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Appendix A: Derivation of energy conservation equation as
scalar variable temperature

1 ENERGY EQUATION FOR PURE AND ALLOY SYSTEMWITHOUT INTEGRATING FREE SURFACE
The energy conservation equation is derived on the basis of volume averaged continuum

formulation originally proposed by [Bennon and Incropera, 1987a], as shown in below Eqn. 1.

∂
∂ t

(
∑
k

gkρkhk

)
+∇.

(
∑
k

gkρkV⃗khk

)
= ∇.(k∇T ) (1)

Mass averaged enthalpy is defined as h = flhl + fshs, where hs and hl are the respective phase
enthalpies in solid and liquid defined as hs = cpsT and hl = (cps − cpl)TS +hsl + cplT , respectively.

Expanding first term on left hand side of Eqn. 1 we get,

∂
∂ t

(
∑
k

gkρkhk

)
=

∂
∂ t

(glρlhl +gsρshs) =
∂
∂ t

(glρlcplT +glρlhsl +glρlcpsTS +gsρscpsT ) (2)

manipulating and arranging the above time derivative terms by adding and subtracting glρlcpsT
we get,

∂
∂ t

(
∑
k

gkρkhk

)
=

∂
∂ t

(gsρscpsT +glρlcpsT +glρlhsl +glρlcplT −glρlcpsT

− glρlcplTS + glρlcpsTS) (3)

∂
∂ t

(
∑
k

gkρkhk

)
=

∂
∂ t

(ρcpsT )+
∂
∂ t

(glρlhsl)+
∂
∂ t

(
glρl(cpl − cps)(T −Ts)

)
(4)

Expanding second term on left hand side of Eqn. 1 we get,

∇.

(
∑
k

gkρkV⃗khk

)
= ∇.(glρlV⃗lhl +gsρsV⃗shs) (5)

As velocity in solid domain is assumed to be zero, the term gsρsV⃗shs is zero and thus glρlV⃗l = ρV⃗.
Therefore equation becomes,

∇.

(
∑
k

gkρkV⃗khk

)
= ∇.

(
ρV⃗cplT +ρV⃗hsl +ρV⃗cpsTS −ρV⃗cplTS

)
= ∇.(ρV⃗cplT )

+ (hsl + cpsTS − cplTS)∇.(ρV⃗) (6)

∇.

(
∑
k

gkρkV⃗khk

)
= ∇.(ρV⃗cplT )− (hsl + cpsTS − cplTS)

∂ρ
∂ t

(7)

substituting the above expression in Eqn. 1 we get,

∂
∂ t

(ρcpsT )+∇.(ρV⃗cplT ) = ∇.(k∇T )−S (8)
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where s is the source term and is given as follows

S =
∂
∂ t

(glρlhsl)+
∂
∂ t

(
glρl(cpl − cps)(T −TS)

)
− (hsl + cpsTS − cplTS)

∂ρ
∂ t

=
∂
∂ t

(
glρlhsl +glρl(cpl − cps)(T −TS)− (glρl +(1−gl)ρs)(hsl + cpsTS − cplTS)

)
(9)

Simplifying the above expression we get,

S =
∂
∂ t

((gl −1)ρshsl)+
∂
∂ t

(
glρl(cpl − cps)T +(1−gl)ρs(cpl − cps)TS

)
(10)

S =
∂
∂ t

(glρshsl)+
∂
∂ t

(
gl(cpl − cps)(ρlT −ρsTS)

)
(11)

Therefore energy equation is,

∂
∂ t

(ρcpsT )+∇.(ρV⃗cplT ) = ∇.(k∇T )− ∂
∂ t

(glρshsl)−
∂
∂ t

(
gl(cpl − cps)(ρlT −ρsTS)

)
(12)

Further simplifying the equation in line with requirement we get,

∂
∂ t

(ρT )+∇.(ρV⃗T ) = ∇.

(
k

cps
∇T
)
−∇.

