 ,

1 0
1 1 ,

1 1
0 1 ,

1 1
1 0 ,

1 1
1 1

}
Thus, any element of X is a sequential (two dimensional) arrangement of blocks in A2 where

A2 =
{

0 0
0 0 ,

0 0
0 1 ,

0 0
1 0 ,

0 1
0 0 ,

1 0
0 0 ,

0 1
1 0 ,

1 0
0 1

}
Further, note that the set of all infinite strips of height 2 avoiding adjacent placement of 1’s is a
complementary set and generates the elements of X (via sequential vertical arrangement of such
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strips avoiding adjacent placement of 1’s). Also, as any element of X is a vertical arrangement
of such strips, the collection of strips under consideration is a complementary set characterizing
the elements of X . Finally, if M is a matrix indexed by such strips then the matrix indicating the
vertical compatibility of the strips characterizes the elements of X (via the proposed algorithm).

Remark 2.2.3 It may be noted that although the above algorithm characterizes the elements of the
shift space using (possibly) a matrix of infinite dimension, the same can be achieved by approximating
each point of X by a sequence of periodic points (which may not lie in the shift space X). To illustrate,
let A is the collection of generating cubes (of size l) of X and let A r be the collection of all allowed
cubes of rl× rl obtained by r× r arrangement of elements of A . Let Xr denote the all periodic
configurations arising from the collection A r and let L = {(xn) : xn ∈ Xn}. Then elements of X are
precisely the limit points of the sequences in L. Consequently, any element of the shift space can be
obtained by approximation through periodic points (which may not lie in X themselves). Hence we
get the following result.

Proposition 2.2.2 Any point in a 2-dimensional shift of finite type can be approximated by a
sequence of periodic points.

Proof. Let A denote the collection of generating cubes (of size l) of X and A r be the collection of
all allowed cubes of rl× rl obtained by r× r arrangement of elements of A . Note that as all central
blocks of an element in X are allowed, any element is a limit of periodic configurations (generated
by its central blocks). Also, if x is a limit of periodic configurations arising from the collection A r,
then any central block of x is allowed and hence x is an element of the shift space X (proof follows
from the fact that any element belongs to X if and only if all central blocks of x are allowed in
X). Consequently, if Xn denotes the collection of the periodic configurations arising from A r and
L = {(xn) : xn ∈ Xn} then, elements of X are precisely the limit points of sequences in L and hence
every point in X can be approximated by a sequence of periodic points.

Remark 2.2.4 The above discussions provide an alternate view of the criteria established for
the nonemptiness of the space X . The result verifies the nonemptiness for a given shift space using
complementary sets. It may be noted that the set of indices for the matrix M form a complementary
set and consequently generates the shift space under consideration. Further, as the matrix M
characterizes the elements of the shift space X , any superset of set of indices of M cannot be
complementary. Consequently, the proof generates the maximal complementary set for the shift
space X . Although the matrix generated characterizes the elements of the shift space X , one does
not require the matrix M for establishing the nonemptiness for the shift space. The set of indices
of the matrix may be observed at each iteration and existence of a complementary subfamily can
be used to establish the nonemptiness of the space X . However, as the algorithm does not provide

any optimal technique for picking the block
(

P
Q

)
at each iteration, such a consideration does not

reduce the time complexity of the problem. However, algorithms for optimal selection of the infinite

blocks
(

P
Q

)
may be proposed which in turn may reduce the time complexity of the algorithm. As

the above algorithm can be extended for a general d dimensional shift of finite type, similar results
are true for a general d-dimensional shift of finite type. We include the proof of the result below.

2.3 CHARACTERIZATION OF MULTIDIMENSIONAL SHIFT OF FINITE TYPE

Proposition 2.3.1 If X is a d-dimensional shift of finite type, then the elements of X can be
determined by an infinite square matrix.
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Proof. Let X be a d-dimensional shift of finite type and let F be the equivalent set of forbidden
cubes (of fixed length, say l) for the space X . Let A be the generating set of cuboids of size
2l×2l× . . .2l︸ ︷︷ ︸

d−1 times

×l for the space X .

By construction, A is a finite set of allowed rectangles, say {a1,a2, . . . ,ak}. Define a k× k
matrix M0 as

M0
i j =

{
0, (aia j) is forbidden in X ;
1 (aia j) is allowed in X ;

where (aia j) denotes adjacent placement of a j with ai in the positive d-th direction.

Then, the sequence space corresponding to the matrix M0, ΣM0 = {(xn) : M0
xixi+1

= 1, ∀i}
generates all allowed one directional (in d-th direction) infinite strips in X .

