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Mathematical Preliminaries

In this chapter, a brief overview of mathematical preliminaries have been explained which
are used in the various parts of the thesis. These preliminaries consist of scale-space transforma-
tions, matrix decomposition and feature estimation techniques. The details of these preliminaries
are as follows.

2.1 DISCRETEWAVELET TRANSFORM (DWT)
Fourier analysis is an widely used tool in literature for analysing different types of 1D/2D

signals but still in some cases Fourier analysis fails to provide better description of a signal having
low frequencies of long duration and high frequencies of short duration. Wavelet analysis can
analyse these type of signals due to its ability of having large time-resolution for short-lived high-
frequency andhas large frequency-resolution for long-lived low-frequency. It is generally based on
a multiresolution analysis (MRA). Mathematically, a multiresolution analysis (MRA) with l levels
of a signal f (x) ∈ L2(R) is a projection of f on a basis {ϕ j,k,{ψ j,k} j≤l}k∈Z . Basis function ϕ j,k(x) =
2− j/2ϕ(2 jx− k) results from translation and dilation of a function ϕ(x) called scaling function. The
family {ϕ j,k}k∈Z spans a subspace Vj ⊂ L2(R). The projection of f on Vj gives an approximation
{a j,k =< f ,ϕ j,k >}k∈Z of f at the scale 2 j. Analogously, functionψ j,k(x)= 2− j/2ψ(2 jx−k) results from
translation and dilation of a function ψ(x) called mother wavelet function. The family {ψ j,k}k∈Z
spans a subspaceWj ⊂ L2(R). The projection of f onWj gives an approximation {w j,k =< f ,ψ j,k >
}k∈Z of f representing the details between two successive approximations. The MRA with l levels
yields the following decomposition of f

f (x) = ∑
k

a j,k ϕ̃ j,k(x)+∑
j≤l

∑
k

w j,k ψ̃ j,k(x) (2.1)

Due to the separability of the transform, MRA of an image can be obtained by successively taking
1DMRA along both the directions. TheMRA of an image yields four components: approximation,
horizontal, vertical and diagonal coefficients [Mallat, 1989]. The approximate coefficients capture
the low frequency components of the image whereas the horizontal, vertical and diagonal coeffi-
cients capture the high frequency components in varied directions and are called detail coefficients.
These components can be efficiently constructed based on lifting scheme. The basic principle of
lifting scheme is based on the improvement wavelet and its dual to meet the basic requirement of
the practical applications, with maintaining the bi-orthogonality of the wavelets. In addition, the
lifting wavelet transform preserves the better spatial and spectral localization in comparison to the
traditional wavelet transform [Soman, 2010]. The lifting wavelet transform comprises three steps
namely split, predict and update. These steps can be described as given below [Sweldens, 1996]:

• Split: The input signal z(n) is split into two usual components with no common elements.
These components can be represented by even series Ze(n) and odd series Zo(n).

Ze(n) = Z(2n), (2.2)

Zo(n) = Z(2n+1), s.t. Ze(n)∩Zo(n) = ϕ . (2.3)
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• Predict: Both the samples Ze and Zo are created by splitting the signal, so there exists a close
correlation between them. Hence, odd samples can be predicted by keeping unchanged the
even samples. Firstly, a predicted operator P is applied on the even samples Ze(n) and then
the difference between the predicted values P[Ze(n)] and Zo(n) turns out results as the detail
signal. Mathematically,

d(n) = Zo(n)−P[Ze(n)] (2.4)

where predictor operator (P)modifies the high-frequencies and represents the wavelet coef-
ficients in d(n).

• Update: Anupdate operatorU is finally applied on the signal d(n) and then even sample Ze(n)
is modified by the updated detail signalU [d(n)]. The update process is given as follows:

c(n) = Ze(n)+U [d(n)] (2.5)

where c(n) corresponds to the low-frequency component of the original signal.

One lifting process of the considered signal can be accomplished by the above three steps.
The complete lifting scheme is illustrated in Fig. 2.1. In contrast, for visual perception, the
decomposition of cameraman image corresponding based on lifting scheme is shown in Fig.
2.2.

