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Preliminaries, Predictive Models and Related Work

2.1 SOLAR ENERGY: BASICS
Renewable energy sources are capable of developing sustainable power plants as these

energy sources are abundant, ecofriendly and provide energy with negligible emissions of air
pollutant and greenhouse gases. Sun and wind are most potential known renewable energy
sources. The part of sun radiations travels in a straight line from the sun to the earth surface
and falls at the right angle to the plane of incidence is known as direct normal irradiance (DNI).
DNI is used as input to concentrated solar power (CSP) based technologies. Some portion of solar
radiation gets scattered, before reaching on the earth’s horizontal surface, is termed as diffuse
horizontal irradiance (DHI). Total amount of radiations received by a horizontal plane on earth
is known as Global Horizontal Irradiance (GHI). On any surface, global irradiance is a sum of
direct and diffuse irradiance and is given by GHI = DNI ×COS(SZA)+DHI, where SZA is solar
zenith angle. GHI and DNI components of solar radiation are taken into account for flat plate solar
collectors design and concentrating solar collectors design respectively. The solar photovoltaic
(SPV) cells of flat plate solar collector directly convert solar radiation into DC electricity. The
electricity produced through PV can be used directly or it can be stored in the battery for further
use. Solar PV is a costeffective mode of electrification and is economical in remote areas where
electricity supply from the grid is costly to meet the user demand [Bijarniya et al., 2016]. Hence
contribution of solar PV is more than that of CSP in renewable energy generation. This is one of
the reasons of rapid growth of PV technology over the past decade.
The intermittency of energy generation output is higher for solar PV compared to CSP. CSP
plants can be considered to have better inertia against cloud produced transients and provide
less intermittent output because of some storage inherent in all CSP systems [Sayeef et al., 2012].
Solar PV is highly influenced by the cloud and produces highly variable output and needs to be
appropriately predicted and integrated into the grid to provide stable and quality of generation.
That is the reason irradiance forecasting becomes extremely important for solar PV generation.

The total power output from solar PV is proportional to the solar irradiance at the earth’s
surface and given bymultiplication of the solar irradiation, the collector area (A), and the efficiency
of the PV module (η) [Luque and Hegedus, 2011]. A and η are the characteristics of PV and
differ for various modules. Therefore, in the thesis, solar irradiation has been used as the primary
variable for SPV output power forecasting.

2.2 INTRODUCTION
As mentioned in the previous chapter, the solar radiation forecasting can be categorized

into two broad categories; physical models and datadriven models [Ren et al., 2015]. The physical
models are based on science of physics and depend on interactions between the physical state and
dynamical motion of the Sun. These physical models consist of three submodels (i) Numerical
Weather Prediction (NWP), (ii) Groundbased Total Sky Imagery (TSI) and (iii) Satellite Imagery.
The datadriven models use past recorded data to predict future value based on the previous
pattern already present in the data. The datadriven models consist of mainly two submodels (i)
autoregressive models and (ii) machine learning based models. A comparison between physical
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models and datadriven/statistical models is listed in Table 2.1.

Table 2.1 : Data‐driven and physical models

Technique Strengths Limitations
Datadriven/Statistical 1. Computation is much faster with real time

data
1. Requires historical data

2. Can model non linear patter in the data 2. Non transparent and confined
3. Often more accurate 3. Difficult to generalize

Deterministic 1. Rely upon the science of physics 1. Difficult to model real science
2. Transparent and training data is not
required

2. Data unavailability of building properties

3. Easy to generalize 3. Not very accurate

The selection of the model mainly depends on the prediction horizon because forecast
accuracy varies for different forecast horizons. Any combination of physical and statistical models
constitute a hybrid model. The main motivation behind construction of hybrid framework is to
combine various models with a unique feature to address the limitations of the individual models
and improve the prediction accuracy. Hybrid models have ability to model linear as well as
nonlinear patterns present in data in the more convincing way. Table 2.2 shows the time horizon,
interval and corresponding suitable applications of various forecasting methods. In addition,
various forecasting approaches and their corresponding examples and suitability are presented
in Table 2.3. Various solar energy generation techniques and their forecast requirements are listed
in Table 2.4. Stakeholders and operators and their various forecast requirements are listed in Table
2.5. This chapter presents a review of different statistical models and highlights the strengths
and weaknesses of these statistical models which can be useful in understanding the extent under
which a model should be preferred. The chapter also elaborates various hybrid methods and the
motivation behind their ensembling.