It may be noted that any element in ΣM0 is element of the form
(

P
Q

)
0
, where P and Q

are allowed infinite strips (in direction d) of dimension 2l×2l× . . .2l︸ ︷︷ ︸
d−2 times

×l×∞ and
(

P
Q

)
0
denotes

adjacent placement of Q with P in the negative d−1-th direction.

Generate an infinite matrix M1, indexed by allowed infinite strips of dimension
2l×2l× . . .2l︸ ︷︷ ︸

d−2 times

×l×∞ , using the following algorithm:

1. Pick any
(

P
Q

)
0
∈ ΣM0 and index first two rows and columns of the matrix by P and Q. Set

mQP = 1.

2. For each
(

P
Q

)
0
∈ ΣM0 , if the rows and columns indexed P and Q exist, set mQP = 1. Else,

label next row and/or column as P and/or Q (whichever required) and set mQP = 1.

3. In the infinite matrix generated in step 2, set mQP = 0, if mQP has so far not been assigned a
value.

4. In the infinite matrix obtained, if there exists an index P such that the P-th row or column is
zero, delete the P-th row and column from the matrix.

The above algorithm generates an infinite 0-1 matrix where mQP = 1 if and only if
(

P
Q

)
0

is allowed in X , where P and Q are of dimension 2l×2l× . . .2l︸ ︷︷ ︸
d−2 times

×l×∞. Let ΣM1 denote the sequence

space corresponding to the matrix generated above. It can be seen that the space ΣM1 precisely
is the collection of allowed bi-infinite strips (in direction d and d−1). Further, as any element in

ΣM1 is of the form
(

P
Q

)
1
, where P and Q are allowed infinite strips (in direction d and d− 1)

of dimension 2l×2l× . . .2l︸ ︷︷ ︸
d−3 times

×l ×∞×∞ and
(

P
Q

)
1
denotes adjacent placement of Q with P in
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the negative d− 2-th direction, a repeated application of the algorithm generates a matrix M2

which extends the infinite patterns in ΣM1 along the direction d− 3 to generate the space ΣM2 .
Consequently, repeated application of the above algorithm extends the allowed patterns infinitely
in all the d directions (one direction at each step) to obtain a point in X . Further, as any point in
X can be visualized as such an extension of allowed cubes in the d directions, the matrix obtained
(at the final step) characterizes the elements of the space X .

Remark 2.3.1 The above result generalizes the result obtained for a two dimensional shift of finite
type to a general d dimensional shift of finite type. The characterization is obtained by repeated
application of the 2-dimensional case, extending the allowed blocks in each of the d directions. In the
process, at each step, we obtain an infinite matrix characterizing the extension of an allowed block
in the i-th direction. Although the rows and columns of the characterizing matrix M are indexed
by infinite blocks allowed in X , their existence is guaranteed as they are procured from the allowed
blocks obtained in the previous step. It may be noted that extension in any of the directions (at
i-th step) does not guarantee an extension to the element of X . In particular, a block extendable
in a direction i (or in a few directions i1, i2, . . . , ir) need not necessarily extend to an element in X .
In particular, if the shift space is empty, the positive dimension of the matrix at i-th step does not
guarantee a matrix of positive dimension at the final step. Consequently, once again, the shift space
is nonempty if and only if the matrix generated (at the final step) is of positive dimension. Thus,
we obtain the following corollary.

Corollary 2.3.1 A multidimensional shift of finite type is nonempty if and only if the characterizing
matrix M is of positive dimension. Further, any proper submatrix of M generates a proper subshift,
and hence the matrix M is minimal.

Remark 2.3.2 It may be noted that the matrix characterizing the elements of the multidimensional
shift space is once again (possibly) infinite. However, such a construction helps in better visualization
of the problem and can help in better understanding of the subsystems of the shift space under
consideration. It may be noted that the elements of the shift space can be obtained as sequential
limits of the periodic points generated using allowed cubes of finite size (which may not lie in the
shift space itself). Consequently, the points of the multidimensional shift space can be obtained by
approximations through periodic points (which may not lie in the shift space X). Note that as the
matrix M characterizes the elements of the shift space X , any superset of the set of indices of M is
not complementary and the matrix M generated is once again minimal. Thus we get the following
result.

Proposition 2.3.2 Any point in a d-dimensional shift of finite type can be approximated by a
sequence of periodic points.

Proof. Let A denote the collection of generating cubes (of size l) of X and A r be the collection of
all allowed cubes of side rl. It may be noted that any element of A r is an r× r× . . .× r︸ ︷︷ ︸

d times

arrangement

of elements of A . Let Xr denote the collection of all periodic configurations generated by elements
of A r. As all central blocks of an element in X are allowed, any element of X is a limit of periodic
configurations (generated by its central blocks spread along all the d directions). Also, if x is a
limit of periodic configurations spread across the collection A r (a sequence (xn) with xn ∈ Xn), then
any central block of x is allowed and hence x is an element of the shift space X (proof follows
from the fact that any element belongs to X if and only if all central blocks of x are allowed in
X). Consequently, any element of X can be approximated by a sequence of periodic points and the
proof is complete.

