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A Novel Biometric Inspired Robust Security Framework For

Medical Images

In previous chapters, two perceptual hashing techniques have been presented for image
authentication and identification, which is essentially required for image security. However, the
privacy and confidentiality protection is another important issue which may not covered by these
techniques, therefore, a novel biometric inspired technique is developed in this chapter using im-
age encryption specially designed for medical images.

The proposed technique is based on the biometrics characteristics, parameterized all phase
bi-orthogonal sine transformation, SVD and QR decomposition. The salient contribution of this
approach is to introduce an efficient key management system utilizing biometrics features of the
patient. Further, a new transform, namely, parameterized all phase bi-orthogonal sine transforma-
tion (PR-APBST) is proposed and used for encryption purposes. In this work, fingerprint biomet-
ric is selected to acquaint key management system as it is one of the oldest and widely practised
amongst all biometrics. The common advantages of fingerprint which make it a superior biomet-
rics among all are as follows [Choi et al., 2011; Maltoni et al., 2009]:

• Fingerprint has excellent statistical properties among all biometrics.

• The fingerprint essentially represents the pattern consisting of dark lines of ridges and valley
along with white lines on top of the finger. Due to variation in ridges pattern, it is unique for
everyone and there are no fingers having same ridge pattern in the history of fingerprinting.
Even genetically identical individuals don’t have the same ridge patterns nor they shared by
two fingers of the same person.

• Each fingerprint can be recognized using a set of special point usually calledminutiae, which
essentially describes the distinctive feature in the form of location and direction.

• Fingerprints are assumed to be ageless. The ridges are created prior to birth and remain
even after death, until the skin decays. The ridges patterns are robust and are not affected by
diseases. Diseases may only change skin color and texture but ridges are remarkably stable
and immune. The overall quality of ridges remains unchanged throughout the life makes
fingerprints a noble biometric.

• The collectivity andmeasurability of biometric has significantly important role in several ap-
plications. The fingerprint is easilymeasurable biometricwhen compared to other biometrics
and therefore is ideal for several applications.

Nevertheless, other biometrics such as palm-print, iris, face, signatures can also be used in
the proposed image encryption technique. The core idea is to capture the fingerprint of the patient
and use it to generate a key generationmanagement system, which essentially provides the keys to
be used. These keys are the parameter involved in PR-APBST and the initial value for the chaotic
map. The biometric image is first transformed into PR-APBST coefficients followed by singular
value decomposition and QR decomposition to encrypt the medical image. The simulation results
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demonstrate the efficiency of proposed medical image encryption through key-space, sensitivity,
statistical and perceptual security analysis using different experimental images.

5.1 PARAMETERIZED ALL PHASE BIORTHOGONAL SINE TRANSFORM
All phase biorthogonal sine transform (APBST) can be derived from the discrete sine trans-

form by employing the sequence filtering in time domain [Zhou et al., 2017] in pursuit of getting
good energy concentration and high-frequency attenuation characteristics. The complete process
of definingAPBST initiates considering discrete sine transformmatrix, which can be definedmath-
ematically as [Saxena and Fernandes, 2013]:

s(i, j) =
2√

2N +1
sin

(2i+1)( j+1)π
(2N +1)

; i, j = 1, . . . ,N −1 (5.1)

The digital filtering can now be performed using a digital sequence. Therefore, a digital sequence
r(n) has been employed for the filtering, where each point of r(n) correspond to n different values.
The estimated mean of these values assigned as the output of all phase filtering.

z(n) =
N−1

∑
i=0

N−1

∑
j=0

[
G(i, j)r(n− i+ j)

]
(5.2)

where

G(i, j) =
1
N

N−1

∑
i=0

GN(m)s(i,m)s( j,m) (5.3)

substituting Eqn. (5.3) in to Eqn. (5.2), we have

z(n)=
N−1

∑
i=0

N−1

∑
j=0

[
N−1

∑
i=τ

H(i, i− τ)r(n− τ)

]
(5.4)

⇒ z(n)=
N−1

∑
τ=−(N−1)

h(τ)r(n− τ) = h(n)∗ r(n) (5.5)

where h(τ) denote the unit impulse response in the form of all phase filtering and can be expressed
as:

h(τ)=

{
∑N−1

i=τ H(i, i− τ); τ =0,1, . . . ,N−1

∑τ+N−1
i=0 H(i, i− τ);τ =−1,−2, . . . ,−N+1

(5.6)

Also, G(i, j) = G( j, i), then from Eqn. (5.3) and Eqn. (5.6)

h(τ) =
N−1

∑
m=0

U(τ,m)FN(m); τ = 0,1, . . . ,N −1 (5.7)

This can be expressed in the form of the matrices as: h =V F , V denotes a transition matrix which
describes the relationship between the unit pulse time response in the time domain and sequence
response in an orthogonal transform domain. The matrix V is known as all phase bi-orthogonal
sine matrices and computed as:

V (τ,m) =
1
N

N−1

∑
i=τ

S(m, i)S(m, i− τ) (5.8)

=
1
N

N−1−τ

∑
i=0

S(m, i)S(m, i+ τ) (5.9)
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substituting i → l, m → j, τ → i

V (i, j) =
1
N

N−1

∑
i=τ

S( j, l)S( j, l + i) (5.10)

from Eqn. (5.1) and Eqn. (5.10), all phase bi-orthogonal sin transform matrix is obtained, which is
given as follows.