2.2.1 Objectives of the review
Reviews on solar resource forecasting deliver detailed accounts of well established time

series forecasting methods and related work that has been done by various researchers in recent
past. Inman et al. and Wan et al. reviewed resource forecasting methods and their configurations
for multiple time horizons [Inman et al., 2013; Wan et al., 2015]. In the same year, Diagne et al
also reviewed various irradiance forecasting methods [Diagne et al., 2013]. The review focuses
on the classification of the models and their suitability for various time horizons. Kashyap et
al. and Yadav and Chandel presented reviews on solar irradiance forecasting based on Artificial
Intelligence (AI) techniques [Kashyap et al., 2015; Yadav and Chandel, 2014]. Various ensemble
methods were highlighted by [Ren et al., 2015]. A recent review by Voyant et al., Li et al. and
Jimenez et al. discussed variousmachine learningmethods for solar irradiance forecasting [Voyant
et al., 2017; Li et al., 2016; JiménezPérez and MoraLópez, 2016]. All these reviews offer broader
understanding of forecastingmethods on various temporal and spatial horizons. This chapter aims
to explore the existing time series forecasting techniques along with their advantages, challenges
and suitability. Review on hybrid models is also presented since hybrid models have significant
contribution in the field. We provide a basis of comparison among various available techniques

Table 2.2 : Relation between forecast horizons, forecast interval and related applications

Time horizon Interval Some applications
Intrahour < 2 h Short term ramps, variability related to operations
Intraday 1−6 h Load following
Day ahead 1−3 days Unit commitment, transmission scheduling, day ahead market
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Table 2.3 : Categorization of solar irradiance predictive model based on various approaches

Approaches Examples Suitability
Physical (i) NWP (i) NWP is more accurate for dayahead

(ii) TSI (ii) TSI is more accurate for intrahour
(iii) Satellite imagery (iii) Satellite imagery is more accurate for intrahour and

intraday.
Statistical/Data driven (i) Regressive models (AR, MA,

ARMA, ARIMA)
(i) Regressive models are more accurate for intra hour

(ii) Machine learning (KNN,
SVM, ANN)

(ii) Machine learning based models are more accurate for
intrahour and intraday

Hybrid Mixture of two or more Suitable for all time horizons

Table 2.4 : Solar generation techniques and their forecast requirements

Solar generation techniques Intrahour Intraday Day ahead
Large concentrated solar thermal

√
X X

distributed PV
√ √

X
Large grid connected PV

√ √
X

Small non concentrated solar thermal
√ √

X

mentioned here. In nutshell, the objectives of this chapter are:

1. To present an overview in order to facilitate configuration and selection of appropriate
forecast model according to needs, applications and horizons of prediction.

2. To discuss various hybrid models along with their motivation of ensembling.

3. To present a comparative analysis of various forecasting methods that include both
qualitative and quantitative aspects of these techniques.

The chapter is organized as follow. In Section 2.3, statistical and learning based forecasting
approaches are reviewed. In this section, strength and weakness of models are discusses along
with their configurations. Section 2.4, concludes the chapter.

2.3 DATA‐DRIVENMODELS
Statistical models, more specifically regressive models, have been used for time series

forecasting in the field of renewable energy for many years. Time series models use historical
observed values for prediction of solar radiation. The traditional regressive time seriesmodels such
as autoregressive (AR), moving average (MA) and autoregressive moving average (ARMA) are
useful when the underlying data series is stationary [Tsay, 2005]. Modelling process flow diagram
of regression based time series models is shown in Figure 2.1.

