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Multidimensional Shift Spaces and Finite Matrices

In this chapter, we address the problem of characterizing the elements of a two dimensional
shift of finite type using finite matrices. In the process, we characterize the elements of the shift
of finite type using a sequence of finite matrices. We provide an algorithmic approach to generate
finite matrices characterizing arbitrarily large blocks allowed for the shift space X . Consequently,
we generate the elements of the shift space as the limits of the arbitrarily large allowed blocks
and hence characterize the elements of the shift space using the proposed sequential approach. We
extend the results obtained for a general d dimensional shift of finite type.

3.1 CHARACTERIZATION OF TWO DIMENSIONAL SHIFT OF FINITE TYPE

Proposition 3.1.1 For every 2-dimensional shift of finite type, there exists a sequence of finite
matrices characterizing the elements of X .

Proof. Let X be the shift space generated by forbidding given set of patterns. In this proof, we
provide an algorithm for generating finite matrices (of increasing size) characterizing the existence
of arbitrary large squares (rectangles) allowed for the shift space X . The sequence of matrices in
turn characterizes the elements of the shift space X and thus addresses the nonemptiness problem
for the shift space generated by a given set of forbidden blocks. We now describe the proposed
algorithm below:

Step 1: Computation of Generating Matrices

Let X be a 2-dimensional shift of finite type and let P be the finite set of forbidden patterns
characterizing the shift space X . By Proposition 2.1.1, there exists a set of forbidden squares S (all
of same size, say l) generating the shift space X . Let B1,B2, . . . ,Bk be the the collection of all squares
of size l. Let V 0 be the k× k matrix (indexed by B1,B2, . . . ,Bk) indicating vertical compatibility of
the squares Bi. For notational convenience, let the index Bi be denoted by i, ∀i = 1,2, . . . ,k. Then,

V 0
i j =

 1,
(

Bi

B j

)
is allowed in X

0 otherwise

Let H0 be a matrix indexed by the set of rectangles of size 2l × l indicating horizontal

compatibility of rectangles of size 2l× l. As any rectangle of size 2l× l is of the form
(

Bi

B j

)
, H0

is a k2× k2 matrix indexed by rectangles of the form
(

Bi

B j

)
. For notational convenience, let the
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index
(

Bi

B j

)
be denoted by (i j), ∀i, j ∈ {1,2, . . . ,k}. Then,

H0
(i j)(rs) =

 1,
(

Bi Br

B j Bs

)
is allowed in X

0 otherwise

It may be noted that while entries of the matrix V 0 indicate the vertical compatibility of
squares of length l, entries of the matrix H0 characterize the existence of squares of side 2l. In the
next step, we use the matrices computed to verify the validity of rectangles (squares) of size 4l×2l
(4l×4l).

Step 2: One Step Extension: Computing V 1 and H1

In the first step, we computed the matrices V 0 and H0 characterizing existence of rectangles
and squares of size 2l× l and 2l× 2l respectively. To add clarity to the structure of the matrix
H0, let the index set of H0 follow the dictionary order, i.e., let the index set of H0 be ordered as
{(11),(12) . . . ,(1k),(21),(22), . . . ,(2k), . . . ,(k1),(k2), . . . ,(kk)}. Consequently, H0 can be viewed as a
block matrix of the form

H0 =


R0

11 R0
12 . . . R0

1k
R0

21 R0
22 . . . R0

2k
...

...
...

R0
k1 R0

k2 . . . R0
kk



where R0
i j is a k× k matrix whose entries characterize the squares of the form

(
Bi B j

Br Bs

)
.

More precisely, (r,s)-th entry of R0
i j is 1 if and only if

(
Bi B j

Br Bs

)
is allowed. Equivalently, the

entries of the matrices R0
i j characterize all squares of size 2l whose top half (which is rectangle of

size l×2l) is (Bi B j).

