Contents

		page
Abstr		i
Ackno Conte	owledgements	iii
	f Figures	v vii
	f Tables	xi
	enclature	xiii
List of	f Abbreviations	xv
Chan	ten (. Introduction	
Cnap	oter 1: Introduction Solidification process	1 1
1.1	1.1.1 Solidification length scales	2
1.2	Macroscopic Solidification and Associated Mechanisms	3
	1.2.1 Hydrodynamic Attributes	4 6
	1.2.2 Thermal Attribute	
	1.2.3 Solutal Attribute	7
1.3	Important Outcomes from Macroscopic Solidification Modeling 1.3.1 Macro-shrinkage Defects	8
	1.3.2 Macrosegregation	9 10
1.4	Objectives	10
1.5	Review of literature	11
	1.5.1 Analytical macro-scale modeling of solidification shrinkage	11
	1.5.2 Numerical macro-scale modeling of solidification shrinkage	13
1.6	1.5.3 Experimental investigation of directional solidification Scope of the thesis	17 20
1.0		20
Chap	oter 2: One-dimensional diffusion based solidification model with volumetric expansion	
•	and shrinkage effect: semi-analytical approach	23
2.1	Introduction	23 23
2.2	Mathematical model	24
2.3	Validation and case studies	28 31
2.4	Summary	51
Chap	oter 3: Cooling curve prediction for controlled unidirectional solidification under	
•	influence of shrinkage: semi-analytical approach	33
3.1	Introduction	33 33
3.2	Mathematical Model	34
3.3	Validation and case studies Summary	39 45
3.4	Summary	45
Chap	oter 4: Shrinkage induced flow during directional solidification of pure substance in	
-	a bottom cooled cavity: A study on flow reversal phenomena	47
4.1	Introduction	47
4.2	Mathematical Modeling	49
4.3	Numerical approach and volume fraction updating methodology Experimental setup	51 54
4.4	4.4.1 Experimental procedure	
4.5	Results and Discussion	55 56
	4.5.1 Comparison 2-D shrinkage models with and without considering buoyancy effect	56
	4.5.2 Experimental validation	59
	4.5.3 Case studies	62
4.6	Summary	68
Chap	oter 5: Effect of shrinkage induced flow on solutal instability and macro-segregation	
	during directional solidification of binary alloys	69
5.1	Introduction	69
5.2	Mathematical modeling	71
5.3	Numerical approach and physical domain	73

5.4	Results and discussion 5.4.1 Solidification of Al-4.1 wt.% Cu 5.4.2 Solidification of Al-30 wt.% Mg 5.4.3 Effect of grid size and time-step on numerical simulation 5.4.4 Effect of shrinkage induced flow on freckle formation 5.4.5 Effect of inlet opening size on macro-segregation during freckle formation 5.4.6 Effect of cold boundary temperature on macro-segregation 5.4.7 Scaling analysis Summary	74 76 78 80 81 84 93 97
Chap 6.1 6.2 6.3	 ter 6: Shrinkage defects: Free surface deformation during solidification of Metal Alloys Introduction Mathematical Modelling Result and Discussion 6.3.1 Validation 6.3.2 Solidification of pure aluminium in a rectangular mould with riser 6.3.3 Solidification of pure aluminium in a rectangular mould cavity with open top 6.3.4 Solidification of pure Al-4.1 wt.% Cu alloy in a rectangular mould cavity with open top Summary 	99 99 102 102 103 104 107 108
7.1	 ter 7: Concluding remarks and scope for future work Conclusions 7.1.1 One-dimensional diffusion based solidification model with volumetric expansion and shrinkage effect: semi-analytical approach 7.1.2 Cooling curve prediction for controlled unidirectional solidification under influence of shrinkage: semi-analytical approach 7.1.3 Shrinkage induced flow during directional solidification of pure substance in a bottom cooled cavity: A study on flow reversal phenomena 7.1.4 Effect of shrinkage induced flow on solutal instability and macro-segregation during directional solidification of binary alloys 7.1.5 Shrinkage defects: Free surface deformation during solidification of Metal Alloys Future scope 	111 111 111 111 112 113 114 115 117
References		
Appe 1 2	endix A: Derivation of energy conservation equation as scalar variable temperature Energy equation for pure and alloy system without integrating free surface Energy equation for pure and alloy system in presence of free surface	125 125 126
Appendix B: SIMPLER algorithm for solution of continuity and momentum equations		
Appendix C: Volume of Fluid Method		
Appendix D: List of publications from the present investigation D1 Journal Articles D2 Conferences		131 131 131