[(
cpl

cps
−1
)

ρV⃗T
]
− ∂

∂ t
(glρshsl)

− ∂
∂ t

[
gl

(
cpl

cps
−1
)
(ρlT −ρsTS)

]
(13)

2 ENERGY EQUATION FOR PURE AND ALLOY SYSTEM IN PRESENCE OF FREE SURFACE
Rewriting the Eqn. 9 we get,

S =
∂
∂ t

(glρlhsl)+
∂
∂ t

(
glρl(cpl − cps)(T −TS)

)
− (hsl + cpsTS − cplTS)

∂ρ
∂ t

=
∂
∂ t

(
glρlhsl +glρl(cpl − cps)(T −TS)− (glρl +gsρs)(hsl + cpsTS − cplTS)

)
=

∂
∂ t

(
glρlhsl +glρl(cpl − cps)(T −TS)− (glρl +(1−gl −gv)ρs)(hsl + cpsTS − cplTS)

)
(14)

Simplifying the above expression we get,

S =
∂
∂ t

((gl +gv −1)ρshsl)+
∂
∂ t

(
glρl(cpl − cps)T +(1−gl −gv)ρs(cpl − cps)TS

)
(15)

S =
∂
∂ t

(glρshsl)+
∂
∂ t

(
gl(cpl − cps)(ρlT −ρsTS)

)
+

∂
∂ t

(gvρshsl)−
∂
∂ t

(
gvρs(cpl − cps)TS

)
(16)

Further simplifying the equation in line with requirement we get,

∂
∂ t

(ρcpsT )+∇.(ρV⃗cplT )=∇.(k∇T )− ∂
∂ t

(glρshsl)−
∂
∂ t

(
gl(cpl − cps)(ρlT −ρsTS)

)
−
(
ρshsl −ρs(cpl − cps)TS

) ∂gv

∂ t
(17)

…
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Appendix B: SIMPLER algorithm for solution of continuity
and momentum equations

The fluid flow calculations performed for all the numerical models presented are obtained
by solving continuity and momentum equations using Semi-Implicit Method for Pressure-Linked
Equations Revised(SIMPLER) [Patankar, 2018]. A staggered grid arrangement is followed to solve
the velocity field as shown in figure B1. The staggered grid arrangement eliminates the difficulties
arising by estimating all the variables for the same grid nodes. The velocity flow field is obtained
by solving momentum equations whereas the continuity equation is used to define the pressure
field. To improve the convergence rate of the iterative method, a revised version has been worked
out.

Figure B1 : Control volume for two‐dimensional calculations.

A detailed mathematical formulation is given in [Patankar, 2018] and implies following
sequence of operations:

1. Initially a flow field is assumed for an entire numerical domain.

2. The momentum equation in its simple form is written as,

ue = ûe +de(pP − pE) (1)

where ûe and de are defined as ûe = (∑anbunb +b)/ae and de = Ae/ae respectively. The term Ae

is the area on which pressure difference acts; ae is the coefficient of the discretised velocity
equation; and b is the source term computed at velocity node e.

Calculate coefficients of these momentum equations to obtain û and v̂ by substituting values
of guessed flow field.

3. Once the velocity equation (from step 2) at all the faces are substituted into the discretised
continuity equation, a pressure equation is obtained.

aP pP = ∑anb pnb +b (2)

where b in Eqn. 2 is given as

b =
(ρ0

P −ρP)∆x∆y
∆t

+[(ρ û)w − (ρ û)e]∆y+[(ρ v̂)s − (ρ v̂)n]∆x (3)

127



Evaluate the values of the coefficients of the pressure equation Eqn. 1; aE = ρede∆y, aW =
ρwdw∆y, aN = ρndn∆x, and aS = ρsds∆x. Eqn. 2 is then solved to obtain the pressure field.