Let V 1 be k4× k4 matrix indexed by squares of size 2l indicating vertical compatibility (of

the squares of size 2l). As any square of size 2l is of the form
(

Bi B j

Br Bs

)
, V 1 is equivalently indexed

by the squares of the form
(

Bi B j

Br Bs

)
. For notational convenience, let the index

(
Bi B j

Br Bs

)
be

denoted by (i jrs) ∀1≤ i, j,r,s≤ k. Consequently,

V 1
(i jrs)(uvwz) =


1,


Bi B j

Br Bs

Bu Bv

Bw Bz

 is allowed in X ;

0 otherwise ;

For computational purposes, let the index set of V 1 be ordered using order OH . In particular, the
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index set of V 1 follows the following order:

(1111),(1112), . . . ,(111k),(1121), . . . ,(112k), . . . ,(11k1), . . . ,(11kk)
(1211),(1212), . . . ,(121k),(1221), . . . ,(122k), . . . ,(12k1), . . . ,(12kk)
...
(1k11),(1k12), . . . ,(1k1k),(1k21), . . . ,(1k2k), . . . ,(1kk1), . . . ,(1kkk)
(2111),(2112), . . . ,(211k),(2121), . . . ,(212k), . . . ,(21k1), . . . ,(21kk)
(2211),(2212), . . . ,(221k),(2221), . . . ,(222k), . . . ,(22k1), . . . ,(22kk)
...
(2k11),(2k12), . . . ,(2k1k),(2k21), . . . ,(2k2k), . . . ,(2kk1), . . . ,(2kkk)
...
(k111),(k112), . . . ,(k11k),(k121), . . . ,(k12k), . . . ,(k1k1), . . . ,(k1kk)
(k211),(k212), . . . ,(k21k),(k221), . . . ,(k22k), . . . ,(k2k1), . . . ,(k2kk)
...
(kk11),(kk12), . . . ,(kk1k),(kk21), . . . ,(kk2k), . . . ,(kkk1), . . . ,(kkkk).

It may be noted that for any index
(

Bi B j

Br Bs

)
for the matrix V 1, the corresponding row

can be determined as follows:

1. If
(

Bi B j

Br Bs

)
is forbidden, then the corresponding row is zero row.

2. If
(

Bi B j

Br Bs

)
is allowed then the corresponding row is R0

rs
⊗

H0.

Finally let the index set of V 1 be ordered using the order OV .

Note that if
(

Bi B j

Br Bs

)
is not allowed then it cannot be vertically aligned with another

square to obtain a allowed pattern and hence the corresponding row is the zero row. Further, as the
size of the squares Bk is determined by maximum possible length or breadth among patterns from
S , any pattern from S cannot be spread beyond a square of size 2l. Thus, validity of any given
pattern can be verified by examining the validity of all the squares of size 2l in the given pattern.

Consequently,
(

Bi B j

Br Bs

)
is vertically compatible with

(
Bu Bv

Bw Bz

)
if and only if

(
Bi B j

Br Bs

)
,(

Br Bs

Bu Bv

)
and

(
Bu Bv

Bw Bz

)
are allowed. As (R0

rs)uv and (R0
uv)wz are 1 if and only if

(
Br Bs

Bu Bv

)

and
(

Bu Bv

Bw Bz

)
are allowed, their product characterizes the validity of the block


Bi B j

Br Bs

Bu Bv

Bw Bz


under the validity of

(
Bi B j

Br Bs

)
and hence (R0

rs)
⊗

H0 is the row corresponding to
(

Bi B j

Br Bs

)
(under the validity of

(
Bi B j

Br Bs

)
). Thus, the constructed matrix indeed characterizes the vertical

compatibility of the squares of size 2l (and hence characterizes all rectangles of size 4l×2l allowed
for the shift space X).
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Let us investigate the structure of V 1 in detail. Note that the index set of V 1 (now ordered
using the order OV ) can be viewed as the block matrix of the form

V 1 =


S0

11 S0
12 . . . S0

1k2

S0
21 S0

22 . . . S0
2k2

...
...

...
S0

k21 S0
k22 . . . S0

k2k2



where each S0
i j is a k2× k2 matrix. Note that for any i ∈ {1,2, . . . ,k2}, there exists unique

pair (pi,qi), (pi ∈ {0,2, . . . ,k− 1}, qi ∈ {1,2, . . . ,k}) such that i = kpi + qi. Identifying i with
(pi +1 qi) ∀i = 1,2, . . . ,k2, the matrix V 1 can be represented as

V 1 =



S0
(11)(11) S0

(11)(12) . . . S0
(11)(1k) S0

(11)(21) S0
(11)(22) . . . S0

(11)(2k) . . . S0
(11)(k1) S0

(11)(k2) . . . S0
(11)(kk)

S0
(12)(11) S0

(12)(12) . . . S0
(12)(1k) S0

(12)(21) S0
(12)(22) . . . S0

(12)(2k) . . . S0
(12)(k1) S0

(12)(k2) . . . S0
(12)(kk)

...
...

