Solidification and Shrinkage: Analytical and Numerical Model Development with Case Studies

A Thesis submitted by **Aniket Dilip Monde**

in partial fulfillment of the requirements for the award of the degree of **Doctor of Philosophy**

Indian Institute of Technology, Jodhpur Department of Mechanical Engineering December 2020

Declaration

I hereby declare that the work presented in this thesis titled "Solidification and Shrinkage: Analytical and Numerical Model Development with Case Studies" submitted to the Indian Institute of Technology Jodhpur in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy, is a bonafide record of the research work carried out under the supervision of Dr. Prodyut Ranjan Chakraborty. The contents of this thesis in full or in parts, have not been submitted to, and will not be submitted by me to any other Institute or University in India or abroad for the award of any degree or diploma.

> Aniket Dilip Monde P15ME201

Certificate

This is to certify that the thesis titled "Solidification and Shrinkage: Analytical and Numerical Model Development with Case Studies", submitted by Aniket Dilip Monde (P15ME201) to the Indian Institute of Technology Jodhpur for the award of the degree of Doctor of Philosophy, is a bonafide record of the research work done by him under my supervision. To the best of my knowledge, the contents of this report, in full or in parts, have not been submitted to any other Institute or University in India or abroad for the award of any degree or diploma.

Dr. Prodyut Ranjan Chakraborty Ph.D.Thesis Supervisor

Acknowledgment

I thank my Ph.D. Thesis Supervisor, Dr. Prodyut R Chakraborty, for introducing me to the area of solidification and melting and its applications. In the process, I have learnt about the problems associated with multi-phase modelling while incorporating shrinkage phenomena. I am grateful to him for his help and patience as well as for constantly motivating me to give my best in the work that I do. Also, I am indebted to the Members of the Doctoral Committee, Dr. Anand Krishnan Plappally and Dr. Kirankumar Hiremath, for their enthusiastic and continued guidance during the research work. I thank Dr. Laltu Chandra for his valuable reviews to my work during his stay at Jodhpur.

I also thank Dr. Shyamprasad Karagadde to provide experimental facility available within solidification lab at IIT Bombay. A special thanks to Virkeshwar to assist me in carrying out experiments at IIT Bombay and Sagar to make my stay at IIT Bombay wonderful.

My stay at the IIT Jodhpur was a wonderful experience because of these people, Dr. Hanmant Phadatare, Dr. Pravesh Kumar, Dr. Dileep kumar, Dr. Gurveer Singh, Dr. Sumit Mahajan, Shivam Chaturvedi, Rammohan, Ankit, and Vishwa for all the happiness they infused into the non-academic part of the days at IIT Jodhpur. A special thanks to Mr. Rohit Kumar to take care of my health that helped me to be strong and work hard. A special thanks to Miss. Poonam Sahu to tolerate me and my lame jokes and to be foodie as me.

I thank my solidification lab members Amit, Satish, Narender, Manvendra sir, Oaj, Dileep, Manvendra(manu), Deepak, Chanchal sir, Sairaj and Mahaveer for their presence and support.

I also acknowledge the financial support received from the Ministry of New and Renewable Energy (MNRE), Govt. of India sponsored project on Establishment of Centre of Excellence in Solar Thermal Research and Education (project no. MNRE/ECESTRE/20110007), the Department of Science and Technology (DST), India (Grant No. DST/TMD/MES/2K17/44) and the Seed Grant (Grant No. I/SEED/PRC/20150023) at IIT Jodhpur. The partial support from another DST project (Grant No. EMR/2015/001140) for the development of the MicroVec PIV system at IIT Bombay is also acknowledged.

I acknowledge and thanks my father Mr. Dilip Monde, mother Smt. Kamini Monde and uncle Mr. Vijay Monde and Mr. Anand Monde to always motivate me during the Doctoral Program. I also thanks my other family members and pay respects to my grandparents for all their love, sacrifices and blessing. In the end, I thank the biggest to lord Ganesha, who was always there to listen, to care and to help me in every situation.

