
4
A New Robust Reference Image Hashing System

In previous chapter, a chaotic perceptual hashing technique has been discussed. Even the
technique offers good robustness and authentication ability but there are some limitations regard-
ing discrimination capability. This was expected because this method is not equipped with robust
feature selection. Therefore, the main objective of the proposed work is to develop a new hash-
ing technique based on global and local features to overcome the aforementioned limitation. It is
pertinent that the robust perceptual feature detection is an important step in the hash generation.
Therefore, KAZE features is employed for invariant feature extraction in the proposed hashing
system. The most stable key points are obtained considering scale information. In addition, the
statistical features are also obtained based on the log-polar mapped (LPM) reference images in
wavelet domain. The combination of DWT and LPM essentially enhance the robustness against
geometric attacks as well as different general image processing operations. The core idea is to
normalize the host image first through a geometric normalization process. Image normalization
is a technique to transform an image into a standard form such that this normalized form is inde-
pendent of any possible geometric or non-geometric distortions applied on the image. Therefore,
image normalization is considered to be a pre-processing step, which essentially reduces the ef-
fect of intentional/un-intentional distortions on the hash generation. The used normalization is
achieved by computing the invariant geometric and central moments. The reference images are
then obtained by the log-polar mapping in the wavelet domain. The reference image is formed
using the directive contrast of the log-polar mapped wavelet coefficients. A combination of these
two domains results into the LPM- DWT, which exhibits the multiresolution property, describ-
ing the spatial as well as the transform domain information. The significant information of the
reference image is obtained using the singular value decomposition to form an intermediate hash
value. A randomization process is then proposed and performed on the intermediate hash value
to construct the final hash sequence. The proposed hashing approach improves the robustness
by reducing the effect of noise and geometrical distortions. This fact is further demonstrated by
the experimental results, which in essence validates the excellent robustness and security of the
proposed hashing technique against a variety of intentional/un-intentional distortions.

4.1 LOCAL IMAGE CONTRAST
The HVS perception states that it is the contrast between the objects rather than the inten-

sities which differentiates the bright and dark image regions. Contrast essentially defined as the
difference between intensities of the target and background, and it is usually defined as follows
[Bhatnagar et al., 2015; Whittle, 1986] :

C =
ϑt −ϑb

ϑb
(4.1)

where ϑt and ϑb are the intensity of target and background respectively. The aforementioned
definition of contrast needs to be applied to a local area rather than the whole image. Thus, it
is also said the local contrast of the image. In general, ϑb is referred to the local low frequency
component while ϑt −ϑb = ϑh considered as the local high frequency.
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4.2 PROPOSED HASHING SYSTEM
The proposed image hashing system consists of four procedures, image preprocessing, ref-

erence image, perceptual feature extraction and hash generation process. The first procedure ob-
tains an invariant image to the different image manipulation. The second and third procedures
essentially generate a reference image and extract the perceptual which is finally used in the fourth
procedure to generate the hash sequence.

4.2.1 Reference Image Generation
Let I be a gray-scale image of size m× n, whose reference image has to be generated. The

complete process of reference image generation can be summarized as follows.

1. Perform ℓ-level wavelet transform (DWT) on I denoted byI θ
l where l ∈ [1, ℓ] is the level and

θ ∈ {A,H,V,D} is the orientation of the sub-bands.

2. Select the approximate sub-bands I A
ℓ at the finest level ℓ.

3. Perform 1-level wavelet on I A
ℓ , which is denoted by I θ

ℓ+1 such that θ ∈ {A,H,V,D}.

4. Find the local contrast, as defined in Eqn. 4.1, of all the high-frequency sub-bands as follows.

Horizontal Contrast : CH =
I H

ℓ+1

I A
ℓ+1

(4.2)

Vertical Contrast : CV =
I V

ℓ+1

I A
ℓ+1

(4.3)

Diagonal Contrast : CD =
I D

ℓ+1

I A
ℓ+1

(4.4)

5. Initialize high-frequency components to zero whose local contrast are less than a pre-defined
threshold. The threshold is given by

T ζ = Sort(p∗Sζ ) (4.5)

where ζ ∈ {H,V,D}, Sort(◦) is the sorted local contrast, Sζ is the size of subband I ζ
ℓ+1 and p

is the percentage of the wavelet coefficients which are to be retained.