...
...

...
...

...
...

...
S0
(1k)(11) S0

(1k)(12) . . . S0
(1k)(1k) S0

(1k)(21) S0
(1k)(22) . . . S0

(1k)(2k) . . . S0
(1k)(k1) S0

(1k)(k2) . . . S0
(1k)(kk)

S0
(21)(11) S0

(21)(12) . . . S0
(21)(1k) S0

(21)(21) S0
(21)(22) . . . S0

(21)(2k) . . . S0
(21)(k1) S0

(21)(k2) . . . S0
(21)(kk)

S0
(22)(11) S0

(22)(12) . . . S0
(22)(1k) S0

(22)(21) S0
(22)(22) . . . S0

(22)(2k) . . . S0
(22)(k1) S0

(22)(k2) . . . S0
(22)(kk)

...
...

...
...

...
...

...
...

...
S0
(2k)(11) S0

(2k)(12) . . . S0
(2k)(1k) S0

(2k)(21) S0
(2k)(22) . . . S0

(2k)(2k) . . . S0
(2k)(k1) S0

(2k)(k2) . . . S0
(2k)(kk)

...
...

...
...

...
...

...
...

...
S0
(k1)(11) S0

(k1)(12) . . . S0
(k1)(1k) S0

(k1)(21) S0
(k1)(22) . . . S0

(k1)(2k) . . . S0
(k1)(k1) S0

(k1)(k2) . . . S0
(k1)(kk)

S0
(k2)(11) S0

(k2)(12) . . . S0
(k2)(1k) S0

(k2)(21) S0
(k2)(22) . . . S0

(k2)(2k) . . . S0
(k2)(k1) S0

(k2)(k2) . . . S0
(k2)(kk)

...
...

...
...

...
...

...
...

...
S0
(kk)(11) S0

(kk)(12) . . . S0
(kk)(1k) S0

(kk)(21) S0
(kk)(22) . . . S0

(kk)(2k) . . . S0
(kk)(k1) S0

(kk)(k2) . . . S0
(kk)(kk)



To understand the generated submatrices better, let the k4 rows (columns) be divided into
k2 groups of k2 rows (columns) each. Note that if i = kpi + qi (i ∈ {1,2, . . . ,k2}), then the rows

(columns) of the i-th group are indexed by squares of the form
(

Bpi+1 ∗
Bqi ∗

)
. As S0

i j verifies the

vertical compatibility of i-th group with the j-th group, entries of any S0
(pq)(rs) characterize all

rectangles of size 4l×2l whose left half (which is a rectangle of size 4l× l) is


Bp

Bq

Br

Bs

. It is worth

mentioning that for i = kpi + qi, j = kp j + q j, S0
i j is same as S0

(pi+1 qi)(p j+1 q j)
and the expression

above is another way of representing the same matrix.

Let H1 be the matrix indexed by the set of rectangles of size 4l× 2l indicating horizontal

compatibility of the indices. As any rectangle of size 4l × 2l is of the form


Bi Bu

B j Bv

Br Bw

Bs Bz

, H1
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is a k8× k8 matrix equivalently indexed by rectangles of the form


Bi Bu

B j Bv

Br Bw

Bs Bz

. For notational

convenience, let the index


Bi Bu

B j Bv

Br Bw

Bs Bz

 be denoted by (i jrsuvwz).

For computational purposes, let the index set of H1 be ordered using order OV . It may be

noted that for any index


Bi Bu

B j Bv

Br Bw

Bs Bz

 for the matrix H1, the corresponding row can be determined

as follows:

1. If


Bi Bu

B j Bv

Br Bw

Bs Bz

 is forbidden, then the corresponding row is zero row.

2. If


Bi Bu

B j Bv

Br Bw

Bs Bz

 is allowed then the corresponding row is S0
(uv)(wz)

⊗
V 1.