4. The obtained pressure field is then treated as guess pressure field p∗ to solve the discretised
momentum equations,

aeu∗e = ∑anbu∗nb +b+(p∗P − p∗E)Ae (4)

anv∗n = ∑anbv∗nb +b+(p∗P − p∗N)An (5)

Solving the equations we get u∗ and v∗

5. Using u∗ and v∗, the pressure correction equation is solved to obtain the values for p′.

aP p′P = ∑anb p′nb +b (6)

where coefficients aP and anb are the same evaluated for pressure equation; and b is defined
as

b =
(ρ0

P −ρP)∆x∆y
∆t

+[(ρu∗)w − (ρu∗)e]∆y+[(ρv∗)s − (ρv∗)n]∆x (7)

6. Using velocity correction formula as given

ue = u∗e +de(p′P − p′E) (8)

vn = v∗n +dn(p′P − p′N) (9)

correct the flow field, but pressure correction is unnecessary.

7. Once flow field is obtained, solve dicreatised equations for other scalar quantities viz.,
temperature T and concentration C, respectively.

8. Repeat the procedure from step 2 until desired convergence is obtained.

…
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Appendix C: Volume of Fluid Method

For the present investigation a volume of fluid (VOF) method is implemented to track the
interface motion between solidifying melt and void section. The method is implemented to obtain
the void fraction gv, by solving the advection equation (Eqn. 1). Since the flow field conserves the
shape and void fraction volume, gv satisfies the advection equation,

∂
∂ t

(gv)+∇.(gvV) = gv (∇.V) (1)

Further to solve the eqn. 1, the operator splitting method is employed that results into two
different equations varying in x and y direction independently [Gerlach et al., 2006; Puckett et al.,
1997].

∂
∂ t

(gv)+
∂
∂x

(gvu) = gv
∂u
∂x

(2)

∂
∂ t

(gv)+
∂
∂y

(gvv) = gv
∂v
∂y

(3)

In order to sustain the conservation of void fraction gv it is required to discretise implicitly
on right hand side of eqn. 2 and explicitly on right hand side of eqn. 3. Use of implicit-explicit
scheme in alternate sweep directions assists in obtaining the second order accuracy. The final
discretised equations are given below with reference to figure C1(a),

(g′v)i, j =

[
(gn

v)i, j +
1

∆x

(
δF i−1/2, j −δF i+1/2, j

)]
/

[
1− ∆t

∆x

(
ui−1/2, j −ui+1/2, j

)]
(4)

(gn+1
v )i, j = (g′v)i, j

[
1+

∆t
∆y

(
vi, j+1/2 − vi, j−1/2

)]
+

1
∆y

(
δF ′

i, j−1/2 −δF ′
i, j+1/2

)
(5)

where δF is the amount of liquid void fraction that is fluxed through the cell face. The superscript
(’) used in eqn. 5 simply denotes the void flux value at intermediate stage after the first sweep in
x-direction.

The important operation is now to calculate the δF for the above discretised eqns. 4 and 5 in
such a manner that the conservation of void fraction is followed and no numerical augmentation
is instigated. This is performed by following the donor-acceptor scheme proposed by Hirt and
Nichols [1981]. Figure C1(b) considers the fluid flow configuration with a positive fluid flow in
x-direction at face i+ 1

2 . The donor-acceptor method estimates the volume flux across node (i+
1
2 , j)

as,

δF i+1/2, j = ∆y
{
MIN

[
(gv)i, jδx,ui+1/2, j(gv)i+1, jδ t+

MAX
(

0.0,ui+1/2, j(1− (gv)i+1, j)δ t − (1− (gv)i, j)δx
)]}

(6)

The MIN feature in eqn. 6 prevents the additional fluxing of fluid from cell (i, j) through face (i+
1
2 , j) whereas the max feature ensures that no more void volume is fluxed out of cell (i, j).
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(a) (b)

Figure C1 : (a) Discretised representation of control volume and (b) Interface configuration for
Hirt‐Nichols VOF model.
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