6. Perform1-level inversewavelet transform to construct reference approximate sub-bandI A,re f
ℓ ,

after setting all high-frequency coefficients to zero as defined in the previous step.

7. Perform inverse ℓ-level inverse wavelet transform to get the reference image denoted by Ire f .

4.2.2 Perceptual Feature Extraction
The local features are selected based on KAZE features as described in Section 2.7. These

features are invariant to rotation, scaling and translation of the image. The steps used in features
extraction are briefly explained as follows.

1. For input image (I), the key points are detected based on KAZE features. Let Q = {Fp|p =
1 · · ·k} represent the key points, where Fi = (Si(xi,yi),σi,δi). Here (xi,yi) are the respective
coordinate position of the Si whereas σi and δi is the corresponding scale and orientation
factor.

2. Select k most stable points based on sigma value. The larger value of sigma indicates the
higher stability.
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3. The key-points having same scale factor are removed.

4. Construct two set θS = {S1,S2, ....Sk} and θ f = {(xi,yi),σi|i = 1....k} from the selected key
points.

5. Perform 1-level db1wavelet transform on the first set θS andObtain a new set θ N
S considering

the Steps 3-7 of Sub-section 4.2.1.

6. Obtain a vector θS, f by concatenating both the vectors θ N
S and θ f .

7. Take absolute value of θS, f and round it to the nearest integer value.

8. Obtain a vector HS, f using binary conversion followed by 8 bit representation.

4.2.3 Hash Sequence Construction
In this sub-section, the proposed hash sequence generation process is discussed in detail.

Considering, an image I as the input image, the proposed hash sequence generation approach
consists of the following steps:

• Ensure that the input image is a gray-scale image. If not, convert the input image I to the
gray-scale image by the luminosity method. Mathematically, luminosity method is defined
by the following equation .

Ĩ = 0.3R+0.59G+0.11B (4.6)

• Apply the pre-processing on the image Ĩ as mentioned in the Sub-section 3.1.1 to generate a
normalized image ĨN .

• Transform the normalized image into Log-polar coordinate system as defined in Section 2.5
. Let the transformed image is denoted by Ĩl p

N . Semantically,

Ĩl p
N = LPT{ĨN} (4.7)

• Construct a reference image (Ĩl p
N,re f ) from Ĩl p

N using the process defined in Sub-section 4.2.1.

• Perform SVD on the reference image Ĩl p
N,re f .

Ĩl p
N,re f =UĨl p

N,re f
SĨl p

N,re f

(
VĨl p

N,re f

)T
(4.8)

• Generate a feature matrix by stacking first k columns ofUĨl p
N,re f

and VĨl p
N,re f

.

R f =
[
U (1)

R f
, · · · , U (k)

R f
, V (1)

R f
, · · · , V (k)

R f

]
(4.9)

• Again, perform SVD on the feature matrix R f .

R f =UR f SR f V
T
R f

(4.10)

• Construct a feature vector FR by stacking first columns ofUR f and VR f as follows.

FR =
[
U (1)

R f
, V (1)

R f

]
(4.11)
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• Obtain the threshold T by taking the mean value of the feature vector FR.

• Then obtain a binary sequence H f as

H f (i) =

{
1, FR ≥ T
0, otherwise

(4.12)

• Obtain the hash sequence by concatenating of the sequence H f and HS, f .

• Final hash value is obtained by the randomization of the hash sequence (H). Assuming the
length of H is h̄, the randomization process can be summarized as follows.

1. Stack the sequence (H) into an array (AH) of size p× p, where p = sqrt(h̄).

2. Shuffle AH using Arnold cat map, which is denoted by AS
H . Mathematically, the classical

cat-map is defined as follows [Arnol’d and Avez, 1968; Sui and Gao, 2013][
x′n
y′n

]
=

[
1 1
1 2

][
xn

yn

]
(mod ℓ) (4.13)

where the pair (x′n,y′n) is the coordinates in the shuffled array AS
H corresponding to the

coordinates (xn,yn) of the original array AH .