Finally let the index set of H1 be ordered using the order OH .

Note that if a 4l×2l block is not allowed then it cannot be horizontally aligned with another
4l×2l block to obtain a allowed pattern and hence the corresponding row is the zero row. For any
given pattern P, as establishing the validity of all squares of size 2l (or rectangles or squares

of greater size) embedded in P is sufficient to establish the validity of P for X ,


Bi Bu

B j Bv

Br Bw

Bs Bz



is horizontally compatible with


Bi′ Bu′

B j′ Bv′

Br′ Bw′

Bs′ Bz′

 if and only if


Bu Bi′

Bv B j′

Bw Br′

Bz Bs′

 and


Bi′ Bu′

B j′ Bv′

Br′ Bw′

Bs′ Bz′

 are

allowed in X (under allowedness of


Bi Bu

B j Bv

Br Bw

Bs Bz

). Finally, as entries of any submatrix S0
(i′ j′)(r′s′)

characterizes all allowed rectangles of size 4l× 2l with fixed half


Bi′

B j′

Br′

Bs′

, S0
(uv)(wz)

⊗
V 1 indeed is

the row (of H1) corresponding to


Bi Bu

B j Bv

Br Bw

Bs Bz

 and the computation of H1 is complete.
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Step 3: Computation of V n+1 and Hn+1

Let us assume that the matrices V 0,H0,V 1,H1, . . . ,V n,Hn have been computed. Then, the
matrix Hn can be visualized as

Hn =


Rn

11 Rn
12 . . . Rn

1k4n

Rn
21 Rn

22 . . . Rn
2k4n

...
...

...
Rn

k4n 1 Rn
k4n 2 . . . Rn

k4n k4n



where each Rn
i j is a k4n × k4n matrix. As Hn establishes the horizontal compatibility of

rectangles of size 2n+1l× 2nl, entries of Rn
i j establishes the validity of squares of size 2n+1l× 2n+1l

(which are indices of V n+1) with a fixed top half. Consequently, Ri j
⊗

Hn determines the rows
of V n+1 (under allowedness of the index), when the index set of V n+1 is ordered using order OH .
Further, note that the matrix V n+1 (ordered using order OV after computation) can be visualized as:

V n+1 =


Sn+1

11 Sn+1
12 . . . Sn+1

1k2.4n

Sn+1
21 Sn+1

22 . . . Sn+1
2k2.4n

...
...

...
Sn+1

k2.4n 1 Sn+1
k2.4n 2 . . . Sn+1

k2.4n k2.4n



where each Sn+1
i j is a k2.4n × k2.4n matrix. As V n+1 establishes the vertical compatibility of

squares of size 2n+1l, entries of Sn+1
i j establishes the validity of rectangles of size 2n+2l×2n+1l (which

is an index of Hn) with a fixed left half. Consequently, Sn+1
i j

⊗
V n+1 determines the rows of Hn+1

(when the index set of Hn+1 is ordered using order OV ) and thus computation of V n+1 and Hn+1 is
complete.

Finally, as entries of V n+1 (Hn+1) characterize all allowed rectangles (squares) of size 2n+2l×
2n+1l (2n+2l× 2n+2l respectively), the shift space X is nonempty if and only if each V i and H i are
nonzero for any i ∈ N. Further, as any element of X can be viewed as a limit of finite blocks
arising from V i(or H i), elements of the shift space are precisely the limits of the blocks arising from
V i(or H i).

Remark 3.1.1 The above result provides an iterative procedure to generate arbitrarily large blocks
for a shift space generated by finitely many forbidden blocks of finite size. Note that although
the algorithm generates rectangles (squares) of size 2n+1l×2nl (2n+1l×2n+1l respectively) using all
squares (rectangles) of size 2nl×2nl (2n+1l×2nl respectively), the matrices V i (H i) can be indexed
by a smaller collection of all allowed squares (rectangles) to generate the same set and hence the
order of the matrices V i (and H i) can be reduced. Further, as any compatible vertical (horizontal)
alignment of indices of V i (H i) is an index for H i (V i+1), the number of 1’s in V i (H i) characterizes
the order of H i (V i+1) (while working with matrices V i (H i) of reduced size). Note that while the
matrices V i (and H i) are computed with the indices being ordered using OH (and OV respectively),
the indices are re-ordered after computation using OV (and OH respectively). Such an arrangement
is useful as such an ordering of the index set helps represent the generated matrix in the form
of a block matrix where each block characterizes rectangles (squares) of larger size with a fixed
left (top) half which is useful to compute the rows of the next matrix Hn (V n+1) (via the product
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Sn
i j
⊗