2.2 INTEGER DISCRETE COSINE TRANSFORM (IDCT)
In many of the practical applications, the input sources are in the form of images or videos,

which can be generally represented by the integer-data sequences. This property of the input can
be viewed as a constraint to an integral sub-lattice of the input space and when these signals or
images are projected by an arbitrary linear transformation for further processing and analysis, it is
by and large impossible to make this constraint practically tractable. In other words, the outputs
generally do not belong to the same sub-lattice. For example, the Fourier transformwill project the
integer sub-lattice onto the complex sub-lattice. In applications where the inversion is required, it
is important to have a simple and fast reversal process, which is not possible when the output sub-
lattice is different than the input sub-lattice. Therefore, a linear transformation is essential which
maps integer input to integer output so that the inversion is simple and fast. These transformations
are called integer linear transformation. Up to now,many integer linear transformations have been
proposed for image and video coding applications. These are based on the lifting factorization of
the standard Fourier and Cosine transform matrices [Oraintara et al., 2002; Pei and Ding, 2000;
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Figure 2.1 : Lifting wavelet decomposition and reconstruction
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1-Level
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Figure 2.2 : First-level liftingwavelet decomposition of an image and corresponding di erent sub-band.

Plonka and Tasche, 2003; Suzuki and Ikehara, 2010; Zeng et al., 2001] . In this work, integer-DCT
is used as the integer linear transformation mainly due to its high ability of data decorrelation
[Zeng et al., 2001]. Mathematically, the two dimensional integer-DCT (2D-IntDCT) of an image
x = {x(n,m) : n = 0,1, ...,N −1;m = 0,1, ...M−1} can be computed as per the following steps [Zeng
et al., 2001].

1. Compute y(p,m) = x(q(p,m),m), where

q(p,m) =


2 f (p, m

2 ), m is even and f (p, m
2 )<

N
2

2N −1−2 f (p, m
2 ), m is even and f (p, m

2 )≥
N
2

2 f (p,M− m+1
2 ), m is odd and f (p,M− m+1

2 )< N
2

2N −1−2 f (p,M− m+1
2 ), m is odd and f (p,M− m+1

2 )≥ N
2

(2.6)

with p = 0,1, ...,N −1; m = 0,1, ...,M−1 and f (p,m) = [(4p+1)m+ p] mod N.

2. Apply the following steps to find the 1D intDCT of each row of y(p,m):

a) Construct the lifting matrices F̄M
2
and Ē M

2
as follows.

F̄M
2
=

{ M
4 −1

∏
k=0

[
L2k,2k+1(RB(α2k)−1)L2k+1,2k(1)×L2k,2k+1

(
RB
(
1/α2k

)
−1
)

L2k+1,2k

(
−RB(α2k)

)]}{ M
4 −1

∏
k=1

[
L2k−1,2k

(
RB(α2k−1)−1

)
L2k,2k−1(1)

×L2k−1,2k

(
RB
(
1/α2k−1

)
−1
)

L2k,2k−1

(
−RB(α2k−1)

)]}
(2.7)

and

Ē M
2
= diag(RB(

√
2),1, ...,1). (2.8)

where the notation RB(s) is used to denote a dyadic rational number of form β/2λ that
approximates the real number s.
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b) Compute 1D-IntDCT transform matrix as

C̄M = PM

[
IM

2
0

0 UM
2

][
CM

2
0

0 CM
2

][
IM

2
0

0 D̄ M
2

][
IM

2
ÎM

2

0 −ÎM
2

]
(2.9)

where D̄ M
2
= Ē M

2
F̄M

2
and

UM
2
=



1
2 0 0 ... ... 0 0
−1

2 1 0 ... ... 0 0
1
2 −1 1 ... ... 0 0

... ... ... ...
1
2 −1 1 ... ... 1 0
−1

2 1 −1 ... ... −1 1

 (2.10)

c) Compute the 1D IntDCT as V (p, l) = C̄my(p,m).

3. Compute a polynomial transform as

Ak(z) =
N−1

∑
p=0

Vp(z)ẑpk mod z2M +1;k = 0,1, ...,N −1 (2.11)

where ẑ ≡ z2 j+2
mod z2M +1 and

Vp(z) =
M−1

∑
l=0

V (p, l)zl −
2M−1

∑
l=M+1

V (p,2M− l)zl (2.12)

and then get Bk(z)≡ Ak(z)z2 jk mod z2M +1.

4. Find the 2D-IntDCT values X={X(k, l) : k = 0,1, ...,N−1; l = 0,1, ...,M−1 } from the following
equation

Xk(z) =
2M−1

∑
l=0

X(k, l)zl ≡ 1
2
(Bk(z)+Bk(z−1)) mod z2M +1 (2.13)

The original image x can be obtained from the transformed values X using the two dimensional
inverse integer-DCT (2D-InvInt-DCT). The inverse transform can be summarized in the following
steps.