3. Arrange the AS
H in to a vector to form the final hash sequence HI .

4.3 EXPERIMENTAL RESULTS AND DISCUSSION
It is planned to evaluate the proposed image hashing algorithm from four aspects. The

first one is their perceptual robustness against content-preserving manipulations, it is important
for content-based image identification and retrievalwherein it is desired that perceptually identical
images under distortions would have similar hashes. Secondly, the robustness of image authenti-
cation, which is used to determine whether the received image has the same contents as the trusted
one or has been maliciously tampered, or utterly peculiar. The third one is the unpredictability, a

Table 4.1 : Normalized Hamming distance of di erent standard test images.

Images Lena Barbara Cameraman Mandrill Watch Pirate Pepper House Hall Car

Lena 0 0.390 0.375 0.5375 0.395 0.5325 0.6625 0.3425 0.4325 0.615

Barbara 0.390 0 0.4000 0.6175 0.45 0.7125 0.4675 0.4475 0.4725 0.575

Cameraman 0.375 0.4 0 0.4325 0.305 0.6075 0.4675 0.3525 0.5025 0.7

Mandrill 0.5375 0.6175 0.4325 0 0.3525 0.43 0.305 0.4 0.435 0.3925

Watch 0.395 0.45 0.305 0.3525 0 0.4625 0.4675 0.3375 0.3125 0.47

Pirate 0.5325 0.7125 0.6075 0.43 0.4625 0 0.425 0.545 0.43 0.3275

Pepper 0.6625 0.4675 0.4675 0.305 0.4675 0.425 0 0.39 0.505 0.5225

House 0.3425 0.4475 0.3525 0.4 0.3375 0.545 0.39 0 0.48 0.7325

Hall 0.4325 0.4725 0.5025 0.435 0.3125 0.43 0.505 0.48 0 0.3925

Car 0.615 0.575 0.7 0.3925 0.47 0.3275 0.5225 0.7325 0.3925 0
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necessary property of a secure hashing algorithm. Conclusively, the final aspect is the computation
cost.

The efficiency of the proposed scheme has been tested using the standard test images in-
cluding Barbara, Cameraman, Car, Hall, House, Lena, Mandrill, Pepper, Pirate and Watch for
quantitative assessment. Normalized hamming distance [NHD] is used to measure the similarity
between the image hash. For a pair of hash sequence, the normalized hamming distance can be
defined as:

d(h1,h2) =
1
N

N

∑
j=1

δ (h1( j),h2( j)) (4.14)

where

δ (h1( j),h2( j)) =

{
1, h1( j) = h2( j)
0, h1( j) ̸= h2( j)

(4.15)

where N is the length of the hash sequence, h1 and h2 are hash sequences with their corresponding
jth elements h1( j) and h2( j). The estimatedNHD is then used to characterize similar and dissimilar
images. In principle, if this value is less than some predefined threshold then image is considered
to be perceptually similar otherwise perceptually different images. The NHD for the standard
images have been shown in Table 4.1.