V (i, j) =


1
N i = 0, j = 0,1, . . . ,N −1

4
N(2N+1) ∗β i = 1, . . . ,N −1

j = 0,1, . . . ,N −1

(5.11)

where

β =
N−1−i

∑
l=0

sin
(2 j+1)(l +1)π

(2N +1)
sin

(2 j+1)(l + i+1)π
(2N +1)

(5.12)

The transformmatrixV can be used for forward decomposition while its inverse (V−1) can be used
to reconstruct the signal. TheAPBT provides an elegant tool for analysing different signals [Saxena
and Fernandes, 2013]. In fact, it has the capability to analyze a signal better than the most common
Fourier and discrete cosine transform especially in the image coding application [Zhou et al., 2017].
However, it is not appropriate for the applications involving the security aspect. The main reason
is that this transform does not have any parameter involved, which can play the vital role of the
key. Therefore, APBTmay be capable of analyzing different kind of signals efficiently but may not
be used for the security purposes. To overcome this issue, a new definition is presented based on
the simple recurrences of rotation matrix. The core idea is to introduce a parameter, which will act
as the key for the transform because without knowing correct value of this parameter, one cannot
get the accurate transform coefficients. In order to introduce advent in the definition of APBT,
rotation matrix is examined first.

In linear algebra, a rotation matrix is used to transform the set of coordinates into the or-
thogonal cartesian frame preserving the shape and size, i.e, the angle between a pair of vectors
and vector length remains unchanged. The main property of the rotation matrix is that it is an uni-
modular orthogonal matrix with real entries. Generally, a 2-D rotation matrix can be described
as:

R2 =
1

c2 +d2

[
c2 −d2 2cd
−2cd c2 −d2

]
(5.13)

where c and d are arbitrary constants. The respective degree of freedom is one and Eqn. 5.13 can
be normalized by considering c and d satisfying c2+d2 = 1, then there exist a constant ψ such that
c = cos(ψ/2) and d = sin(ψ/2). Owing these values of c and d the rotation matrix can be written as

Rψ
2 = R2 =

[
cos(ψ/2) sin(ψ/2)
−sin(ψ/2) cos(ψ/2)

]
(5.14)

Here ψ describes the angle between the original coordinate and rotated coordinate axis. In other
words, the elements of rotationmatrix describe the projection of rotated coordinates onto the origi-
nal coordinate axis. The inverse of the rotationmatrix is obtained by its transpose due to reciprocal
relation, i.e, (Rψ

2 )
−1 = (Rψ

2 )
T . Similarly, the rotation matrix R3 of order three can be described as

R3 =
1
T

c2 +d2 + e2 + f 2 −2(c f − f e) 2(ce+d f )
2(c f + f e) c2 −d2 + e2 − f 2 −2(cd − e f )
−2(ce−d f ) 2(cd + e f ) c2 −d2 − e2 + f 2

 (5.15)
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where T = c2 +d2 + e2 + f 2 for some constants c,d,e and f . The degree of freedom for this matrix
is three and can be normalized by the relation c2 +d2 + e2 + f 2 = 1. The relationship among these
constants are complicated and can be obtained by incorporating rotation matrix of order two. In
principle, c can be assumed as c = cos(θ/2) and other parameters can be obtained by the relation
d2 + e2 + f 2 = sin(θ/2). It can be observed that the set of rotation matrices are closed under multi-
plication and it follows that any reorientation in space can be expressed in terms of pure rotation
about some fixed axis. On the other hand, if the rotation axis coincides with one of the coordinates
axes, then the rotation matrix degenerates to essentially a 2-D rotation. Therefore, the parameters
can have the values e = f = 0, c = cos(θ/2) and d = sin(θ/2), for the rotation about x-axis. Thus,
the rotation matrix of order three can be expressed as

R3 =
1

c2 +d2

c2 +d2 0 0
0 c2 −d2 −2cd
0 2cd c2 −d2

 (5.16)

⇒ Rψ
3 =

1 0 0
0 cos(θ) sin(θ)
0 −sin(θ) cos(θ)

 (5.17)

Similarly, rotation matrix about the y- and z-axis can be obtained. The above discussed matrices
Rψ

2 and Rψ
3 represent the most basic rotation matrices and can be extended to obtain the higher

order rotationmatrix. Mathematically, the higher order rotationmatrices can be formed as follows:

1. Higher even order Rotation Matrix:

Rψ
2m =

1√
2

[
Rψ

m Rψ
m

−R̃ψ
m R̃ψ

m

]
(5.18)

2. Higher odd order Rotation Matrix:

Rψ
2m+1 =

1√
2

 Rψ
m Rψ

m RT
0

RT
0 RT

0 0
−R̃ψ

m R̃ψ
m RT

0

 (5.19)

where m ≥ 2, R0 is 1×m zero vector and the matrix R̃ψ
m is the flipped matrix Rψ

m along x- and
y- axis respectively. Further, it is easy to verify that these matrices are orthogonal and satisfying
Rψ

p (R
ψ
p )T = 1 for all p ≥ 2. The higher order rotation matrices can be derived using the Eqns.