Table 2.5 : Solar operators and stakeholders and their forecast horizons

Stakeholders Intrahour Intraday Day ahead
Energy market

√ √ √

T & D planning
√ √ √

Operations
√ √

X
Financial planning X X

√
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Figure 2.1 : Modelling process flow diagram of regressive based time series models

However, solar radiation data does not satisfy the stationarity condition in most of the
cases. This leads to the second approach of using learning based techniques, such as artificial
neural networks (ANN), support vector machine (SVM), Knearest neighbor (KNN), decision tree
(DT), Markov chain etc. Modelling process flow diagram of machine learning based predictors
is shown in Figure 2.2. In the literature, many predictor models have been proposed by the

Figure 2.2 : Modelling process flow diagram of machine learning based model

researchers for forecasting of solar resources. Here, we present eight most frequently used
regressive and machine learning based predictive models in the field of solar forecasting. The
strengths and limitations of each of these predictors, in brief, are presented in Table 2.6.

2.3.1 Autoregressive Moving Average (ARMA)
One of the most extensively used classical time series models is the ARMAmodel. ARMA

is popular because of its capability to model useful statistical properties and the adoption of the
wellknownBoxJenkinsmethodology [Box et al., 2015]. ARMA is flexible as it can represent several
models by simply changing its order suitably. Model is more effective and competent when time
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series posses an underlying linear auto correlation structure. The mathematical model is given as:

xt = ϕ0 +
p

∑
i=1

ϕixt−i +at −
q

∑
i=1

θiat−i, (2.1)

where, xt is forecasted value at time t, at is a white noise, ϕi for i = 1,2, ..., p are AR parameters and
θi for i = 1,2, ...,q areMA parameters. p and q are the orders of AR andMA processes respectively.

The basic foundation of time series analysis is that it must obey stationarity condition.
A time series is weak stationary if the mean of the time series is constant and the covariance
with its lagged series is time invariant [Tsay, 2005]. Mathematically, a time series Xt is weak
stationary if E(Xt) = µ , which does not depend on t and Cov(Xt ,Xt−l) = γl , which only depends
on l. In practice, the weak stationarity implies that the time plot of data fluctuate with constant
variation around a fixed label. Another approach through which we can determine weather a
time series is stationary or not is by the use of spectral analysis of time series. The frequency
spectrum of a time series is basically the frequency component (spectral component) of that time
series. The frequency spectrum of a time series shows what frequency exist in the time series.
Time series whose frequency content do not change with time, is called stationary. However,
stationarity test using Augmented Dickey–Fuller (ADF) test confirms that solar radiation series
usually found to be nonstationary. Thus, to convert solar time series into weak stationary series,
a phase of detrending is needed, which is usually achieved by differencing methods with the
assumption that the d_th difference of the time series may be considered as a stationary process.
After detrending, stationarity of the time series can be checked through ADF test. Order of the
ARMA model is determined by plotting autocorrelation function (ACF) and Partial ACF (PACF).
Decreasing exponential or alternate in sign or decreasing sinusoidal patterns ensure the time series
to be stationary and the number of its value greater than the significance level determines the
number of MA and AR parameters respectively. Thus ACF and PACF are used to determine
preliminary order of ARMA. Tsay and Tiao [Tsay, 2005] proposed a new approach called extended
autocorrelation function (EACF) to identify the preliminary order of ARMA process. Finally, ACF
and PACF of the residual series and Akaike information criterion (AIC) of different orders are
checked to obtain the optimal ARMAmodel [Akaike, 1998].