Aniket Dilip Monde Ph.D. Student

List of Figures

Figure	Title	page
1.1	(a) Casting phenomenas observed during solidification, and (b) Final cast structure and defects after complete solidification [Bhattacharya, 2014].	2
1.2	Solidification length scale [Stefanescu, 2015].	3
1.3	Binary alloy phase diagram.	8
1.4	Distribution of macrosegregation after complete solidification of an ingot [Stefanescu, 2015].	9
2.1	Mathematical model of generic problem.	25
2.2	(a) Comparison of predicted solid–liquid interface (X_i^*) evolution in time by proposed model with numerical model, and (b) spatial variation of ND temperature at $t = 150s$.	29
2.3	Absolute error analysis of ND and dimensional(inset) temperature with space at different time instants.	29
2.4	Spatial variation $ heta_{\phi}$ at different time instants for solidification of: (a) water considering volumetric expansion, and (b) paraffin considering shrinkage.	30
2.5	Solid–liquid interface growth with time for water and paraffin	31
3.1	(a) Effect of alternative $\theta_s^{(1)}$ profiles on cooling curves obtained during solidification of pure Al, (b) comparison of numerically obtained interface velocity with desired constant interface velocity $v_i = 100 \ \mu m/s$ based on which cooling curve is predicted, and (c) comparison between numerically and semi-analytically (proposed model) predicted temperature profiles along the solidifying Al melt sample at different time instants without considering shrinkage effect.	40
3.2	(a) Cooling curves with and without shrinkage effect for Al for constant interface growth velocity of $100 \ \mu m/s$, and initial liquid domain length of 100 mm, and (b) validation of interface velocity obtained from the forward model with different guessed values of ND solid domain length scale (X_i^*) during the onset of solidification.	42
3.3	(a) Comparison between cooling curves $(T_c(0,t))$ obtained from the proposed inverse model and the forward model with constant heat flux boundary condition, and (b) comparison of interface velocities $(v_i(t))$ obtained from the forward models with $T_c(0,t)$ and constant heat flux boundary conditions.	44
3.4	Comparison of predicted cooling curves obtained from the proposed model and thermocouple data (thermocouple data at a distance of 60 mm from the bottom chiller) by Gandin [2000b].	45
4.1	Schematic of the physical domain of interest.	50
4.2	Schematic of experimental setup (a) Front view, (b) Side view and (c) Riser.	54
4.3	Shrinkage induced flow field during solidification of pure Al in bottom cooled configuration without considering buoyancy effect; at times (a) 10 <i>s</i> , (b) 100 <i>s</i> , and (c) 200 <i>s</i>	57