(24)-(26).

A new parameterized all phase sin bi-orthogonal transform (PR-APBST) can be designed
using the rotation matrix and APBST. Mathematically, the forward PR-APBST is given as:

Xψ = PR-APBSTψ(x) = Rψ
N E(Rψ

N )
T x (5.20)

the above equation suggest an unified way to reconstruct original matrix by exploiting the fact that
the rotation matrices are orthogonal matrices. In other words, the inverse PR-APBST can be given
by the following equation

x = IPR-APBSTψ(Xψ) = Rψ
N E−1(Rψ

N )
T Xψ (5.21)

Clearly from Eqns. 5.20 and 5.21, PR-APBST can be described by parameter ψ . The value of ψ can
be realized as the key for the transform in the sense that without knowing the correct value of ψ ,
none can get the accurate transform coefficients. The following are the properties, which can be
perceived from its definition.
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1. APBST Operator: The PR-APBST of order ψ = 0 is the APBST operator as the rotation matrix
will coincide with the identity matrix.

2. Successive Applications of PR-APBST: Successive applications of PR-APBST is equivalent to a
single PR-APBST with order equal to the sum of the individual orders. Mathematically,

PR-APBSTψ
(
PR-APBSTθ(x)

)
=PR-APBSTψ+θ(x) (5.22)

3. Linearity: PR-APBST is a linear transform. Mathematically,

PR-APBSTψ
(
x+y

)
=PR-APBSTψ(x)+PR-APBSTψ(y) (5.23)

4. Higher Dimensional PR-APBST: Due to the separability of the transform, the higher dimen-
sional PR-APBST can be defined by successive implication of one dimensional PR-APBST
along all the directions. For instance, two dimensional PR-APBST can be viewed as

PR-APBSTψ,θ =PR-APBSTψ
(
PR-APBSTθ

)
(5.24)

5.2 PROPOSED BIOMETRIC INSPIRED ENCRYPTION SYSTEM
5.2.1 Key Generation Inspired by Biometrics

This section essentially introduced the key management for the proposed encryption tech-
nique. The basic idea is to capture the biometric image of the patient through a automated biomet-
ric scanner. Biometric image is then used for feature extraction and key generation process. The
proposed encryption technique essentially uses two types of keys where the first one is consid-
ered as the seed value for non-linear chaotic map and the latter is the parameter associated with
PR-APBST. Assuming B = [b(i, j)|i, j ∈ 1,2 . . .2L−1] the biometrics image of size M1 ×N1, the key
generation process can be summarized as follows:

1. Compute second order (ϕ2) and third order (ϕ3) Hu moments of the biometric image B.

2. Obtain the difference between ϕ2 and ϕ3 and calculate Z as

Z = |ϕ2 −ϕ3|/(2L −1), 0 ≤ Z ≤ 1 (5.25)

3. The seed value for non-linear map is calculated as

K =
(
2L ∗Z

)
mod 1 (5.26)

where the standard arithmetic modular operation ensures that K ∈ [0,1].

4. Obtain a normalized biometric image as:

B̃ =
B−min(B)

max(B)−min(B)
(5.27)

5. Construct the feature matrix FM from B̃ as follows:

FM(i, j) =
{

1, if B̃(i, j)≥ T
0, if B̃(i, j)< T

(5.28)

6. Stack the feature matrix FM in an array to form feature vector (FV ).
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7. This feature vector (FV ) is used to generate the parameter for PR-APBST. The stepwise pro-
cedure can be described as follows:

a) Compute l = {r2 : r = min(M1,N1)} and partition final l values of FV into two equal seg-
ments FV1 and FV2 , respectively.

b) Compute the angle from both the segments as

ψ1 =

(
l/2

∑
i=1

FV1(i)

)
mod 180 (5.29)

ψ2 =

(
l/2

∑
i=1

FV2(i)

)
mod 180 (5.30)

where mod represent the standard modulo operation, which is used to make sure that
ψi ∈ [0,180].

c) Compute the optimal angle as

ψ =
(
ψ1 +ψ2

)
mod 180 (5.31)

This optimal angle is finally used as the parameter for the PR-APBST.

5.2.2 Proposed Encryption Technique
The primary objective of this section is to introduce the proposed encryption technique for

themedical images. Themedical and biometric images of the patients are the input for this section.
Let they be represented respectively by I and B. The proposed encryption technique comprises of
the following steps.