1. Generalize the polynomials Xk(z) =
M−1
∑

l=0
X(k, l)zl −

2M−1
∑

l=M+1
X(k,2M− l)zl, and compute

Ak(z)≡ (Xk(z)+XN−k(z)z−M)zk2 j
mod (z2M +1). (2.14)

2. Compute a polynomial transform as

Vp(z)≡
1
N

N−1

∑
k=0

Ak(z)ẑpk mod z2M +1 (2.15)

where p = 0,1, ...,N −1 and the coefficients of Vp(z) are denoted by V (p, l).

3. Apply the steps given in eqns. (17-21), to find the 1D intDCT of each row of V (p, l) and let
the output is denoted by y(p,m).

30



4. Reorder the array y(p,m) to get x(n,m) = y(r(n,m),m),where

r(n,m) =


g(n

2 ,
m
2 ), Both m and n are even

g(N − n+1
2 , m

2 ), m is even and n is odd
g(n

2 ,M− m+1
2 ), m is odd and n is even

g(N − n+1
2 ,M− m+1

2 ), Both m and n are odd

(2.16)

with n = 0,1, ...,N −1; m = 0,1, ...,M−1 and g(n,m) = [(4m+1)−1(n−m)] mod N.

2.3MATRIX DECOMPOSITIONMETHOD
Matrix decomposition is refers to the mathematical operations that transform it into the

canonical form. The main idea of matrix decomposition is to simplify the more typical operations
that can be applied on the decomposed parts rather than the original matrix. This decomposition is
used in many scientific applications due to its computational convenience. Some of the important
matrix decomposition methods are briefly described as follows.

2.3.1 Singular Value Decomposition
A singular value decomposition (SVD) is a mathematical transformation used for the fac-

torization of the matrices. Suppose A is a matrix of sizem×n defined over the field F (where F may
be real or complex) can be expressed into product of three matrices such that

A =USV T (2.17)

where U and V are the unitary matrices of size m×m and n×n, S is diagonal matrix of size m×n
whose diagonal elements are the singular values of A and V T denotes the conjugate transpose of
V . The columns of U and V are the left and right singular vector of A. This decomposition can be
expressed as follows:

A =
r

∑
i=1

u⃗isi⃗vT
i (2.18)

where r is the rank of matrix A, si is the ith singular value, u⃗i and v⃗i are the ith left and right singular
vectors respectively. For digital images, SVD is a technique for transforming correlated pixels into
a set of uncorrelated ones that better expresses different relationship among the original pixels.
In principle, singular values and singular vectors represent the brightness and the geometrical
features of the image. A detailed analysis on the importance of SVD in digital image processing
can be seen in [Andrews and Patterson, 1976].

2.3.2 QR Decomposition
The QR decomposition is another well-known factorization technique, which essentially

factorizes a matrix A of size m×n into the following form [Golub and Van Loan, 2012]:

A = Q∗R (2.19)

where Q is an orthogonal matrix of size m×n and R is a upper triangular matrix of size m×m. The
QR decomposition can be computed using the householder transformation. This transformation
corresponds to a householder matrix (H) as follows:

H = In −2
< v,vt >

< vt ,v >
(2.20)
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where H and I represent an orthogonal matrix and identity matrix respectively, v is a non-zero
real vector. There are k steps involved in the overall procedure, where k = min(m− 1,n). The QR
decomposition can be computed as:

R = (HkHk−1 . . .H2H1)A (2.21)
⇒ R = (Q)T A ⇒ A = Q∗R (2.22)

2.4 CHAOTIC MAP
Chaos theory is a scientific discipline that concentrated on investigation of the behaviour

of non-linear chaotic systems that are highly sensitive on its initial state [Lasota and Mackey,
2013]. Chaotic systems have many important properties, such as randomness, aperiodicity, un-
predictability, sensitive dependence on initial conditions and parameters. These properties make
chaotic systems an ideal choice for those applications where security is of thrust interest [Has-
selblatt and Katok, 2003]. Due to usefulness of these characteristics, chaotic systems are widely
used in communication and image processing applications. Some of the chaotic maps used in the
proposed work are listed below.