4.4	Shrinkage induced flow field during solidification of pure Al in bottom cooled configuration considering buoyancy effect; at times (a) 10 <i>s</i> , (b) 100 <i>s</i> , and (c) 200 <i>s</i> ; and the (d) temperature profile in y-direction at constant x-locations and time 100 <i>s</i> , (e) near interface temperature deformation in x-direction at constant y-locations and time 100 <i>s</i> , (f) buoyancy force (per unit volume: $\rho_{ref}^{l}g_{a}\beta_{T}(T-T_{ref})$ variation in x-direction at constant y-locations and time 100 <i>s</i> , (f) buoyancy force (per unit volume: $\rho_{ref}^{l}g_{a}\beta_{T}(T-T_{ref})$ variation in x-direction at constant y-locations and time 100 <i>s</i> , (f) buoyancy force (per unit volume: $\rho_{ref}^{l}g_{a}\beta_{T}(T-T_{ref})$ variation in x-direction at constant y-locations and time 100 <i>s</i> and (g) normalised interface deformation $(y_{nd} = (y_{int} - y_{int_{min}})/(y_{int_{max}} - y_{int_{min}}))$ at different times, where y_{int} represents the height of the interface from the bottom surface of the cavity; (t(s), $y_{int_{min}}$ (mm), $y_{int_{max}}$ (mm)): \rightarrow (50, 38.8681, 38.8749)/ (100, 56.7189, 56.8621)/(150, 73.0414, 73.1903)/(200, 87.085, 87.8438).	58
4.5	Schematic of flow physics obtained (a) without accounting for buoyancy effect, and, (b) considering buoyancy effect	59
4.6	Experimentally measured velocity field and mushy-liquid interface location at times: (a) 180 s , (b) 1200 s , and (c) 4500 s ; Numerically obtained velocity field and mushy-liquid interface location at times: (d) 180 s , (e) 1200 s , and (f) 4500 s ; and, Temperature field at times: (g) 180 s , (h) 1200 s , and (i) 4500 s respectively.	60
4.7	Comparison between experimentally and numerically obtained temporal variation of: (a) interface position, and (b) maximum velocity within the melt domain.	61
4.8	Plunge pool orientation obtained from top view at the mushy-liquid interface caused by convection penetration for: (a) Experiment 1 at 5400 <i>s</i> , (b) Experiment 2 at 5400 <i>s</i> (c) Numerically predicted liquid volume fraction on the interface plane at 5520 <i>s</i>	62
4.9	Solidification phenomenon for Cu at times (a) 10 s, (b) 24 s, and (c) 100 s	63
4.10	(a) Schematic representation of velocity vectors along central symmetry line for forward and reverse flow (b) Onset of flow reversal for varying cold boundary temperature T_c on the normalized time scale	63
4.11	Onset of flow reversal for varying initial condition (a) $T_i = 1073 K$, (b) $T_i = 1223 K$, (c) $T_i = 1373 K$ and (d) Mapping of flow reversal for varying initial condition on the normalized time scale	65
4.12	Onset of flow reversal for varying cavity heights: (a) $H_C = 30 \text{ mm}$, (b) $H_C = 50 \text{ mm}$, (c) $H_C = 100 \text{ mm}$ and (d) Mapping of flow reversal for varying casting height on the normalized time scale	66
4.13	Solid-liquid interface deformation in the form of plunge pool adjacent to riser opening to the cavity for (a) $H_c = 30 \text{ mm}$, and (b) $H_c = 50 \text{ mm}$	67
4.14	Comparison between interface positions for different cases at different times. Plots (1), (2) and (3) represents cases with (shrinkage + buoyancy), (only shrinkage), and (no shrinkage + no buoyancy).	67
E 1	Schematic of the physical domain of interest	73
5.1 5.2	Comparison of (a) solute distribution, and (b) temperature distribution profiles along	75
<i>۔</i> ر	vertical direction at t = 180 s obtained from the present model and the existing numerical model [Diao and Tsai, 1993; Chen and Tsai, 1993], and (c) comparison of final solidified solute distribution predicted by present model and obtained from experiment [Kato	
г Э	and Cahoon, 1985].	76 77
5.3	Al (Solvent) - Mg (Solute) phase diagram till eutectic composition	11
5.4	Mesh sensitivity analysis: Solute composition distribution of Mg after 100 <i>s</i> time interval with varying grid and time step resolutions: (<i>a</i>) 60×60 and $\Delta t = 0.25$ <i>s</i> ; (<i>b</i>) 90×90 and $\Delta t = 0.25$ <i>s</i> ; (<i>c</i>) 120×120 and $\Delta t = 0.25$ <i>s</i> ; (<i>d</i>) 150×150 and $\Delta t = 0.25$ <i>s</i> ; (<i>e</i>) 150×150 and $\Delta t = 0.5$ <i>s</i> ; and (<i>f</i>) 150×150 $\Delta t = 0.05$ <i>s</i> . <i>y_{ml}</i> and <i>y_{sm}</i> represent mushy-liquid and	
	solid-mushy interface locations respectively estimated along symmetric axis.	78