1. Considering the key management system (given in Section 5.2.1), obtain the key for chaotic
map (K) and the order of PR-APBST (ψ).

2. Construct a sequenceK based on nonlinear chaotic map and adopting key K such thatK =
{0 < k(g)< 1|1 ≤ g ≤ L}, where L = M×N is the length of the chaotic sequence.

3. Stack K in zig-zag order to get a random matrix RK .

4. Randomize original medical image (I) using random matrix RK as follows

RM(i, j) =
lnRK (i, j)

ln I(i, j)
(5.32)

5. Perform (ψ)-order PR-APBST on biometric image B, denoted by B.

6. Perform QR decomposition on transformed biometric image B, that is

B = QBRB (5.33)

7. Apply SVD decomposition on transformed biometric image BI , that is

B = UBSBV T
B (5.34)

8. Adopting QB
I and U B

I , encrypt the randomized image RM as follows:

IE = QBUBRMUB
T QB

T (5.35)
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5.2.3 Decryption Process
The main objective of this section is to reconstruct the original medical image from the

encrypted image. The decrypted process can be summarized as:

1. Considering the steps 5-7 of Section 5.2.2, generate QB and UB.

2. Adopting QB and UB, construct the randomized image from IE as

I D = UB
T QB

T IEQBUB (5.36)

3. Considering the steps 1-3 of Section 5.2.2, generate the random matrix RK .

4. The inverse randomization process is performed to get the final decrypted image (ID). Se-
mantically,

ID(i, j) = exp

(
lnRK (i, j)
I D(i, j)

)
(5.37)

5.3 EXPERIMENTAL RESULTS AND DISCUSSION
In this section, the main security aspects are validated to show the robustness of the pro-

posed encryption scheme. Extensive experiments are carried out using Matlab platform on dif-
ferent medical images including ultrasound, MRI/CT brain, Heart and X-Ray images. All of the
experimental images are having the size 256×256 and are 8-bit gray-scale images. The proposed
scheme utilizes two parameters, which essentially act as keys wherein the first key (K) is used as
initial seed for the non-linear chaotic map while the second key (ψ) is used as the order of param-
eterized APBST. Both the keys are estimated from the biometrics image of the patient. Biometrics
emerges as most effective and secure technique for the key generation due to its permanent and
unique features. Therefore, biometric inspired key generation is deployed to provide higher and
robust security to the medical images.

As Biometrics, fingerprints images, which are oldest and widely accepted biometrics for
personal verification and identification, are used in all experiments. The fingerprints are believed
to be unique across individuals and across fingers of the same individual. Hence, this work is
concentrated to obtain keys from the fingerprints of the patients. The fingerprints are used in nu-
merous real life applications but their performance are restricted by the quality of the captured
fingerprints. In contrast, the generated keys from the fingerprint images also depend on the qual-
ity of the fingerprint images. Hence, to ensure the robust performance concerning the quality,
it is essential to improve the quality of captured fingerprints for which well-known fingerprint
enhancement algorithm, presented in [Hong et al., 1998], is employed. The attributes of an ideal
encryption technique is that it should be robust enough to secure the digital data against different
kind of attacks such as brute-force and cryptanalytic attacks. Therefore, the efficiency of the pro-
posed scheme is investigated by the evaluation of the sensitivity analysis, key-space analysis, edge
distortion analysis and statistical analysis.

5.3.1 Perceptual Security Analysis
The perceptual security analysis is carried out to verify the visual performance of the pro-

posed technique. In general, a technique is considered to be perceptually strong if the encrypted
image does not reflect any information about the original image otherwise it may be possible to
obtain the overview of the original image information using statistical models/properties. There-
fore, visual and subjective evaluation has been carried out to measure the unintelligible nature of
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Figure 5.1 : Experimental Images:(a-e) Fingerprint images, (f-j) Original medical image, (k-o) Encrypted
medical images, (p-t) Decrypted medical images.

the proposed encryption technique. The original, encrypted and decrypted images are visually
depicted in Fig. 5.1 whereas subjective evaluation has been done by the standard image quality
objective metrics such as peak signal to noise ratio (PSNR), universal image quality index (UQI),
structural similarity index measure (SSIM) and normalized correlation coefficient (NC) respec-
tively. Themathematical definitions of thesematrices are depicted in Table 5.1. In principle, higher
values of these metrics in the principal range shows higher similarity between the images [Wang
and Bovik, 2006]. From Fig. 5.1, it can be observed that encrypted medical image does not ex-
hibit any information about the original medical images. In contrast, decryption process perfectly
decrypts the encrypted image and produce a high quality estimate of the original medical image
according to the human visual system. A similar observation has been realized from the subjective
evaluation, depicted in Table 5.2. Hence, it can be concluded that proposed technique perfectly
encrypt and decrypt the medical images.