2.4.1 Piece-wise Non-linear Chaotic Map
Chaotic systems have many important properties, such as randomness, aperiodicity, un-

predictability, sensitive dependence on initial conditions and parameters. These properties make
chaotic systems an ideal choice for those applications where security is of thrust interest. In this
work, a non-linear chaotic system is used to generate a random sequence. Mathematically, the
piece-wise non-linear chaotic map (PWNLCM) can be defined as given below:

G (zk+1)=


(

1
Ii+1−Ii

+αi

)
(zk −αi)− ai

Ii+1−Ii
(zk −αi)

2, if zk ∈ [Ii, Ii+1)

0, if zk = 0.5
G (zk −0.05), if zk ∈ (0.5,1]

(2.23)

where zk ∈ I = [0,1] with considering initial state z0. Ii denote a subinterval of I such that 0 = I0 <
I1 < .. . < In+1 = 0.5. The parameter αi ∈ (−1,0)∪ (0,1) tune sequence in the ith interval such that

n−1

∑
i=0

(Ii+1 − Ii)αi = 0 (2.24)

Some of the important characteristic of chaotic system are given below.

• Sensitivity to initial conditions: The initial state helps to analyze the future behaviour of a
chaotic system. Any slight change in the initial state results into a different outcome.

• Mixing: It refers to properties of a dynamical system, in which the system will evolve over
the time so that any given region of states always overlaps with any other given region.

2.4.2 Arnold Transformation
Arnold transformation is a two-dimensional map which is essentially used to scramble the

given image. In image scrambling process, the original pixel position is encoded by a new position
based on an iterative process. Let F̂ = {(u,v)|u,v = 0,1,2, ...,N−1} denote the original image of size
N ×N, then the Arnold transform [Arnol’d and Avez, 1968; Sui and Gao, 2013] can be defined as
follows:[

un

vn

]
=

[
1 a
b 1+ab

] [
un−1
vn−1

]
mod N (2.25)
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Figure 2.3 : Working process of arnold transformation

where un and vn represent the transformed coefficients with respect to original values un−1 and
vn−1 after nth iterations. Also, the parameters a and b are positive and belong to the set of real num-
bers. The Arnold transformation changes the position of (u,v) several times and after tth iteration it
returns to original position. The value of t is called the period of the transformation. The iterative
process breaks the correlation between the image pixels and after few iterations the pixels bear no
correlation in the transformed image. The working process of Arnold transformation is depicted
in Fig. 2.3.

2.5 LOG-POLARMAPPING
Log-polar mapping (LPM) can be viewed as a non-linear and non-uniform sampling of the

spatial domain. The non-linearity is obtained by the polar-mapping whereas logarithmic scaling
will lead to non-uniform sampling. Thus, log-polar mapping can be defined as the composition of
two transformations f and g such that

f : C → P g : P → LP (2.26)

whereC, P and LP represent the cartesian, polar and log-polar coordinate systems respectively. The
motivation for the inclusion of log-polar mapping comes from its biological genesis. In biology,
LPM is an accepted model of retinal representation in the primary visual cortex. The nonuniform
sampling that imitate logarithmic scale takes place in the retina, which are connected to the visual
cortex by amapping pretended by the nerves. A simple rewiring by the radial nerves, thismapping
realizes the polar transformation. Due to this, LPM is referred to the retino-cortical communication.
In principal, cartesian, polar and log-polar coordinate system represents the image, retinal and
cortical planes, as per the human visual system (HVS).

Given an image, it is first transformed into the log-polar sampling and it is then mapped
into the log-polar plane as shown in Fig. 2.4. Typically, the sampled image is divided, as per HVS,
into two distinct regions called (1) fovea and (2) periphery to produce a log-polar image. The fovea
constitute the interior part of the log-polar image by organizing different regions hexagonally. In
contrast, the similar regions are scattered in circular fashion to constitute the periphery. The area of
periphery is increased exponentially with respect to the center of the cortical plane. The complete
LPM process can be summarized as follows.

Consider a point (x,y) and (ρ,θ) in cartesian and log-polar coordinate system respectively,
one can have

ρ(x,y) = loga
ρ
ρ0

and θ(x,y) = qϕ (2.27)

where ρ denotes the radial distance from the center of the mapping, ρ0 is the radius of the inner-
most circle and 1

q is the the minimum angular resolution of the log-polar mapping. These relations
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Figure 2.4 : An illustration of the log-polar mapping as de ned in Eqn. 2.26.

can be referred as to conventional cartesian system and are defined as:

ρ =
√

x2 + y2 and ϕ = arctan
y
x

(2.28)

Despite the inconvenience of non-linear processing, the log-polarmapping has received substantial
attention for computer vision applications mainly due to the following advantages. (1) the log-
polar representation is invariant to rotation and scaling, and (2) the spatially varying sampling in
the retina reduces the amount of information through the nerveswhilemaintaining high-resolution
in the fovea. This property is helpful to process a high-resolution image efficiently. A detailed
description of the LPM and underlying sampling and mapping process can be found in Zheng
et al. [2003].