Remark 2.3.3 The above proof characterizes the points of the shift space as limits of periodic points
generated by the allowed cubes for the shift space. Note that although the periodic points generated
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are periodic in all the d-directions (with the same period), the construction of periodic points can
be further simplified by constructing them as adjacent tiling of a single element (of A r) throughout
the Zd domain. As the arguments given in the proof hold good in this setting too, elements of
the shift space can be realized as limits of periodic points constructed in this manner (note that as
periodicity in one direction need not imply periodicity in the other, periodic points, in general, have
infinite orbits in the multidimensional shift space). Once again, the construction of elements of
the shift space can be captured through the notion of complementary sets. As any element of the
shift space can be visualized as an alignment of elements of a complementary set, the shift space is
nonempty if and only if the exists a subset B0 of indices (of the matrix obtained at the final step)
which forms a complementary set. The result is an analogous extension of the result obtained for
the two dimensional case and hence characterize the elements of the shift space X . Hence we get
the following corollary.

Corollary 2.3.2 Let X be a multidimensional shift space and let B be the set of infinite strips of
height l allowed in X . Then, the shift space X is nonempty if and only if there exists B0 ⊆B such
that B0 is complementary.

We now discuss the periodicity for a given multidimensional shift space.

Proposition 2.3.3 Let X be a multidimensional shift space and let B be the set of infinite strips
of height l allowed in X . If there exists a finite complementary set B0 ⊂B, then the set of periodic
points is nonempty.

Proof. Let B be the set of infinite strips of height l allowed in X and let B0 ⊂ B be a finite
complementary set. By definition, elements of B0 form indices (not all) for the matrix M. Let
N be the submatrix of M indexed by elements of B0. As the set B0 is complementary, the shift
generated by B0 (say ΣB0) is nonempty. Further, as shift defined by a finite dimensional matrix
contains periodic points, there exists periodic points for ΣB0 (and hence for the shift space X).

Remark 2.3.4 The above result establishes a sufficient condition for the existence of periodic points
in a multidimensional shift space. However, the condition derived is sufficient in nature and the shift
space may exhibit periodic points without exhibiting the derived condition. Note that the periodicity
of a point in a direction dk ensures (and is equivalent to) the existence of a finite complementary
set in the direction dk. Consequently, a point in the shift space is periodic in all the d directions if
and only if there exists a finite complementary set for the shift space under consideration. Thus we
get the following corollary.

Corollary 2.3.3 A shift space X contains a point periodic in all the directions if and only if there
exists a finite set of finite patterns complementary for the shift space X .

Proof. The proof follows from discussions in Remark 2.3.4.

Example 2.3.1 (The Chessboard Problem): Let n≥ 2 and A= {0, 1, 2, · · · , n−1} denote the set
of distinct colours. Let X be the collection of all two dimensional configurations in which adjacent
lattice points have different colours. It may be noted that for n = 2, the matrix characterizing the
elements of X is a 2× 2 identity matrix (and hence the shift space X is finite). For n ≥ 3, any
horizontal arrangement of 1 0

0 1 and 2 0
0 2 is a valid infinite strip (of height 2) for the shift space X . As

any two such strips are vertically compatible, the characterizing matrix is of infinite (uncountable)
dimension. Further, for a three (or higher) dimensional Chessboard problem, as any configuration
is a sequential arrangement of two dimensional configurations, the characterizing matrix for the
three (or higher) dimensional Chessboard problem is of infinite dimension. However, as finite blocks
(horizontally and vertically compatible with itself) can be obtained in finite iterations, periodic points
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with finite orbits can be obtained in finite time (and hence the nonemptiness problem can be answered
in finite time). Further, as a nontrivial set of complementary strips (of nonperiodic nature) can
be obtained in finite iterations, existence of points with infinite orbits can be verified in finite time
(and hence the nonemptiness problem can be answered in finite time without utilizing the periodic
points). It is worth mentioning that for a general shift of finite type, while the matrix characterizing
the shift space might be of infinite order, the structure of the matrix (at k-th iteration) can be used to
generate complementary sets and hence the nonemptiness problem (problem of existence of periodic
points) can be tackled in finite time. As the verification depends on the structure of the matrix
being constructed, the nonemptiness problem (the problem of existence of periodic points) is still
undecidable (as observed in [Berger, 1966]).
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