5.3.2 Key Space Analysis
Key Space size refers to the total number of different keys associated with an encryption

scheme. In principle, a large key space is reasonably good enough to resist the brute-force attack.
Thus, the size of key space plays a vital role in the design of an encryption technique. Two keys K
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and ψ are used in the proposed technique. One of the key ψ refers to the order of PR-APBST and
lie in the [0,180]. However, second key K used as the seed value for a non-linear chaotic map and
contained in the interval [0,1]. The key space for the key K has been discussed as follows.

Consider two different sequences K1 and K2 of predefined length L with respect to seed
value K and K + d, i.e., K1 = {0 < K(g) < 1|1 ≤ g ≤ L1} and K2 = {0 < K(g) < 1|1 ≤ g ≤ L2}. Now,
key space is estimated using mean square error of both the sequences by the following equation.

MAE(K1,K2) =
1
L

L

∑
g=1

|K1(g)−K2(g)| (5.38)

The key space with respect to K is equivalent to 1/d0, where d0 is the value of d for which MAE is
zero. In the simulation, value of parameter d0 is 2.361×10−19 for K. In a similar way, key space for
other key (ψ) is calculated and is found to be 3.474 ×10−16. The total key space for the proposed
technique comes out to be 1035, which indicates the the higher security of proposed encryption
technique against the brute-force attack.

5.3.3 Key Sensitivity Analysis
Key sensitivity analysis determines the key variation effect in an encoding scheme. Gen-

erally, a small variation in keys of an ideal encryption should not produce the perfect decryption
i.e the scheme should be sensitive to the secret keys. Therefore, the key sensitivity of the proposed
technique is examined to verify the efficiency of the scheme. In the proposed scheme, keys are cal-
culated from the fingerprint image of the main user. The sensitivity is measured by the selecting
the wrong fingerprint image in the decryption process and the resultant decrypted image is com-
pared with the original fingerprint image. Let DC and DW represents the decrypted medical image
form correct fingerprint andwrong fingerprint images respectively. The key sensitivity factor (KS)
is computed as follows:

KS =
DSM(DC,DW )

M×N
(5.39)

where M×N is the size of medical image. The dissimilarity factor DSM is defined as

DSM =
M

∑
i=1

N

∑
j=1

DC(i, j)⊗DW (i, j) (5.40)

Table 5.1 : Mathematical de nitions of objective metrics used in perceptual security analysis.

Objective Metric† Principle Range

PSNR( f ,g) = 10 log10
2552

1
MN

M
∑

i=1

N
∑
j=1

[ fi, j−gi, j]2

≥ 28

UQI( f ,g) =
σ f g

σ f σg
.

2µ f µg

µ2
f +µ2

g
.

2σ f σg

σ2
f +σ2

g
[0,1]

SSIM( f ,g) =
(2µ f µg+C1)(2σ f g+C2)

(µ2
f +µ2

g+C1)(σ2
f +σ2

g+C2)
[0,1]

NC( f ,g) = E(x−E(x))(y−E(y))√
E(x2)−(E(x))2

√
E(y2)−(E(y))2

[0,1]

† The interpretation of the symbols used in these definitions can be seen in [Wang and Bovik, 2006].
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Table 5.2 : Perceptual Security Analysis for experimental images.

Metric Values between original and
Encrypted Image Decrypted Image

Ultrasound Brain-1 Brain-2 Heart X-Ray Ultrasound Brain-1 Brain-2 Heart X-Ray1
PSNR 8.5472 11.6102 8.6762 8.4126 13.0676 292.8110 296.2816 301.1565 302.404 296.2415
UQI 0.0005 0.0012 0.0023 0.0018 0.0006 0.9725 1.00 1.00 0.9756 0.9898
SSIM 0.0739 0.0970 0.0325 0.0348 0.1577 1.00 1.00 1.00 1.00 1.00
NC 0.0021 0.0051 0.0064 0.0074 0.0049 1.00 1.00 1.00 1.00 1.00

DC(i, j)⊗DW (i, j) =
{

1, if DC(i, j) ̸= DW (i, j)
0, if DC(i, j) = DW (i, j)

(5.41)

For a perfect encryption technique, the key sensitivity factor should near about 100%. Five different
fingerprint images are considered for the decryption purpose of the medical image. In order to
test key Sensitivity for medical images, the replacement of fingerprint has been performed from
each other. For example, the decryption of images Fig. 5.1 (f) have been performed with other
fingerprint image Fig. 5.1 (b-e) and similar to other images. This notifies that the decrypted image
from wrong fingerprint images are visually un-recognizable and look similar to the encrypted
image. This indicates that no one can obtain the original image without original biometric. Hence
proposed technique is highly sensitive regarding the key variation. The key sensitivity factor for
medical images are depicted in Table 5.3.

Table 5.3 : Key Sensitivity Analysis for All Medical Images.