Reikard [Reikard, 2009] compared ARMA models with various other nonlinear models,
including neural networks and hybridmodels, at resolutions of 5, 15, 30 and 60minutes usingGHI,
and concluded that, in nearly all the cases, performance of ARMAmodelwas better. Perdomo et al.
used daily solar radiation measured data obtained from Bogotá, Columbia, between 2003 to 2009
for predicting daily mean GHI using linear time series model [Perdomo et al., 2010]. ARMAmodel
recently foundmany applications in the construction of hybrid systems [Ji and Chee, 2011; Voyant
et al., 2012; Bouzerdoum et al., 2013; David et al., 2016]. Hybrid of ARMA and time delay neural
networks (TDNN) along with several detrending models for hourly solar radiation prediction
was introduced by [Ji and Chee, 2011]. The data was from Nanyang Technological University,
Singapore with sampling interval of 10 minutes frequency. Bouzerdoum et al. proposed hybrid
of seasonal ARIMA and SVM for shortterm power forecasting of a smallscale gridconnected
photovoltaic plant [Bouzerdoum et al., 2013]. Solar irradiance forecasting with recursive ARMA
and GARCH models for very shortterm solar forecasting, from 10 min to 1 h, applied for six
different location, was introduced by David et al [David et al., 2016].

2.3.2 Exponential smoothing (ES)
The simple exponential smoothing works on the principal of continually revision of a

forecast in the light of more recent experience. The predicted values are calculated using weighted
averages of past observations with exponentially decreasing weights. Recent observations are
given relatively more weights than the previous observations. The model can be mathematically
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represented as

St = α ×Xt +(1−α)×S(t−1), (2.2)

where, Xt is the given time series at time t, St is the predicted value of the time series at time t, α
is the smoothing parameter. The weights decrease exponentially and it depends on the value of
parameterα , 0≤α ≤ 1. Anα close to 1means all the previous observations are ignored entirely and
α equal to 0means the current observation is ignored entirely. More details about the construction
and fundamentals of exponential smoothing can be found in [Winters, 1960].

Recently, ES is used extensively in the construction of hybrid models with other models in
the field of renewable energy [Dong et al., 2013; Yang et al., 2015; Dong et al., 2014]. Dong et al. used
exponential smoothing state space model for shortterm solar irradiance forecasting [Dong et al.,
2013]. The study employ two sets of data frommeteorological station Singapore and from a rooftop
station Colorado, USA. Authors proposed Fourier trend model to stationarize the solar irradiance
data and compared the performance with other candidate models using residual analysis and
KwiatkowskiPhillipsSchmidtShin (KPSS) stationary test. The candidate models that are used
for performance comparison are ARIMA, linear exponential smoothing (LES), simple exponential
smoothing (SES) and random walk (RW). Yang et al. in 2015 proposed three hybrid frameworks
based on STL decompositions and ETS [Yang et al., 2015]. In the first model, STL was used to
decompose the GHI and residual series was forecasted using ETS. Forecast of GHI was obtained
by aggregation of these results and the seasonal components. In the second model, DNI and DHI
are decomposed by STL and forecast of two residual series are separately accomplished by ETS and
final forecast of GHI is obtained by closure equation of aggregation of two forecast results and their
respective seasonal components. In the third proposed method, cloud cover index was considered
to forecast GHI. Dong et al. [Dong et al., 2014] proposed hybrid prediction algorithm comprising of
satellite image analysis and exponential smoothing state space (ESSS)/ANN. Selforganizingmaps
(SOM) were used to classify cloud cover index and the cloud cover index was forecasted using
ESSS.Multilayer perceptron (MLP) was used to derive the solar irradiance from cloud cover index.
The author finally compared the results of the proposed model with ARMA, linear exponential
smoothing (LES), simple exponential smoothing (SES) and random walk (RW).