V n and (Rn
i j
⊗

Hn) respectively). Note that while the ability to construct arbitrarily large blocks
for the space X guarantees nonemptiness of the shift space X , any element of the shift space is a
limit of arbitrarily large blocks allowed for X . Consequently, the shift space X is nonempty if and
only if the matrices V i and H i are nonzero at each iteration. It is worth mentioning that V i (H i)
being nonzero at i-th iteration does not imply their non-trivialness in subsequent iterations.

Remark 3.1.2 It may be noted that the algorithm verifies horizontal (vertical) compatibility of
rectangles (squares) using the matrices constructed to generate allowed blocks of arbitrarily large
size. In the process, the algorithm verifies the compatibility of the blocks in each of the possible
directions. Taking a note of the compatibility (between any two blocks) in each of the directions,
one may construct a complementary set for the shift space in finite iterations (if exists). One may
use the block structure of the matrices constructed to facilitate the construction of the complementary
set. While the existence of a complementary set in finite iterations guarantees a point with finite
orbit, such a construction in the limiting case verifies the nonemptiness of the given shift space.
However, such a construction depends on the sequence of the matrices constructed (which in turn
may be sparse) and hence the nonemptiness problem is still undecidable (as observed in [Berger,
1966]) for a general given shift of finite type.

Example 3.1.1 Let Σ2 be the two dimensional full shift over two symbols {0,1} and let X be the
shift of finite type generated by the forbidden set F1 =

{
1
1 , 11

}
. As already observed, X is also

generated by the forbidden set

F2 =
{

0 1
0 1 ,

0 0
1 1 ,

1 1
0 0 ,

1 0
1 0 ,

0 1
1 1 ,

1 0
1 1 ,

1 1
0 1 ,

1 1
1 0 ,

1 1
1 1

}

and any element of X is a sequential (two dimensional) arrangement of blocks in A2 where

A2 =
{

0 0
0 0 ,

0 0
0 1 ,

0 0
1 0 ,

0 1
0 0 ,

1 0
0 0 ,

0 1
1 0 ,

1 0
0 1

}

Note that for the shift space constructed, while V 0 is a square matrix of size 7, H0 is a square
matrix of size 41. Further, it mat be observed that the sizes of V i (H i) in subsequent iterations
increase exponentially, the complementary set generated in this case is infinite. Further, as finite
complementary sets are generated at each of the iterations, the shift space possesses infinitely many
periodic points with finite orbits. Note that as any sequential arrangement of 0 0

0 1 and 1 0
0 0 avoids

adjacent placement of 1’s and hence is an allowed infinite strip for X . Consequently, for any such
strip H, {H} is a complementary set and hence sequential vertical arrangement of H generates a
periodic point for X (and hence addresses the nonemptiness problem in finite iterations). It may be
noted that, as infinite strips (of fixed height) can be generated (from V i (H i)) at any iteration, points
with infinite orbits can be generated (by verifying the vertical compatibility of the strips generated).
Consequently, the nonemptiness problem for the generated shift space can be addressed in finite
iterations (without using the periodic points available) in this case.

Remark 3.1.3 Note that while V i (H i) inductively generate rectangles (squares) of a large order,
detection of periodic points with finite orbits can be concluded after finite iterations. Note that if
the shift space exhibits a periodic point with finite orbit, there exists a finite block (of appropriate
size) which is a complementary set of size one (as observed in the previous example). Further,
periodicity in any of the directions yields a finite complementary set (in that direction) which can
be used to generate periodic points with infinite orbits (with reduced complexity). Finally, as the
matrices are generated inductively using the matrices at previous iterations, the structure of the
matrix can be used to tackle the nonemptiness problem and problem of existence of periodic points
in a more efficient manner.
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Remark 3.1.4 The above algorithm inductively generates the matrices V i (H i) using the matrices
generated in the previous steps. As observed the size of V i (H i) can be reduced by indexing the matrix
using allowed squares (rectangles). It is worth noting that the growth (or decline) in the order of
the matrices V i (H i) is exponential. While exponential growth in the order of V i (H i) ensures faster
convergence to an element of X (and hence implying a faster computation of a complementary set
guaranteeing nonemptiness for the shift space X), exponential reduction in the size of the matrices
generated may address to the complexity of the nonemptiness problem for the given shift space. In
case the matrices generated are sparse, the matrices in subsequent iterations are also sparse matrices
of large order. Such a phenomenon once again indicates the higher complexity of the nonemptiness
problem which may turn out to be undecidable (as observed in [Berger, 1966]).