4.4 ROBUSTNESS TEST
The robustness of the proposed hashing scheme is examined through a variety of attacks

such as additive Gaussian noise, Salt & pepper noise, blurring, average and median filtering, scal-
ing, rotation, shearing, brightness correction and contrast adjustment, JPEG and SPIHT compres-
sion. To assess the performance, a database of 1000 images have been constructed comprising of
100 benchmark images ( such as Barbara, Lena, Cameraman, etc.) of USC-SIPI database and a
variety of natural images (such as building, landscape, animal and fruits ), where each image is
converted to gray-scale image and down-sampled to 256× 256. Furthermore each image is passed
to a variety of standard content preserving operations as listed in the Table 4.2. Then, normalized
hamming distance is evaluated between the hash of original and manipulated images. The aver-
aged performance of the proposed scheme are compared with some of classical schemes namely,
Tangmethod [Tang et al., 2019], Ouyangmethods [Ouyang et al., 2016, 2017], Wangmethod [Wang
et al., 2015] and Qin method [Qin et al., 2013]. In the proposed scheme, the hash value is based on
local and global features, therefore the performance is compared with both type of schemes con-
sisting global and local & global features. For fair comparison, the results are evaluated using
normalized hamming distance. The usual results can be seen in Fig. 4.1. It can be observed that
proposed scheme estimates better performance over the existing schemes specifically geometric
distortions. The effectiveness of proposed scheme is also analyzed for noisy and filtering opera-
tions and are shown in Fig. 4.1(a-e). The results indicate that the performance of proposed scheme
is comparable with that of existing schemes. In addition, performance of the hashing scheme is
also examined against contrast and brightness adjustment, JPEG and SPIHT compression. The re-
spective results are shown in Fig. 4.1(i-l). For contrast adjustment, performance is better among all
and comparable with that of other ones. In essence, the results indicate that the proposed hashing
algorithm achieves good robustness for all types of manipulations.

To further validate the efficiency, the performance of the proposed scheme is explored us-
ing a set of 106 visual identical images which essentially generate the 1000 × 106= 106,000 iden-
tical image pairs wherein the list of used operations are displayed in Table 4.2. Then normalized
hamming distance is computed between the hash of original and visually identical images. The
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Figure 4.1 : Robustness and comparative analysis of the proposed hashing technique under di erent
distortions: (a) Additive Gaussian noise, (b) Salt & pepper noise, (c) Image blurring, (d) Av-
erage Filtering, (e) Median Filtering (f) Rotation, (g) Scaling, (h) Shearing, (i) Contrast Ad-
justment, (j) Brightness, (k) JPEG Compression, (l) SPIHT Compression.
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Figure 4.2 : Distribution of normalized hamming distance for visually identical image pairs.

distribution of NHD obtained from perceptually identical and distinct image pairs are depicted
in Fig. 4.2, where the frequency (y-axis) of a NHD (x-axis) is plotted. From the figure, it can be
observed that the minimum and maximum NHD are approximately (0,0.15) and (0.2, 0.8) respec-
tively for perceptually identical and distinct image pairs. The NHD value close to 0.15 indicates
that 0.02% distinct images falsely recognized as identical images. This essentially includes the im-
ages obtained from closely and severely effected content preserving manipulations. In contrast,
NHD value close to 0.20 indicates that 0.01% identical images are recognized as distinct images.
Therefore, the proposed scheme works well against content preserving manipulations proving the
robustness of the proposed hashing scheme.

4.4.1 Discriminative capability
Discriminative or anti-collision property implies the capability of generating the similar

hashes with very low probability from perceptually distinct images. To analyze the anti-collision
capability, the normalized hamming distance between the different pairs of standard images are
calculated, which are shown in Table 4.1. It can be observed from the table that the maximum
NHD is 0.6328 and the corresponding pair of images is (House, Pirate) whereas theminimumham-
ming distance is 0.3008 and the corresponding pair of images are (Barbara, Watch), which shows
that proposed hashing scheme has good anti-collision capability. This process is further extended
to 1000 different images carrying distinctive contents, such as human beings, scenery, buildings,
monuments and sport, and their sizes are between 512×512 to 900×800. This collection will have
4,99,500 pairs in total and theNHD is computed for each pair. The probability distribution of NHD
is obtained exploiting chi-square test, which comes out to be normal distribution, which is depicted
in Fig. 4.3. The mean and standard deviation of the distribution are 4.8 and 0.2 respectively. The
probability of a hash distance less than a threshold (λ ) defines the collision probabilityCPr and can
be determined as follows:

CPr(NHD ≤ λ ) =
1√

2πσ

∫ λ

0
exp

[
− (z−µ)2

2σ2

]
dx

=
1
2

er f c

(
− λ −µ√

2σ

) (4.16)

where er f c(·) represent the error function. The collision probability are computed at different
thresholds and are shown in Table 4.3. Clearly, if the threshold is decreasing, then the collision
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Table 4.3 : Collision Probabilities for Di erent Thresholds (λ )