2.3.3 Artificial neural networks (ANN)
ANN has been one of the most popular methods in various renewable energy applications

and forecasting [Kalogirou, 2001; Mellit and Kalogirou, 2008; Yadav and Chandel, 2014; Kashyap
et al., 2015]. ANN is extensively used in the realm of time series tomodel data containing nonlinear
patterns. ANNs are datadriven methods that can efficiently perform a nonlinear mapping
between sets of input and output variables. A neural network connects the input variables to
one or more output variables through interconnected nodes, called neurons. An input connection
has two values associated with it, an input value and a weight. Neurons assign weights to input
variables and, through an activation function, gives an output. Each neuron learns through
iterative learning cycles and produces the optimum value of weight parameters. The learning
algorithm minimizes an error function. The error function depends on the weights associated to
different interconnections. At each iteration, the input values are multiplied by an appropriate
value of the weight parameter, often within the range (−1 to 1). Before giving inputs to ANN,
input values are often normalized to values in the range 0 and 1 to adapt the activation function to
the weight values. The error is generally calculated by the square difference between the predicted
and the observed values of the output. Input data is usually divided into two sets, 70 percent data
is used for training and remaining 30 percent is for testing and validation. There are different
ways, discussed in the literature, to determine the number of neurons in the hidden layer [Mellit
and Kalogirou, 2008].
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In Figure 2.3, x1, x2,..., xD are inputs, z1, z2,..., zM are M hidden neurons and y1, y2,..., yK are
K output neurons. x0 and z0 are the biases provided at input and hidden neurons respectively.

Each input to hidden neuron is linear combination of the input variables x1, x2,..., xD and

Figure 2.3 : Neural network schematic diagram

M such linear combinations are constructed for j = 1,2, ...,M,

a j = w(1)
j0 +

D

∑
i=1

w(1)
ji xi, (2.3)

where, parameters w(1)
ji are the weights and w(1)

j0 are the biases. The quantity a j is known as
activations of hidden neurons. The hidden neuron uses a nonlinear activation function h(.) to
transform the input,

z j = h(a j). (2.4)

The output unit linearly combines the input from the hidden layer to give output layer activations
and K such linear combination are constructed, for k = 1,2, ...,K, as

dk = w(2)
k0 +

M

∑
j=1

w(2)
k j z j, (2.5)

where, w(2)
k0 is the bias parameter. Now, each output unit produces the network output ŷk,

ŷk = Θ(ak), (2.6)

where, Θ(.) is activation function for the output layer.
The error of prediction is defined by,

E(w) = 1/2
N

∑
k=1

∥ ŷk − tk ∥2, (2.7)

where, ŷk is network output and tk is the corresponding target value. Network training functions
are used to update weights and bias values.

Many researchers have used the family of ANNs as a predictor for solar irradiance
forecasting. Early use of ANN by AlAlawi and AlHinai was seen for climatological variables
as inputs to forecast monthly values of GHI over a year [AlAlawi and AlHinai, 1998]. Sfetsos
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and Coonick proposed a hybrid framework for mean hourly GHI prediction using feedforward,
recurrent and radial basis ANNs and compared the results with traditional linear methods [Sfetsos
and Coonick, 2000]. The improved results produced by ANN motivated many researchers to
implement it in the field of renewable energy [Paoli et al., 2010; GutierrezCorea et al., 2016;
Guarnieri et al., ????;Wang et al., 2012; Sfetsos and Coonick, 2000;Mellit and Pavan, 2010; Hocaoğlu
et al., 2008].

ANN also found many applications in the construction of hybrid framework with several
other methods in recent years [Cao and Cao, 2006, 2005; Mellit et al., 2006; Cao and Lin, 2008;
Theodosiou, 2011; Ji andChee, 2011; Voyant et al., 2012; Yacef et al., 2012; Benmouiza andCheknane,
2013; Aguiar et al., 2015; Dong et al., 2015; Sharma et al., 2016; Azimi et al., 2016; Ghofrani et al., 2016;
Monjoly et al., 2017].