Remark 3.1.5 It may be noted that for a d-dimensional shift space, a similar algorithm yields a
sequence of matrices M1

1 ,M
2
1 , . . .M

d
1 ,M

1
2 ,M

2
2 , . . .M

d
2 . . . ,M

1
n ,M

2
n , . . .M

d
n . . . (where Mi

n characterises the
possible extensions in the i-th direction at n-th iteration) such that the d-dimensional shift space
is nonempty if and only if Mi

n (i = 1,2, . . . ,d) are nonzero at each iteration. Consequently, a
similar process extended in d mutually orthogonal directions yeilds the criteria for the verification
of nonemptiness problem for a d dimensional shift space. We now derive the stated criteria below.

3.2 CHARACTERIZATION OF MULTIDIMENSIONAL SHIFT OF FINITE TYPE

Proposition 3.2.1 For every d-dimensional shift of finite type, there exists a sequence of finite
matrices characterizing the elements of X .

Proof. The proof is a natural extension of the 2 dimensional case and it follows directly by first
extending the allowed d-dimensional cubes in each of the d directions and iteratively generating
cubes (cuboids) of arbitrarily large size. For the sake of clarity, we provide an outline of the proof
below.

Step 1: Computing Generating Matrices

Let X be a d-dimensional shift space generated by a finite set of forbidden patterns. By
Proposition 2.1.1, there exists a set of forbidden cubes S (all of same size, say l) generating the
shift space X . Let e1,e2, . . . ,ed be the set of d mutually orthogonal directions (along the directions
of standard basis vectors of Rd) and let B1,B2, . . . ,Bk be the the collection of all allowed cubes
of size l. Let M1

1 be the k× k matrix (indexed by B1,B2, . . . ,Bk) indicating the compatibility of
the cubes Bi in e1 direction. Consequently, entries of M1

1 characterizes the validity of all blocks
of size 2l× l× l× . . .× l︸ ︷︷ ︸

d−1 times

for the space X . Similarly, if M2
1 be the matrix indexed by all allowed

blocks of size 2l × l× l× . . .× l︸ ︷︷ ︸
d−1 times

indicating the compatibility of the indices in e2 direction then,

entries of M2
1 characterizes the validity of all 2l×2l× l× l× . . .× l︸ ︷︷ ︸

d−2 times

for the space X . Inductively, for

i = 3,4, . . . ,d, if Mi
1 is indexed by all allowed blocks of size 2l×2l× . . .×2l︸ ︷︷ ︸

i−1 times

× l× l× . . .× l︸ ︷︷ ︸
d−i+1 times

indicating

the the compatibility of the indices in i-th direction, entries of Mi
1 characterize the validity of all

blocks of size 2l×2l× . . .×2l︸ ︷︷ ︸
i times

× l× l× . . .× l︸ ︷︷ ︸
d−i times

. In particular, Md
1 is a matrix indexed by all allowed
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blocks of size 2l× . . .2l︸ ︷︷ ︸
d−1 times

×l indicating the compatibility of the indices in the direction ed and hence

characterizes all allowed cubes of size 2l.

Step 2: Application of Induction and Generating Cubes (Cuboids) of Arbitrarily
Large Size

Let us assume that M1
1 ,M

2
1 , . . .M

d
1 ,M

1
2 ,M

2
2 , . . .M

d
2 . . . ,M

1
n ,M

2
n , . . .M

d
n have been computed. Note

that as Mi
n is indexed by all allowed blocks of size 2nl×2nl× . . .×2nl︸ ︷︷ ︸

i−1 times

×2n−1l×2n−1l× . . .×2n−1l︸ ︷︷ ︸
d−i+1 times

,

entries of Mi
n characterize all allowed blocks of size 2nl×2nl× . . .×2nl︸ ︷︷ ︸

i times

×2n−1l×2n−1l× . . .×2n−1l︸ ︷︷ ︸
d−i times

.