Image Fig. 5.1(b) Fig. 5.1(c) Fig. 5.1(d) Fig. 5.1(e) Fig. 5.1(a)
Ultrasound 100% 100% 100% 100% 100%
Brain-1 100% 100% 100% 100% 100%
Brain-2 100% 100% 100% 100% 100%
Heart 100% 100% 100% 100% 100%
X-Ray 100% 100% 100% 100% 100%

5.3.4 Edge Similarity Analysis
Edges are themost prominent and natural features within an image. They indicate the local

variation in the intensity level of an image. Typically, edges describe the shape and geometry of the
objects concealed in the image and can be determined using gradient information and a threshold.
This information can be estimated using standard edge detection methods with single threshold.
However, edges determined using higher threshold value indicate larger discontinuity whereas
edges obtained at lower threshold values generally suffered from false edge information. More
precisely, the edges obtained using multiple thresholds with respective suitable weights provide
the better accuracy. Therefore, edge detection is applied using multiple threshold to obtain the
accurate information in encrypted domain.

Let ST be a set of threshold values considered in for edge detection algorithm EDet(I, t),
where I is an input image and t ∈ ST . Edges detection operation is employed on the original image
Io and its encrypted version Ie to estimate the binary edge images given by B(t)

o = EDet(Io, t) and
B(t)

e = EDet(Ie, t) respectively. Let B(t) denote the common edges present in the image for a given
threshold t, then the set of edges can be obtained as follows [Xiang et al., 2016]
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(a) (b) (c) (d)

Figure 5.2 : Edge images detected by the Canny edge detector with di erent thresholds: (a) Original
image. (b) t = [0, 0.1]. (c) t = [0.1, 0.2], (d) t = [0.2, 0.3].

B(t)(x,y)=


(

1− |Io(x,y)−Ie(x,y)|
ℓ

)
, if B(t)

Io
(x,y)∧B(t)

Ie
(x,y) = 1

and |Io(x,y)− Ie(x,y)| ≤ ℓ
0, otherwise

(5.42)

where ∧ signify the logical AND operation. To control the difference between Io(x,y) and Ie(x,y),
a threshold ℓ, 0 ≤ ℓ≤ 255 is introduced. Both edge detection and the change in the luminance are
used to obtain the more accurate results.
For a given threshold t, the edge similarity E(t)

S can be determined between Io(x,y) and Ie(x,y) as
follows [Xiang et al., 2016]

E(t)
S (Io, Ie) =

N(B(t))

N
(

B(t)
I0

) (5.43)

where N(·) is the L1 norm operation. The threshold parameter t play a decisive role in the edge
detection of the image. The binary images obtained through canny edge detector for different
threshold t: [0.0, 0.1], [0.1, 0.2], and [0.2, 0.3] are depicted in Fig. 5.2. It can be observed that high
threshold results into fewer edges because pixel points with lower discontinuity are considered as
the non-edge points in the image. In contrast, lower threshold may leads to false identification,
where irrelevant information such as noise may be considered as the edges in the results because
the algorithm is highly sensitive to the magnitude of the gradient. It may be noted that all the
points, regardless of noise, with maximum discontinuity are always retained. As a result, points
with maximum discontinuity will contribute strongly to edge similarity measure. Edge similarity
for for different threshold is depicted in Table 5.4.

Table 5.4 : Edges similarity between the original and encrypted image for di erent threshold value.

Image t=[0,0.1] t=[0.1,0.2] t=[0.2,0.3] t=[0.3,0.4]
Ultrasound 0.5357 0.4375 0.4000 0.2500
Brain-1 0.1362 0.1875 0.0845 0.1429
Brain-2 0.3443 0.2105 0.2712 0.1600
Heart 0.5714 0.3143 0.2059 0.1290
X-Ray 0.3333 0.2615 0.1569 0.1154

5.3.5 Edge Distortion Analysis
Edges are themost prominent and natural features within an image. They indicate the local

variation in the intensity level of an image. Typically, edges describe the shape and geometry of
the objects in the scene. In an encryption scheme, the encryption should be done in a way such that
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the encrypted image must not revile any information about the edges. Let g and h are the original
and encrypted image with associated edge binary matrix Bg and Bh. Then, edge distortion ratio
(EDR) can be determined as follows:

EDR =
M

∑
i=1

N

∑
j=1

|Bg(i, j)−Bh(i, j)|
(Bg(i, j)+Bh(i, j))

×100% (5.44)

For edge binary matrix, the edge detection operation can be performed using Canny edge detec-
tor, Prewitt or Sobel operator. Here, Prewitt operator is selected for edge detection due to its better
performance. Practically, a perfect encryption technique should reflect the higher EDR value. The
EDR of encrypted medical image Ultrasound, Brain-1, Brain-2, Heart and X-ray are 97.56, 95.63,
98.99, 96.00 and 97.03 respectively. These values essentially imply that most of the edges are dis-
placed in the encrypted counterpart of the considered medical images.

5.3.6 Statistical Analysis
A robust encryption technique can ensure the security by preventing the information leak-

age to the attacker. For this purpose, spectrum and correlation analysis have been discussed to
measure the statistical robustness of the proposed technique. These analysis can be described as
follows.