Use of ANN in a hybrid framework for solar irradiance forecasting was introduced by Cao
et al. in 2005 and 2006. In these two consecutive works, they proposed a hybrid of discrete wavelet
transform (DWT) and artificial network (ANN) [Cao and Cao, 2005, 2006]. In the next work, Cao
et al. proposed hybrid of diagonal recurrent wavelet neural network (DRWNN) and the fuzzy
network for hourly solar irradiance prediction [Cao and Lin, 2008]. After that many researchers
used the hybrid of family of ANNwith wavelet transform for prediction of solar resources [Mellit
et al., 2006; Sharma et al., 2016; Ji and Chee, 2011]. Later on researchers introduced the use of
machine learning techniques for data mining which laid foundation of hybrid framework of ANN
with many other machine learning techniques [Benmouiza and Cheknane, 2013; Wu and Chan,
2013; Wu et al., 2014; Azimi et al., 2016; Ghofrani et al., 2016; Hassan et al., 2017; JiménezPérez
and MoraLópez, 2016; Monjoly et al., 2017]. Kmeans clustering and nonlinear autoregressive
(NAR) neural network models were combined to forecast hourly global horizontal irradiance
by Benmouiza et al. [Benmouiza and Cheknane, 2013]. A multimodel framework (MMF) was
proposed, based on clustering and an appropriate predictor model by [Wu and Chan, 2013]. In
similar work Wu et al. proposed genetic approach of combining multimodel framework for
prediction of solar irradiance [Wu et al., 2014]. Azimi et al. proposed a hybrid framework using
TB Kmeans clustering and a multilayer perceptron neural network (MLPNN) [Azimi et al., 2016].
In another similar work, Ghofrani et al. in the same year proposed a hybrid framework using
clustering technique, a classification method, a cluster selection algorithm and MLPNN [Ghofrani
et al., 2016].

2.3.4 K‐nearest neighbour (KNN)
KNN is an instancebased learning approach and it works on the homogeneity of

individuals for a given group [Voyant et al., 2013]. KNN stores all available instances present
in the data and predict values on a similarity measure (for example, distance functions). The
objects for which the class/property values (for classification/regression) are known in advance
are chosen as the candidate neighbours. All data points in a group must have similar properties,
is the basis of learning rule for the classification. This learning rule assigns a class to all the
unclassifieddata points and classifies to the nearest for a set of previously classified labels. Machine
learning tools often learn a model based on the available information in the database. The KNN
does not require any explicit learning as the training set itself is considered as the model. A KNN
algorithm is characterized mainly by; selection of metric to measure similarity between datasets
and determination of number of nearest neighbours [Dasarathy, 1991]. The choice of a metric to
measure similarity mostly depends on the nature of the time series. Frequently used metric is the
square of the Euclidean distances. Often, the number of neighbours (K) is estimated byminimizing
the error metric of the training data. KNN is useful for classification as well as regression. KNN
assigns weights such that the closest neighbours are given more weights than the distant ones.
KNN has been extensively used in the field of solar time series forecasting in many applications.
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Table 2.6 : Forecasting methods, their strengths and limitations

Forecasting
methods

Strengths Limitations

ARMA 1. The model uses lag and shifts of historic
observation

1. Accurate model estimation is not easy.

2. Autoregressive model with a moving average 2. Does not suit for longterm forecasting
3. Hardly capture nonlinear patterns present in the
timeseries

SVM 1. Good for classification or numeric prediction
problem
2. Not overly influenced by noisy data and not very
prone to overfitting

1. Finding the best model requires testing of various
combination of kernels and model parameters

3. Deals nonlinearity and arbitrarily structured data
with the help of kernel function

2. Estimation of optimum parameters is
computationally challenging and is proportional to
number of parameters and size of dataset

ANN 1. Efficiently map input and output relationships 1. “Black box” nature
2. The availability of multiple training algorithms 2. Initialization of weight value
3. More general and flexible 3. Challenges of local minima