Threshold (λ ) Collision probability
0.30 8.2967 ×10−3

0.25 5.2717 ×10−3

0.20 1.2988 ×10−3

0.15 1.6783 ×10−4

0.10 2.7972 ×10−5

0.05 3.9960 ×10−6
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Figure 4.3 : Distribution of normalized hamming distance for perceptually di erent image pairs.

probability is also decreasing, which means a low probability of false classification of distinct im-
ages to similar images, i.e., a good discrimination. However, the robustness and performance of
the hashing system may be compromised in case of smaller threshold values in the sense that the
rate of falsification may increase for content preserving operations. Therefore, an optimal thresh-
old may be chosen to make a trade-off between discrimination and robustness.

4.4.2 Unpredictability of image hash
This section presents the security analysis of the proposed hashing scheme in the sense of

ability to predict the hash. In essence, it indicates the unpredictability of the hash under brute
force attacks. For this purpose, 2000 binary hash sequences are randomly generated with equal
probabilities of symbols 0’s and 1’s, i.e., P(1) = P(0) wherein the length of these hash sequence is
same as the original image hash. The normalized hamming distance is then determined between
the true hash values and the generated random sequences. The NHD curves are displayed in
Fig. 4.4. It can be observed that all the hamming distances are close to 0.5. This essentially reveals
the unpredictability of the image hash values. Therefore, it can be concluded that the proposed
hashing has the capability of resisting against brute force attacks.
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Figure 4.4 : The normalized hamming distance between true hash sequence and randomly generated
binary sequence

4.5 SENSITIVITY ANALYSIS
The images are widely used nowadays in various fields like forensics, computerized pho-

tography, astronomy, medical imaging, character recognition and remote sensing. These images
are frequently altered/tempered to cater the specific needs of the intended application. Therefore,
the use of malicious tempering may lead to serious impact on the many aspects of societal security
including authentication and integrity of digital data. This is due to the fact that the maliciously
tempering using the insertion, deletion and/or copy-paste operations may lead to perceptually
different images. Therefore, an ideal perceptual hash function must be sensitive to the content
preserving malicious modification and has the capability to recognize the malicious alterations.
In principle, the hashes corresponding to tempered image must be different than that of the orig-
inal image. To validate the sensitivity of the proposed system, some tempering operations are
employed on the images. For this purpose, the most common tampering operations like “dele-
tion”, “insertion”, “copy and move”, “copy and paste” and “manual tempering” of the object are
carried out on different images. Each of these tempering has been done from two different point
of views (1) tempering of similar objects, and (2) tempering of different objects present in the im-
age. The images considered for the sensitivity analysis and corresponding forged versions are
depicted in Fig. 4.5. In the first row, three different objects of “football match” image is deleted
one by one wherein it can be noticed that even the minute manipulation of the image results into
in-authenticated image. A similar observation can be drawn from the images depicted in the re-
maining rows of the Fig. 4.5. This indicates that the proposed hashing system is highly sensitive
to small alteration as well as larger manipulation.

4.5.1 Computation Complexity
Computational complexity is another metric which is used to gauge the performance of a

hashing system. It refers to the time required in the estimation of the hash value of the multimedia
data. The average execution time is measured for the hash generation over 1000 images used in
the discrimination test. For comparative analysis, proposed and existing methods [Ouyang et al.,
2016, 2017; Qin et al., 2013; Tang et al., 2019; Wang et al., 2015] are each algorithm is run on a PC
configured with Windows-7, Core i5 processor under MATLAB platform. The respective average
computational time for the proposed and existing schemes are listed in Table 4.4. It can be seen
from the table that the proposed scheme takes a little longer time than [Ouyang et al., 2016] and
lesser time than that of methods presented in [Ouyang et al., 2017; Qin et al., 2013; Tang et al., 2019;
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Original Image ForgedImage1 ForgedImage2 ForgedImage3

(a1) (a2) (a3) (a4)NHD = 0.300 NHD = 0.214 NHD = 0.280 Deletion of object
from the test image

(b1) (b2) (b3) (b4)NHD = 0.268 NHD = 0.212 NHD = 0.342

(c1) (c2) (c3) (c4)

(d1) (d2) (d3) (d4)