2.6 DECIMAL SEQUENCE GENERATION
Decimal sequences exhibit good correlation property such as auto-correlation and cross-

correlation and therefore used in many practical applications which are using pseudo-random
sequences. A decimal sequence can be produced by considering a positive integer number when
it is expressed in a decimal representation with respect to some base r̂. Mathematically, a binary
d-sequence can be produced with base r̂ = 2 as follows.

a( j) = {2 j mod q}mod r̂ j = 1,2......q−1, (2.29)

where q denotes a prime number. In [Parakh, 2006], authors introduce a non-linearity in the gen-
eration process of binary d-sequence by adding more than two different binary d-sequences using
a sequence of prime numbers q1,q2.......qn as follows.

a( j) = {2 j mod q1}mod 2⊕{2 j mod q2}mod 2⊕{2 j mod q3}mod 2.... (2.30)

where⊕ denote the modular addition operation. A new decimal sequence is then generated using
the recursion in the above approach as follows:

a( j) = {(s j mod q11 + s j mod q12 + ....+ s j mod q1n)
k mod q21}mod 2 ⊕

{(s j mod q11 + s j mod q12 + ....+ s j mod q1n)
k mod q22}mod 2 ⊕ .......

....{(s j mod q11 + s j mod q12 + ....+ s j mod q1n)
k mod q2m}mod 2.

(2.31)

where s and qi j are prime numbers and s represents the initial seed for the decimal sequence gen-
eration.
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2.7 KAZE FEATURES
KAZE is a new feature detection and description technique that uses the non-linear scale

space representation to extract the features of an image. The approach is similar to the SIFT and
SURF features, however the major difference lies between the building of the scale space. KAZE
features [Alcantarilla et al., 2012] utilize the non-linear diffusion filter instead of Gaussian scale
space. The Gaussian approach essentially blurs the noise and details in the same degree, loses
the natural boundary of the object when evolving the original image through the scale space. The
main advantage comes with non-linear diffusion filter that removes the noise while keeping im-
portant details of the image. The scheme is based on variable conductance diffusion and Additive
Operator Splitting (AOS) method which is totally stable for any step size. The non-linear diffusion
approaches can be explained using the classic partial differential equation and can be described as
follows:

δFs

δ t
= div{c(x,y, t).▽ (Fs)} (2.32)

where ▽ and div are respective mathematical symbols used to represent the gradient and diver-
gence operators. The function c(·) defines the conductivity in differential Eqn. 2.32 and can be
described as follows as:

c(x,y, t) = g(|▽Fσ (x,y, t)|) (2.33)

where the function▽Fσ defines the gradient of the original image F having standard deviation σ .
The two different mathematical expressions representing the conductivity function g given as:

G1 = exp
(
− |▽Fσ |2

k2

)
and G2 =

(
1

1+ |▽Fσ |2
k2

)
(2.34)

where G1 and G2 are used to represent the high contrast edge and wider regions respectively. The
Eqn. 2.32 can be discretization and can be written as:

F i+1 −F i

τ
=

m

∑
ℓ=l

Aℓ(F i)F i+1 (2.35)

where F i and F i+1 are smoothed images at present and adjacent level respectively. Also, Aℓ is
the matrix that encodes the diffusivities for each image dimension. In discretization, a similar
approach to the SIFT is applied which maps set of levels into octave and sub-levels with the help
of octave index o and sub-level index s. The octave and the sub-level aremapped to their respective
scale σ in the scale space of NL filtered image and can be defined as follows:

σi(o,s) = σ02(o+s)/S, i ∈ [0, ...NL −1],

o ∈ [0, ...Noct −1],s ∈ [0, ...Nsub −1]
(2.36)

where σ0 representing the base scale levels. Since, non-linear diffusion filtering is described in
terms of time, therefore the scale unit are mapped to time units as given below:

ti =
1
2

σ2
i , i = {0,1, ...N} (2.37)

After the formulation of the scale space, it is required to detect the key points having certain char-
acteristics such as robustness against image transformations, scale and position independence. A
detailed overview of KAZE featuers can be seen in [Alcantarilla et al., 2012].
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