4. The problem of Overfitting
KNN 1. Explicit training is not needed 1. Many a times function is approximated locally

2. Intuitive and easy to implement 2. Determination of the appropriate number of
nearest neighbours is challenging

ES 1. Simple mathematical model 1. Suitable for linear time series data
2. Larger weights are attached to more recent
observations

2. Estimation of weight value

Decision tree 1. Domain knowledge is not required 1. Size of decision tree
2. Can handle multidimensional data

Markov chain 1. Stochastic process with the Markov property 1. Probabilistic model
Hybrid 1. Compliment the strength of techniques involved 1. Challenging to identifywhichmethods to combine

2. Can handle complex problems and generally
enhance the forecast accuracy

2. Computational cost

3. Increased model complexity

Pedro et al. used KNNmethodology for intrahour GHI and DNI prediction for horizons ranging
from 5 min up to 30 min, and also estimated the corresponding prediction intervals[Pedro and
Coimbra, 2015]. Lora et al. used KNN for market price forecasting [Lora et al., 2007]. In
the applications of shortterm load forecasting, Sudheer and Suseelatha used weighted KNN to
forecast one of the wavelet decomposed subseries of electric load data [Sudheer and Suseelatha,
2015].

2.3.5 Support vector machine (SVM)
SVM is a kernelbased machine learning technique introduced by Vapnik that can be used

for classification tasks and regression problems [Vapnik, 2013]. The concepts of SVM are based on
determination of hyperplanes classifying data into two classes.
As we can see in Figure 2.4, the determination of hyperplane separating two classes is based on
finding the largest margin between two classes. Here, maximum margin is interpreted as largest
separation of the plane parallel to the hyperplane that does not contain any interior data points.
The theoretical details of SVM can be found in Vapnik et al. [Vapnik et al., 1997]. When SVM is
used for regression purpose it is termed as support vector regression (SVR) [Lauret et al., 2015].
For regression problems, generally, the target is to fit a function that must not deviate from the
measured outputs beyond an error term for each input value. Suitable kernel function is used to
map the input data into highdimensional feature space in case of nonlinear regression problems
and therefore, linear classification of data becomes a possibility. The performance of the SVR
relies upon the choice of kernel function and selection of the kernel parameter [Zhang et al., 2016].
Many a times SVR is used in the construction of hybrid models with in the field of solar resource
forecasting [Bouzerdoum et al., 2013; Mohammadi et al., 2015; Dong et al., 2015; JiménezPérez and
MoraLópez, 2016]. A hybrid of seasonal ARIMA (SARIMA) and SVM is proposed for shortterm
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Figure 2.4 : Support vector machine classification

power forecasting of a gridconnected SPV plant [Bouzerdoum et al., 2013]. Hybrid of SVM and
wavelet transform (WT) is introduced by Mohammadi et al. to predict horizontal global solar
radiation [Mohammadi et al., 2015]. Dong et al. in 2015 introduced a construction of hybrid
framework based on SOM, SVR and PSO (particle swarm optimization) to forecast hourly solar
irradiance [Dong et al., 2015]. SOM was applied to partition the input dataset into several disjoint
subdatasets of different characteristic information. PSO is implemented to select the parameters of
SVR and finally, SVR is used as a predictor. Four hybrid frameworks: decision tree (DT) andANN;
DT and support vector machine regression(SVMR); support vector machine clustering (SVMC)
and ANN; SVMC and SVMR for hourly solar irradiance forecast were reported by Jimenez et al.
[JiménezPérez and MoraLópez, 2016].

2.3.6 Decision tree
The decision tree is one of the most recently used machine learning tools in the field

of solar resource forecasting. A decision tree is a simple nonparametric hierarchical model.
It utilizes a treelike structure to model and predict values. It applies recursivepartitioning
regression to split observations into similar observations in smaller regions of the input space
[Breiman, 2017]. The decision tree can predict a finite set of values or continuous values known
as classification trees and regression trees respectively. The decision tree is characterized by
internal nodes, branches, leaf nodes, and the root node. The uppermost node in a tree denotes
the root node, each internal node performs a check on the attribute and an outcome of a check
is represented by branch and each leaf node represents a class label [?]. The advantages of
decision tree are; No requirement of domain knowledge for its construction and, its capability of
handling multidimensional data. Along with that, the incorporation of acquired knowledge in a
treelike structure is intuitive. The learning of a decision tree is simple, fast and its accuracy is good.