5.5	Comparison of temperature profiles after 100 <i>s</i> time interval (<i>a</i>) along symmetry axis for varying grid resolution and $\Delta t = 0.25 s$; (<i>b</i>) along symmetry axis for varying time-step resolution and grid resolution 150×150 ; (<i>c</i>) along horizontal direction at a distance of	
	$y = 80 mm$ from bottom wall for varying grid resolution and $\Delta t = 0.25 s$; and, (d) along horizontal direction at a distance of $y = 80 mm$ from bottom wall for varying time step resolution and grid resolution 150×150 .	79
5.6	Numerically predicted velocity field in the rectangular domain at different time intervals: (a) $t = 20 s (b) t = 60 s , (c) t = 100 s , and (d) t = 200 s . Magnitude of the maximum velocity within the domain is mentioned at the top of the individual figure.$	81
5.7	Numerically predicted liquid fraction and stream function in the rectangular domain at different time intervals: (a) t = $20 s (b) t = 60 s , (c) t = 100 s , and (d) t = 200 s . Dashed lines denotes the mushy-liquid interface$	82
5.8	Numerically predicted solute (Mg) distribution in the rectangular domain at different time intervals: (a) t = 20 s (b) t = 60 s , (c) t = 100 s, and (d) t = 200 s.	82
5.9	Numerically predicted solute (Mg) distribution in the rectangular domain for different inlet openings sizes at $t = 80 s$: (a) 16 mm, (b) 30 mm, (c) 40 mm, (d) 60 mm, (e) 150 mm, and (f) 300 mm.	84
5.10	Numerically predicted velocity field in the rectangular domain for different inlet openings sizes at $t = 80 s$: (a) 16 mm, (b) 30 mm, (c) 40 mm, (d) 60 mm, (e) 150 mm, and (f) 300 mm. Magnitude of the maximum velocity within the domain is mentioned at the top of the individual figure.	85
5.11	Numerically predicted macro-segregation after the completion of the solidification process in the cavity for different inlet openings sizes: (a) 16 mm, (b) 30 mm, (c) 40 mm, (d) 60 mm, (e) 150 mm, (f) 300 mm, and (g) a case without considering the effect of shrinkage $(\rho_s = \rho_l = 2190 \ kg/m^3)$ for 300 mm opening size.	85
5.12	Numerically predicted macro-segregation after the completion of the solidification process in the cavity for varying cold boundary temperatures: (a) $T_c = 700 K$, (b) $T_c = 623 K$, (c) $T_c = 523 K$, and, (d) a case without considering the effect of shrinkage ($\rho_s = \rho_l = 2190 kg/m^3$) for $T_c = 523 K$.	86
5.13	Onset criteria defined by co-existing peaks in horizontal concentration distribution and vertical velocity component distribution near the meta-stable buoyancy field adjacent to the mushy-liquid interface for the case study with 40 <i>mm</i> inlet opening size and 700 <i>K</i> cold boundary.	87
5.14	Numerically predicted liquid fraction and stream function for constant inlet opening size of 40 mm at : (a) $t = 25 s$, $T_c = 523 K$ (b) $t = 29 s$, $T_c = 523 K$ (c) $t = 40 s$, $T_c = 523 K$ (d) $t = 80 s$, $T_c = 523 K$ (e) $t = 49 s$, $T_c = 623 K$ and (f) $t = 62 s$, $T_c = 700 K$. Early onset of solutal instability is observed for significantly low cold temperature corresponding to $T_c = 523 K$.	88
5.15	Comparison of the time evolution of mushy layer thickness in the presence and absence of shrinkage induced flow for varying cold boundary temperature (T_c) , before the solutal instability sets in.	89
5.16	Comparison of the onset time and associated height of mushy-liquid interface of solutal instability in the presence and absence of shrinkage induced flow for varying cold boundary temperature (T_c) . (a) Dimensional representation of onset time and mushy-liquid interface height, and, (b) Normalized representation of onset time and mushy-liquid interface height.	91
5.17	Normalized representation of onset times and associated mushy-liquid interface heights of solutal instability for varying inlet opening size, viz. 10 mm, 14 mm, 20 mm, 30 mm, 40 mm, and 150 mm, for $T_c = 700 \text{ K}$, $T_c = 523 \text{ K}$ and 300 K .	92
5.18	Numerically predicted liquid fraction and stream function at the onset of solutal instability (a) $t_{onset} = 32 \ s$ and $T_c = 523 \ K$; (b) $t_{onset} = 19 \ s$ and $T_c = 300 \ K$ for $10 \ mm$ inlet opening size	92

5.19	Numerically predicted solute (Mg) distribution at the onset of solutal instability (a) $t_{onset} = 32 \ s$ and $T_c = 523 \ K$; (b) $t_{onset} = 19 \ s$ and $T_c = 300 \ K$ for 10 mm inlet opening	
	size	93
5.20	Solute distribution after complete solidification for the case with (a) shrinkage and (b)	02
5.24	no-shrinkage assumption for $10 mm$ inlet opening size and 300 K cold boundary temperature	93 06
5.21	Criterion describing the onset of solutal instability	96
6.1	Schematic of the physical domain of interest during the (a) riser-cavity and (b) mold	
	cavity analysis	100
6.2	Flowchart for the numerical algorithm	101
6.3	Comparison between (a) the numerical results from the proposed model and the numerical results reported by Sun and Garimella [2007] and (b) numerical and experimental results	
	reported by Sun and Garimella [2007].	103
6.4	Flow field, solid front, and free surface evolution at time instants (a) 20 s (b) 100 s and	
	(c) 230 s for T_b =300 K.	104
6.5	Flow field, solid front, and free surface evolution at time instants (a) 20 s (b) 100 s and	
	(c) 310 <i>s</i> for T_b =500 <i>K</i> .	104
6.6	Flow field, solid front, and free surface evolution at time instants (a) 10 s (b) 25 s and	
	(c) 35 <i>s</i> for <i>T_c</i> =300 <i>K</i> .	105
6.7	Comparison of the free surface deformation in the final cast products for varying cavity	
	width (W_C) (a) 200 mm; (b) 140 mm; (c) 80 mm. For all three cases the heat extraction	
	rates from side walls and bottom wall are $q_s^{"}=-2 imes 10^6~W/m^2$ and $q_b^{"}=-10^5~W/m^2$ respective	ely 106
6.8	Comparison of the free surface deformation in the final cast products for same side wall	
	heat flux of $-2 \times 10^6 W/m^2$ and different bottom wall heat fluxes (a) $-4 \times 10^6 W/m^2$;	
	(b) $-2 \times 10^6 W/m^2$; (c) $-1 \times 10^6 W/m^2$; and (d) $-0.1 \times 10^6 W/m^2$.	107
6.9	Flow field, free surface and macro-segregation ($(C-C_0)/C_0$) evolution at time instants	
	(a) 10 s, (b) 20 s (c) after completion of the solidification process	108
B1	Control volume for two-dimensional calculations.	127
C1	(a) Discretised representation of control volume and (b) Interface configuration for	
	Hirt-Nichols VOF model.	130