Spectrum Analysis
Spectrum analysis provides the basic structure of spectrum that characterize the frequency

content of a digital signal. It is primarily used to measure the strength of the different frequency
component. Therefore, the spectrum of original and encrypted medical images have been esti-
mated to compare the respective amplitude spectra. If the amplitude spectra of the encrypted
image are almost uniformly distributed and structurally dissimilar from the amplitude spectra
of original image then it represents the perfect encryption. However, the amplitude spectra of the
original and decrypted image should be similar tomake the decryption process perfect. The ampli-
tude spectra corresponding to original, encrypted and decrypted images have been shown in Fig.
5.3. It can be observed from Fig. 5.3(a) that there exist a peak in the middle which corresponds
to highest narrow spectrum. Also, it notifies the pattern of information distribution and energy
concentration of medical images. This pattern increases the risk of information leakage during the
transmission. Hence, if the information is equally concentrated all over the region of an image then
risk of information leakage will be minimal. This can be observed in listed Fig. 5.3(b). In contrast,
the identical amplitude spectra of original and decrypted images (depicted in Fig. 5.3(a) and Fig.
5.3(c) respectively) verified the efficiency and completeness of the decryption process.

Correlation Analysis
Correlation is an important tool to express the relationship between the neighbouring pixels

of an image and determines the randomness in an image. For a secure image encryption, the
encrypted image should have a weak correlation among the adjacent pixels. For this purpose,
P different pairs of adjacent pixels are randomly selected in any direction (either horizontally or
vertically or diagonally) and calculate the correlation coefficient using the definition listed in Table
5.1. Figure 5.4 shows the distribution of correlation coefficients among the horizontal adjacent
pixels in original, encrypted and decryptedmedical images. In contrast, the correlation coefficients
of all experimental images in horizontal and vertical directions are shown in Table 5.5.

5.4 EFFICIENCY OF DECRYPTION PROCESS
In this section, the efficiency of decryption process has been measured using sensitivity

of the fingerprint images. In other words, the authentic person must only be able to decrypt the
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medical image with fingerprint images. For sensitivity analysis, the fingerprint images have been
interchanged in the decryption process. The fingerprint image used in the encryption of a medical
image is used in the decryption of othermedical images and vice versa. The obtained results for the
same are depicted in Fig. 5.5. From the figure, it can be seen that ultrasound, MRI/CT brain, Heart
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Figure 5.3 : Amplitude spectra of Original Images (left column), Encrypted Images (middle column), De-
crypted Images (right column).

71



and X-Ray images are perfectly decrypt with true fingerprint images only. In contrast, the wrong
fingerprint images are not able to perfectly decrypt the medical image, further obtained images do
not reveal any information of the original medical images. This experiment is further extended by
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Figure 5.4 : Correlation distribution of horizontal pixels in: Original Images (left column), Encrypted Im-
ages (middle column), Decrypted Images (right column).
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Table 5.5 : Correlation Coe cients of Two Adjacent Pixels for All Medical Images.

Images Direction Original Encrypted Decrypted
Ultrasound Horizontal 0.9741 0.1610 0.9715

Vertical 0.9412 0.1150 0.9210
Brain-1 Horizontal 0.9675 0.0458 0.9667

Vertical 0.9767 0.0336 0.9618
Brain-2 Horizontal 0.9832 0.0710 0.9825

Vertical 0.9844 0.0287 0.9828
Heart Horizontal 0.9409 0.0475 0.9401

Vertical 0.9673 0.0678 0.9572
X-Ray Horizontal 0.9899 0.9908 0.9892

Vertical 0.9951 0.9949 0.9914

considering 1000 random fingerprint images. These images are taken from the FVC2000, FVC2002
and FVC2006 fingerprint dataset. These fingerprint images are employed in the decryption process
and obtained an estimate of medical image, which is then compared with the original medical
image. The comparison is done in terms of NC, PSNR, SSIM and UIQI.

The estimated results are shown in Fig. 5.6. From the figure, it can be observed that the
estimated NC lie between 0 and 0.03 with average correlation value 0.0012, 0.0036, 0.0031, 0.0036
and 0.0032 corresponding to Ultrasound, Brain-1, Brain-2, Heart and X-Ray images. The red line
in the graph shows the average correlation with different fingerprint images. Similarly, the objec-
tive metric PSNR, SSIM and UIQI is also analyzed for medical images. The results indicate there
is no similarity between decrypted image with true and wrong fingerprint images, i.e, no one can
decrypt the medical image other than the authentic person. Hence, proposed technique is highly
efficient and secure. The medical images are encrypted with fingerprint images other than these
images. The fingerprint images form the dataset that are employed in the decryption process one
by one and the decrypted images are compared with the decrypted medical image with true fin-
gerprint image in the terms of the ESA, NC, PSNR, SSIM and UIQI.