The working of regression tree is straightforward. A response from the number of inputs
is predicted by developing a binary tree. A test condition on each input is applied at each internal
(decision) node. Based on the outcome of the test either left or the right subbranch of the tree is
selected. The predicted value is provided to the leaf node. The prediction is average of training
data points which reaches that leaf. The Error metric is used to determine the best split for each
of the variables. Regression tree based ensemble methods for irradiance modelling are discussed
in [Hassan et al., 2017]. A regression tree is used for estimation of prediction interval for global
irradiance by [Voyant et al., 2018]. Variability of solar irradiance is forecasted using model tree by
[McCandless et al., 2015].
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2.3.7 Markov chain
Researchers have recently started using Markov processes, more specifically, the Markov

chain in the domain of time series modelling and forecasting. A Markov process follows
the Markov property which states that given the previous states, the next state of process is
independent of all other previous states and depends only on the current state. The present state of
the process fully captures all the information for future evolution of the Markov process. Hence,
future states can be achieved via a probabilistic process. The transitions between various states
are probabilistic with probabilities called transition probabilities. The Markov process can be
fully defined by the triple; a state space, a transition matrix and an initial state. Markov chain
can model a time series having serial dependence only among adjacent states. Thus Markov
process can be effectively used to model systems containing sequence connected events. Markov
chains employ to convert the measured data (observations) into states to correspond the data
between set intervals. In solar radiation forecasting domain, the sequences of measured irradiance
values are first transformed into discrete states. After that these states are used as radiation
values between intervals that make the transition over the time [Aguiar et al., 1988]. Hocaoglu
and Serttas developed a hybrid of Mycielski and Markov method for hourly prediction of solar
radiation [Hocaoglu and Serttas, 2017]. The Mycielski algorithm finds the longest repeating
sequence in the past that is present in solar radiation dataset. The Markov transition probabilities
decide the foremost probable historical subpattern among all subpatterns obtained by the use
of Mycielski algorithm. The most probable historic subpattern gives the final value of forecast.
Sahin and Sen used Markov models to model and predict the wind speed of ten different cities on
hourly time scale at northwestern region of Turkey [Sahin and Sen, 2001]. The work of several
researchers suggest that Markov models are often used for generation of wind speed time series
data [Shamshad et al., 2005; Carpinone et al., 2015; Hocaoğlu et al., 2010].

2.3.8 Hybrid models
As mentioned earlier, hybrid models are any combination of physical and statistical

models. The main motivation is to combine various models with a unique feature to complement
the advantages of techniques involved to get better forecast accuracy. Hybrid models have the
ability to model the linear as well as nonlinear patterns present in the data to span all relevant
areas of interest and improve the forecast accuracy. For this reason, hybrid models are used for
highfidelity and robust forecasting to get better forecast accuracy on several spatial and temporal
resolutions. Some of the hybrid models and their motivation behind various combinations are
presented in brief in the Table 1.3.

2.4 CONCLUSIONS
Various predictivemodels for solar resource forecasting are reviewed. We also examine the

strengths and limitations of forecastingmodels and discussed various challenges ofmodelling time
series data. We also provided insights that can help in configuration and selection of appropriate
forecast model as per needs, applications, and horizon of prediction. We reviewed various hybrid
models present in literature along with their motivation of ensembling. Although from various
research it is prominent that hybrid approach is suitable for all time horizons and generally gives
better forecast accuracy. From the discussions on various forecast models, it is also evident that
the choice of the appropriate forecasting models significantly depends on forecast horizon and the
variability of underlying data.
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