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Data Mining/Data Preprocessing Techniques and Error

Metrics

Preprocessing techniques play a vital role in the construction of ensemble framework for
solar irradiance forecasting. These techniques facilitate a better understanding of underlying
patterns in the time­series and improves the forecast accuracy. Data is better understood and
subsequent data analysis is performed more accurately and efficiently. A preprocessing also
helps in matching the time frequency or the scale. There are other reasons for preprocessing,
such as, reduction of features, handling missing information, the effect of seasonality etc.
Properly preprocessed solar radiation data reduces complexity of the data significantly and further
improves the forecast accuracy. Several data preprocessing algorithms have been used, based on
machine learning and decomposition techniques, to characterize irregular datasets. These data
preprocessing techniques enable handling small groups of data separately and further improves
accuracy of the final forecast by identifying anomalies and neglecting outliers. Sometimes, these
preprocessing techniques are used to divide the input data sets into small groups of sub­datasets
which are easier to forecast and also leads to better forecast accuracy. A few frequently used
preprocessing techniques are presented in Table 3.1 along with their strengths and limitations.
To quantify the improvement of forecast accuracy, after using preprocessing techniques, the error
metrics are used. It is also used for comparative analysis between the existing and the proposed
models.

The chapter is organized as follows. Section 3.1 discusses various data preprocessing
techniques and the respective governing equation of solar irradiance forecasting based on these
preprocessing techniques. Error metrics used in the thesis are discussed in Section 3.2. Finally
conclusions are drown in Section 3.3.

3.1 DATAMINING/DATA PREPROCESSING TECHNIQUES
3.1.1 Normalization

Data with wider or non­homogeneous range can cause imprecise data fitting. If the data is
scaled down to smaller range, before fitting into themodel, there is a possibility of better precision.
One of the frequently used solutions to the problem is normalization. Normalization restricts data
series in a range andminimizes the regression error while maintaining correlation among data set.
The governing equation for normalization based solar irradiance forecasting can be given as

XN(t) = N(X(t))

ŶN(t +h) = f (XN(t))

Ŷ (t +h) = N−1(ŶN(t +h))

(3.1)

where, X(t) is the original time­series data, XN(t) is the normalized data, h is the forecast horizon,
Ŷ (t) is predicted value, N−1 represents denormalization back to original scale and f(.) is the
predictor function. Here, we present two most frequently used normalization techniques used
in the field of renewable energy forecasting.
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(i) Min­Max Normalization: Normalization refers to the creation of shifted and scaled versions of
statistics. The normalized value obtained by formulation of Min­Max normalization is given by,

x′ =
x−min(x)

max(x)−min(x)
, (3.2)

where, min(x) =minimum value of attribute (x) andmax(x) =maximum value of attribute x. This
eventually converts the data series in the range of 0 to 1.

(ii) Z­Score Normalization: Z­score normalization is used to convert each feature in the
data to have zero mean and unit variance. The calculation of Z­Score normalization starts with
the evaluation of the mean and standard deviation for each feature. Subsequently, the normalized
values are obtained by subtracting the mean from each feature and dividing this by the standard
deviation,

x′ =
x−mean(x)

std(x)
, (3.3)

where, mean(x) = mean of attribute (x) and std(x) = standard deviation of attribute (x). This
technique is also useful to merge different data sets into one.

3.1.2 Wavelet transform
Fourier Transform (FT) can be used for non­stationary time series, if we are only interested

in what spectral components exist in the signal and not interested where these occurs. However, if
we want to know, what spectral component occurs at what time (interval), then Fourier transform
is not the optimum choice to use. The frequency and time information of a signal at some certain
point in the time­frequency plane cannot be known. In otherwords: We cannot knowwhat spectral
component exists at any given time instant. The best we can do is to investigate what spectral
components exist at any given interval of time. Higher frequencies are better resolved in time,
and lower frequencies are better resolved in frequency. This means that a certain high­frequency
component can be located better in time (with less relative error) than a low­frequency component.
On the contrary, a low­frequency component can be located better in frequency compared to
high­frequency component.
Wavelet transform is capable of providing the time and frequency information simultaneously,
hence giving a time­frequency representation of the signal. The wavelet transform possesses good
time and frequency resolution simultaneously by using short windows at high­frequency and long
windows at low­frequency. Effective applications of wavelet heavily depend on the choice of
wavelet family, motherwavelet, and its order. Adiscretewavelet transform (DWT) uses successive
high pass and low pass filtering operations to decompose the time series into approximations and
detailed series for the analysis purpose. The governing equations for DWT based solar irradiance
forecasting are given by [Ren et al., 2015]:

[XDi(t),XAn(t)] = DWT (X(t))

ŶDi(t +h) = f1(XDi(t))

ŶAi(t +h) = f2(XAi(t))

Ŷ (t +h) =
n

∑
i=1

ŶDi(t +h)+ ŶAi(t +h)

(3.4)

where, X(t) is the original time series, XD(i)(t) is the ith detailed component, XAi(t) is the
approximation component, h is the forecast horizon, Ŷ (t) is the predicted value and f1(.) and f2(.)
are the predictor functions. The DWT utilizes two set of functions; the scaling function ϕ(t) and the
wavelet function w(t). The scaling function ϕ(t) and the wavelet function w(t) is associated with
the low pass and high pass filters respectively with their respective filter coefficients b(n), n ∈ Z
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and c(n), n ∈ Z. According to Mallat’s algorithm [Mallat, 1989], DWT is realized by means of the
filters b[k], c[k] that are related to each other through

c[k] = (−1)k+1b[N − k−1], ( f or) k = 0,1, ...,N −1, (3.5)

where, N is the length of filter. These filters are constructed recursively from the scaling function
ϕ(t) and the wavelet function w(t) as,

ϕ(t) =
√

2∑
k

b[k]ϕ(2t − k), (3.6)

w(t) =
√

2∑
k

c[k]ϕ(2t − k). (3.7)

The output of these filters are sets of low and high­frequency components named as
approximations a j[k] and details d j[k] respectively. The components are defined as

d j+1(k) = ∑
n

a j[n]c(2k−n), (3.8)

a j+1(k) = ∑
n

a j[n]b(2k−n). (3.9)

Here, a j[k] represents the series which is characterized by slow dynamics (less variability), while
d j[k] represents the local details of time series and have fast dynamics (high variability).

3.1.3 Seasonal and trend decomposition using loess (STL)
Solar time series data has inherent seasonality patterns in it and for the efficient applications

of a predictivemodel, the effect of seasonality needs to be identified and separated out from it. STL
helps in detection and separation of seasonality patterns present in the solar time series data. The
STL has the capability to handle seasonality components and outliers present in the data. It is
applicable to a wide range of time series with different characteristics and sampling frequencies.
STL procedure is purely based on numerical methods and does not require any mathematical
modelling. This makes the method very easy to implement for a large number of time­series. In
addition, it can be easily implemented in the statistical software package (R). The key equations of
STL decomposition based forecasting are given in by

[XS(t),XT (t),XR(t)] = ST L(X(t))

XResidual(t) = XT (t)+XR(t)

ŶResidual(t +h) = f (XResidual(t))

Ŷ (t +h) = ŶResidual(t +h)+XS(t),

(3.10)

where, XS, XT and XR are trend seasonal and remainder components respectively, h is the forecast
horizon, Ŷ is the predicted value and f(.) is the predictor function.
STL is a filtering procedure used for the additive decomposition of the time series into its three
constituent components; seasonal, trend and remainder [Cleveland et al., 1990]. In contrast to
wavelet decompositions, STL decomposes a time series in the time domain without taking help
of any deterministic function. STL filters the data through a sequence of applications of the
loess smoother and moving average [Cleveland and Devlin, 1988] which applies locally weighted
polynomial regression at each point of the dataset. The loess regression curve is obtained by using
some of the nearest previous data as the explanatory variables.

The whole STL procedure is an iterative cycle of de­trending by using loess, that is, local
regression polynomial fitting and then updating the seasonal component at each iteration. The
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Table 3.1 : Data pre‐processing methods, their strength and limitations

Data pre­processing methods Strengths Limitations
Normalization 1. Convert data into smaller and uniform

range
...

2. Maintain correlation among dataset
Wavelet transform 1. Multi resolution analysis of the signal 1. Choice of mother wavelet

2. Helps in understanding the frequency
component present in the signal

2. Pose challenges in identifying the level of
decomposition

STL decomposition 1. Decomposes a time series in the time
domain without using any deterministic
function

1. Not a mathematical model

2. Can handle outliers in the data 2. The application is limited to seasonal data
3. Can handle seasonality in the data

K­means clustering 1. Uses simple principles for identifying
clusters which can be explained in non
statistical terms

1. It is not guaranteed to find the optimal set
of clusters

2. It is highly flexible 2. requires a reasonable guess to determine
the initial number of clusters

3. Efficient and performs well at dividing
data into useful clusters

iterated cycle is composed of recursive inner and outer loops. Each pass of the inner loop applies
seasonal smoothing followed by trend smoothing and updates the seasonal and trend components
respectively. An iteration of the outer loop consists of one iteration of the inner loop to estimate
trend and seasonal components which are further used for calculation of remainder component.
The detailed description about STL and loess polynomial fitting can be found in [Cleveland et al.,
1990; Cleveland and Devlin, 1988].