5.5 COMPARATIVE ANALYSIS
Another approach to assess the performance, of proposed technique is the comparisonwith

some of the related state-of-the-art techniques. In this section, three techniques presented by [Cao
et al., 2017], [Zhou et al., 2014] and [Liu et al., 2018a]. The performance is evaluated considering
the ESA, EDR, NC, UIQI, PSNR and SSIM. Edge similarity is estimated between the plaintext and
ciphertext images for a weighted threshold t, parameter ℓ and the obtained results are shown in
Table 5.6. In the experiment, the empirical value of parameter ℓ= 10 and weight threshold is 0.15
over the set of considering threshold t = {0,0.1,0.2,0.3}. It can be observed that proposed algo-
rithm holds lower edge similarity among the existing algorithms for all the experimental images.
On the other hand, EDR is also compared to analyze the capability of the proposed scheme. The
performance of our scheme is equivalent to the performance of [Cao et al., 2017] and better than all
other existing techniques.

More comparative experiments are conducted to show the perceptual security considering
similarity metric NC and UIQI. The obtained results are shown in Table 5.7. In the both the cases,
the proposed scheme works well when compared to other existing schemes. Similarly, SSIM and
PSNR are also used for comparative study using the considering schemes and obtained results are
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Table 5.6 : Edge based comparison of proposed scheme with existing schemes.

ESA EDR
Cao Zhou Liu Proposed Cao Zhou Liu Proposed

Method Method Method Method Method Method Method Method
Ultrasound 0.2214 0.3333 0.3279 0.2881 97.29% 96.12 % 96.27 % 97.56%
Brain-1 0.1695 0.4667 0.3390 0.1038 96.01% 94.41 % 96.52 % 95.63 %
Brain-2 0.2571 0.3390 0.3226 0.2321 97.76% 96.87 % 97.33 % 98.99%
Heart 0.2857 0.4280 0.3652 0.2686 96.13% 94.36 % 96.10 % 96.00 %
X-Ray 0.1462 0.4713 0.2857 0.0981 96.45% 95.62 % 96.42 % 97.03 %
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Figure 5.5 : Experimental Images: (a-y) Decrypted medical images; (a,g,m,s,y) Decrypted images with
true ngerprint images.
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listed in Table 5.8. From table, it is clear that the scheme shows lower structural similarity and peak
signal to noise ratio between the original and cipher images, which is another sign of an efficient
encryption scheme.

Table 5.7 : Comparison of proposed scheme with existing scheme in terms of NC and UIQI.

NC UIQI
Cao Zhou Liu Proposed Cao Zhou Liu Proposed

Method Method Method Method Method Method Method Method
Ultrasound 0.0032 0.0046 0.0037 0.0021 0.0010 0.0020 0.0012 0.0005
Brain-1 0.0058 0.0087 0.0068 0.0051 0.0021 0.0061 0.0031 0.0012
Brain-2 0.0064 0.0091 0.0071 0.0064 0.0025 0.0056 0.0053 0.0023
Heart 0.0069 0.0080 0.0056 0.0074 0.0023 0.0051 0.0043 0.0018
X-Ray 0.0061 0.0051 0.0054 0.0049 0.0008 0.0031 0.0018 0.0006
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Figure 5.6 : Objective metric with di erent ngerprint images and decrypted medical images- First col-
umn: Normalization coe cients; Second column: structural similarity; Third column: Peak
signal to noise ratio; Fourth column: Universal image quality index.
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Table 5.8 : Comparison of proposed scheme with existing scheme in terms of SSIM and PSNR.

SSIM PSNR
Cao Zhou Liu Proposed Cao Zhou Liu Proposed

Method Method Method Method Method Method Method Method
Ultrasound 0.0790 0.1058 0.1420 0.0739 8.6140 9.5272 10.3642 8.5472
Brain-1 0.0836 0.1171 0.1931 0.0970 7.7913 9.6131 8.9317 11.6102
Brain-2 0.0470 0.0725 0.1331 0.0325 8.9150 10.0087 9.2606 8.6762
Heart 0.0540 0.1030 0.0854 0.0348 8.9321 8.8448 9.2457 8.4126
X-Ray 0.1061 0.1117 0.1523 0.1577 8.7682 9.7802 9.9466 13.0676

5.6 SUMMARY
In this work, an efficient and robust encryption technique to protect medical images is pro-

posed. It is equippedwith an efficient keymanagement system incorporating the biometrics of the
patient. The biometrics enhance the security of medical data due to its unique and natural features.
It essentially provides a newmechanism of entering the secret key in the system. A new finding in
the definition of all phase orthogonal transformation (APBST) namely parameterized all phase or-
thogonal transformation (PR-APBST) has been made where the transform is parameterized using
higher order rotation matrix. PR-APBST is then coupled with QR and singular value decompo-
sition to proposed an elegant encryption technique. For the validation of proposed technique, a
detailed experimental analysis has been conducted through perceptual security, key-space analy-
sis, key sensitivity, edge distortion and statistical analysis which demonstrate high robustness and
security of medical image data.
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