 Insertion of object
from the test image

Operation

NHD = 0.488 NHD = 0.220 NHD = 0.454

NHD = 0.211 NHD = 0.251 NHD = 0.474

(e1) (e2) (e3) (e4)NHD = 0.271 NHD = 0.325 NHD = 0.374 Copy and move
         attack

(f1) (f2) (f3) (f4)NHD = 0.2103 NHD = 0.202 NHD = 0.490

(g1) (g2) (g3) (g4)NHD = 0.400 NHD = 0.308 NHD = 0.215

 Manual tempering

 Object replacement

(h1) (h2)
(h3) (h4)

NHD(g1,h1) = 0.2857 NHD(e1,h2) = 0.4429 NHD(d1,h3) = 0.5486 NHD(f1,h4) = 0.2314

Figure 4.5 : Original image and corresponding maliciously modi ed version
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Wang et al., 2015]. This ismainly due to the fact thatmethod in [Ouyang et al., 2016] utilizesmoment
based features whereas proposed method computes both local and global features for final hash
estimation.

Table 4.4 : Time complexity of di erent hashing algorithms.

Hashing Scheme Average Time
Tang Method 3.1189

Ouyang Method 1.702
Ouyang Method 2.17
Wang Method 1.981
Qin Method 3.47

Proposed Method 1.8932

Table 4.5 : Estimated performance of di erent hashing algorithms.

Tang Ouyang Ouyang Wang Qin Proposed
Method Method Method Method Method Method

Features Global Local and Global Global Local and Global Global Local and Global
Robustness against noise addition Yes Yes Yes Yes No Yes
Robustness against angle rotation No No No No No Yes
Robustness against cropping No Yes No Yes No Yes

Robustness against Compression Yes Yes Yes Yes Yes Yes
Content Sensitivity Average Average Poor Good Poor Good

4.6 PERFORMANCE COMPARISON
The efficiency of the proposed hashing scheme is evaluated by comparing it with differ-

ent state-of-the-art methods in the sense of tempering. In this connection, the experimental image
is tempered in following ways: (1) Deletion of objects from the image, (2) Insertion of objects in
the image, (3) copy and move objects in the image, (4) copy and paste objects in the image, (5)
manual tempering, and (6) object replacement in the image. The visual assessment of these tem-
pering can be seen in Fig. 6, wherein it can be observed that the proposed hashing scheme has the
ability to differentiate between the perceptually similar and perceptually different images. Fur-
ther, the same observation can be drawn for the content preserving operations (CPOs) or content
changing operations (CCOs). A qualitative comparison is depicted in Table 4.5, which essentially
indicates that proposed system shows excellent robustness against different kind of content pre-
serving manipulations in comparison to existing technique. Among all hashing schemes, schemes
presented in [Ouyang et al., 2017; Qin et al., 2013; Tang et al., 2019] disseminate the baseline results
providing average performance for almost all the experimental images. This is anticipated since
these schemes are based on the global features only. This limitation is rectified in [Ouyang et al.,
2016; Wang et al., 2015], where authors tried to combine global and local features, however, these
schemes suffer from the bad synchronization between global and local features. On the contrary,
the performance of proposed scheme is better than that of existing hashing schemes. This is in
light of the fact that proposed scheme uses KAZE features as local features, which essentially has
distinction of using non-linear scale-space over the SIFT features (which are used in [Ouyang et al.,
2016; Wang et al., 2015] as local features).

The effectiveness of the proposed scheme is further verified by insightful comparison with
existing schemes using receiver operating characteristic (ROC) curve [Fawcett, 2006]. The ROC
curve has ability to capture the trade-off between robustness and discrimination. Therefore, ROC
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Table 4.6 : Comparative analysis between proposed and existing algorithms.