3.1.4 K‐means clustering
Clustering permits a dataset to come up with compact groups of data with similar

characteristics within the same cluster and isolate from those clusters which contain elements with
different characteristics. K­means clustering uses somemetrics to define similarity or dissimilarity
among samples [Han et al., 2011]. A K­means algorithm is characterized by issues such as
initialization of cluster center (centroid), number of clusters (value of K), adopted similaritymetric,
etc. The main task of K­means clustering is to partition N observations into K homogeneous
clusters. In a multidimensional feature space K­means algorithm treats each of its feature value as
coordinates. The K­means begins by choosing K points in the feature space to serve as the cluster
centres. These centres are treated as a basis that spurs the remaining examples to fall into place.
Each observation in a cluster belongs to the cluster with the nearest mean and this mean is also
called cluster center. Often, these centres points are chosen by selecting k random examples from
the training dataset. Since they are selected at random, these centres could have just as easily been
three adjacent points. As the K­means algorithm is highly sensitive to the starting position of the
cluster centres, this means that random chance may have a substantial impact on the final set of
clusters. To address this problem, K­means can be modified to use different methods for choosing
the initial centres. For example, one variant chooses random values occurring anywhere in the
feature space (rather than only selecting among the values observed in the data). The similarity
between samples ismeasured by the distance from the samples to the cluster centres. Traditionally,
K­means uses Euclidean distance as a measure of dissimilarity, as defined in [Jain et al., 1999;
MacQueen et al., 1967], butManhattan distance orMinkowski distance are also used inmany cases.
In the field of solar radiation prediction, clustering enables handling small groups of data in place
of the whole data, which leads to better forecast accuracy. K­means utilizes unsupervised learning
algorithm for data­partitioning in the field. The key equations of clustering based forecasting
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techniques are given as

[XCi(ti)] = K −means(X(t))

XBestcluster =CSA(XCi(ti))

Ŷ (t +h) = f (XBestcluster)

(3.11)

where, X is the original time series, XCi is the ith cluster, h is the forecast horizon, CSA
represents the cluster selection algorithm, Ŷ is the predicted value and f(.) is the predictor.

Till now our emphasis was on the various preprocessing techniques. Forth in the coming
section we will look upon the error metrics which are used to quantify the improvement in the
forecast accuracy after the use of preprocessing techniques. These error metrics are also used for
the comparison purpose of twodifferent forecastingmodels to decidewhichmodel ismore suitable
for particular dataset.

3.2 ERRORMETRICS
The number of metrics for performance evaluation are listed in the literature [Antonanzas

et al., 2016; Zhang et al., 2015; Coimbra et al., 2013]. RMSE and MAE error metrics are most
commonly used for evaluation of forecast error. The standard error of forecasting is calculated
by the root mean square error (RMSE) and the mean absolute error (MAE)

RMSE =

√√√√ n
∑

t=1
(X(t)− Ŷ (t))2

n
, (3.12)

MAE =

n
∑

t=1
| X(t)− Ŷ (t) |

n
. (3.13)

3.2.1 Goodness of fit (R2)
The coefficient of determination R2 measures how well forecast values captures the trend

in predicted value that is present in observed values. It is interpreted as the proportion of the
variance in the predicted values from the measured data values.

R2 = 1− Var(Ŷ −X)

Var(X)
(3.14)

where, X is the original data series and Ŷ is the predicted data series.

3.2.2 Forecast skill (S)
Forecast accuracy depends on weather conditions and forecasts temporal/spatial

resolution. Therefore, forecast accuracies are not comparable site­by­site unless normalized by
a benchmark. The forecast skill (S) is a way to normalize forecast accuracy [Coimbra et al., 2013;
Marquez and Coimbra, 2013].

S = 1−RMSEm/RMSE p (3.15)

where, RMSEm is the RMSE value of themodel under consideration andRMSEp is the RMSE value
of the persistence model. As per the definition of the forecast skill, for perfect solar forecast S = 1,
and if S = 0, the forecast uncertainty is as large as variability. By convention, for persistence model
S = 0.
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3.3 CONCLUSIONS
Preprocessing techniques are often used prior to the prediction of time series data. Various

frequently used preprocessing techniques and their characteristics are discussed. This chapter
provides insights for applicability that helps in integration of preprocessing techniques with
various predictors and develops an ensemble framework. The chapter also covers frequently used
error metrics in the field and highlights their applications in estimation of error and comparative
analysis among competing candidate forecast model.

…
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