List of Tables

Table	Title	page
1.1	Length scales and numerical methodology adapted [Stefanescu, 2015]	4
1.2	Summary of literature addressing shrinkage	18
4.1	Material properties for Al [Gandin, 2000b; Dinsdale and Quested, 2004], casting conditions	
	and geometrical data for numerical analysis (refer figure 4.1)	55
4.2	Grid independence study for 2-D numerical analysis at time 10 s; comparison of maximum	
	flow velocity v_{max} and solid-liquid interface location y_{int}	56
4.3	Material properties for coconut oil and casting conditions for numerical analysis	59
4.4	Grid independence study for 3-D numerical analysis at time 180 s	60
4.5	Material properties for Cu along with casting conditions for numerical analysis (refer figure 4.1)	62
5.1	Binary alloy systems used for numerical analysis and their thermo-physical properties	74

Nomenclature

Variables	Description
С	concentration
C_e	eutectic concentration
c_p	specific heat (J/kgK)
D	diffusivity (m^2/s)
d	diameter (m)
F_o	Fourier number
f	mass fraction
g	volume fraction
g_a	gravitational acceleration (m/s^2)
Н	height (m)
h	enthalpy (J/kg)
h _{sl}	latent heat (J/kg)
k	thermal conductivity (W/mK)
k_p	partition coefficient
Ĺ	domain length (<i>m</i>)
l	length (<i>m</i>)
m	mass (kg)
Pr	prandtl number
р	pressure (Pa)
Т	temperature (K or ${}^{o}C$)
t	time (s)
T_c	cold boundary temperature (K or ^{o}C)
T_e	eutectic temperature (K or ${}^{o}C$)
T_L	liquidus temperature (K or ${}^{o}C$)
T_m	melting temperature (K or ${}^{o}C$)
T_S	solidus temperature (K or ^{o}C)
u, v, w	magnitude of velocity in x, y, and z directions, respectively (mm/s)
$\vec{\mathbf{V}}$	velocity vector (m/s)
V	specific volume (m^3/kg)
v _i	crystal growth rate (m/s)
W	width (<i>m</i>)
x, y, z	coordinate axes
x_i	solid-liquid interface

Greek	Description
β	solidification contraction
β_T	thermal expansion coefficient
β_C	solutal expansion coefficient
ε	constant
ρ	density (kg/m^3)
μ	dynamic viscosity (kg/ms)
γ	surface energy (J/m^2)
α	thermal diffusivity (m^2/s)
λ	relaxation factor
Subscripts	Description
С	cavity
<i>i</i> , 0	initial
f	final
int	interface
l	liquid
R	riser
ref	reference value
ν	void
S	solid
Superscripts	Description
k	present time-step
k - 1, 0	previous time-step
n	iteration step

List of Abbreviation

Abbreviation	Full form
2D	Two-Dimensional
3D	Three-Dimensional
S/L	solid-liquid
ALE	arbitrary Lagrangian-Eulerian
CCD	charge coupled device
HRS	high rate solidification
LMC	liquid-metal cooling
LUDS	linear upwind difference scheme
ND	non-dimensional
NEE	non-equilibrium eutectic
РСМ	phase change materials
PFT	pseudo-front tracking
PIV	particle image velocimetry
REV	representative elementary volumes
RMS	root mean square
SIMPLE	semi-implicit method for pressure linked equations
SIMPLER	semi-implicit method for pressure linked equations revised
TDMA	tridiagonal matrix algorithm
TNT	trinitrotoluene
VOF	volume of fluid
VGF	vertical gradient freeze