Performance Tang Ouyang Ouyang Wang Qin Proposed
Method Method Method Method Method Method

TPR when FPR ≈ 0 0.8916 0.972 0.9166 0.9340 0.6812 0.9980
FPR when TPR ≈ 0 0.3833 0.208 0.4613 0.0620 0.5221 0.0044

AUC 0.9612 0.9843 0.9655 0.9951 0.9414 0.9998
Hash 96 384 96 340 444 350

curve is widely used for perceptive comparative study of different hashing frameworks. The ROC
curve essentially estimates the relationship between the true positive rate (TPR) and false positive
rate (FPR). Mathematically, it can be determined as follows:

T PR(λ ) =
q1(NHD < (λ ))

Q1
, FPR(λ ) =

q2(NHD > (λ ))
Q2

(4.17)

For a predefined threshold (λ ), q1 represents the number of identical image pairs categorized as
similar imageswhereas q2 is the number of different ormaliciousmodified image pairs categorized
as similar ones. On the other hand,Q1 andQ2 respectively are the total number of visually identical
and different images.

TheROCcurve of proposed and existing techniques have beenplotted for allmanipulations
and depicted in Fig. 4.6. From the figure, it can be observed that ROC curve higher among all
techniques and converge towards the top left corner. This reveals that the proposed technique
is most effective and efficient among all state-of-the-art schemes considered in the comparative
analysis. Additionally, area under curve (AUC) is also calculated to verify the same. A quantitative
comparison is summarized in Table 4.6. From the Table, it can be observed that proposed scheme
provides better classification in comparison to existing schemes.
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Figure 4.6 : Comparison of ROC curve of di erent existing techniques

Finally, performance of the proposed technique is also compared with the existing hashing
techniques in terms of the content sensitivity. For this purpose, the perceptual similarity is evalu-
ated for the images shown in Fig. 4.5. The optimal threshold corresponding to FPR≈ 0, have been
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Table 4.7 : Content sensitivity analysis among di erent algorithm.

Algorithm Threshold Normalized Hamming distance between the original and tempered images
(a1,a2) (b1,b2) (c1,c2) (d1,d2) (e1,e2) (f1,f2) (g1,g2) (f1,g1)

Tang Method 10 2.6861 3.6914 1.1189 3.4580 3.7392 4.5113 1.0532 5.1676
Ouyang Method 10 3.6056 9.5917 9.8489 8.2462 5.0990 11.4891 4.4721 7.9373
Ouyang Method 10 4.2426 2.4495 3.6056 4.3589 2.0000 4.5826 4.3613 1.7321
Wang Method 0.49 0.4922 0.4883 0.4824 0.2988 0.2988 0.3672 0.3613 0.4315
Qin Method 0.20 0.0566 0.0731 0.0367 0.1463 0.1102 0.1220 0.0452 0.1629
Proposed Method 0.20 0.3000 0.2685 0.4880 0.2110 0.2714 0.2100 0.4000 0.2857

selected for the best fit comparison. A detailed comparison can be seen in Table 4.7. Due to page
limitation, the detailed comparison is only presented for first (original images) and second (respec-
tive tempered image 1) column of Fig. 4.5. It can be observed that the content sensitivity of method
in [Qin et al., 2013] is very poor among all considered techniques. In contrary, methods presented
in Ouyang et al. [2017]; Tang et al. [2019] have low sensitivity against small content modifications,
whereas methods in Ouyang et al. [2016]; Wang et al. [2015] have moderate level of sensitivity. In
contrast, proposed technique not only preserve good sensitivity but also authenticate the images
perfectly even when the image is severely modified. Therefore, it can be concluded that the pro-
posed hashing scheme shows better classification performance when compared to state-of-the-art
hashing schemes.

4.7 SUMMARY
In this work, an efficient image hashing scheme has been developed for image content au-

thentication based on perceptual and statistical features. The perceptual information are obtained
based on KAZE features whereas a reference image and log-polar mapping are utilized for esti-
mating the statistical features. The proposed hashing scheme is robust to content preserving (such
as noise addition, filtering, gamma correction, contrast and sharpness adjustment) and geometric
(such as rotation, scaling and SPIHT compression) operations. Extensive experimental and com-
parative analysis have been conducted to confirm the superiority and efficiency of the proposed
hashing scheme in terms of anti-collision capabilities, content sensitivity, discriminative capabili-
ties, unpredictably, sensitivity and robustness against a variety of malicious modifications.
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