Further, in order for the proof of Proposition 3.1.1 to be extendable to the d-dimensional
case, while the indices of Mi

n need to be ordered using (i−1)-th direction (mod d) while computing
Mi

n, they need to be ordered using (i+1)-th direction (mod d) after computation, to facilitate the
computation of the next matrix. Finally, note that as the sequence Mi

n generates arbitrarily large
cubes (and cuboids), the process yields an element of the shift if each Mi

n is nonempty. Further,
as any element of sequence can be viewed as a limit of arbitrarily large cubes (or cuboids), the
elements of the shift space are characterized by the sequence generated.

Remark 3.2.1 The above corollary extends the algorithm given in Proposition 3.1.1 for generating
elements of d-dimensional shift space. The algorithm generates cubes (cuboids) of arbitrarily large
size by iteratively extending the allowed blocks in each of the d directions. Note that as the
compatibility of two blocks in one of the directions cannot indicate its extension in any other
direction, the matrices M1

1 ,M
2
1 , . . . ,M

d
1 are independent of each other (cannot be determined from

each other). Further, as the size of the matrices B1,B2, . . . ,Bk is the maximum possible length (in
any of the directions) of the generating set of forbidden patterns P, to examine the validity of any
given pattern in Rd, it is sufficient to examine the validity of all cubes of size 2l (or cubes/cuboids
of a larger size). Finally, as any element of X can be visualized as a limit of finite cubes (cuboids)
and generation of arbitrarily large cubes (cuboids) yields an element of X , the sequence generated
characterizes the elements of X . To realize the convergence mathematically, one may visualize the
allowed cube as an element which is obtained by placing the cube (centre of the cube) at the origin
and assigning 0 at all the other places. Consequently, a sequence of arbitrarily large blocks yields a
Cauchy sequence in the full shift without forbidden blocks in the central cube (which is of arbitrarily
large size) and hence converges to an element of X .

Remark 3.2.2 It may be noted that, the shift space X is nonempty if and only if the matrices
generated at each of the iterations is nonempty. This follows from the fact that for any element of
X , its central blocks are allowed blocks (of arbitrarily large size) which in turn will be generated by
M j

i . Although, the matrices M j
i are generated using matrices obtained in the previous iteration,

non-trivialness of these matrices at one iteration need not imply non-trivialness at subsequent
iterations. As Md

i generates cubes of higher order, the structure of the matrix can be utilize to
generate a complementary set. In case the shift space possesses a periodic point with finite orbit,
such a complementary set is guaranteed to be obtained in finite iterations. Similar to the two
dimensional case such a construction depends on the matrices constructed and the nonemptiness
problem is still undecidable (as observed in [Berger, 1966]). It may be noted that, one may work
with matrices M j

i of reduced size to reduce the complexity of the proposed algorithm.

Example 3.2.1 (The Chessboard Problem): Let n≥ 2 and A= {0, 1, 2, · · · , n−1} denote the set
of distinct colours. Let X be the collection of all three dimensional configurations in which adjacent
lattice points have different colours. It may be noted that for n = 2, each M j

i is a 2× 2 identity
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matrix. Consequently, each index of M j
i is a complementary set (of size one) which generates a

point with finite orbit and hence the shift space contains precisely two points in this case. For the
case n ≥ 3, as any three dimensional configuration can be visualized as a sequential arrangement
of two dimensional configurations, the orders of matrices M j

i increase exponentially (generating
a nonperiodic point in the limiting case). However, as the matrices generated contain 1 on the
diagonal, periodic points with finite orbits are generated in finite iterations. Further, as the sequence
of finite matrices generates a complementary set in the limiting case, all the points with infinite
orbits are generated as limits of sequences spread across elements generated by indices of (M j

i ).
Such an observation helps characterizing the periodic points for the shift space X and can be used
to generate any general point for the shift space X .
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