
2
One‐dimensional diffusion based solidification model with
volumetric expansion and shrinkage effect: semi‐analytical

approach

2.1 INTRODUCTION
Volumetric expansion and shrinkage due to different densities of solid and liquid phases

are common phenomena during solidification process. Simple analytical models addressing effect
of volumetric expansion/shrinkage during solidification are rarely found. The few existing 1-D
solidification models are valid only for semi-infinite domain with limitations of their application
for finite domain size. The focus of the present chapter is to develop a 1-D semi-analytical
solidification model addressing effects of volumetric expansion/ shrinkage in a finite domain.
The proposed semi-analytical scheme involves finding simultaneous solution of transient 1-D heat
diffusion equations at solid and liquid domain coupled at the interface by Stefan condition.

Mathematical prediction of macroscopic phase change processes have emerged to be
of utmost importance for various engineering applications such as manufacturing processes
involving casting and welding, latent heat based thermal storage, and thermal management of
electronic devices, pharmaceuticals, buildings andmanymore. In general, phase change processes
are transient in nature and involves moving interface. The growth rate of interface depends on
heat transfer rate, convection, and shrinkage or volumetric expansion due to different densities of
solid and liquid phases. 2-D and 3-D numerical models involving influence of convection and
shrinkage on solidification process have been widely studied and reported by several authors
Wang et al. [2005]; Ni and Beckermann [1991]; Voller et al. [1987]; Chiang and Tsai [1992b,a];
Kim and Ro [1993]; Xu and Li [1991]; Magnusson and Arnberg [2001]; Pequet et al. [2002]; Sun
and Garimella [2007]. However, very few of the reported models involves simple diffusion based
analytical approach and those few models are valid only for semi-infinite domain [Worster, 1986;
Rappaz and Dantzig, 2009; Natale et al., 2010]. Worster [1986] developed a 1-D analytical model
for solidification of alloys for semi-infinite domain and captured the growth of mushy layer for
aqueous salt solution. Rappaz and Dantzig [2009] reported an analytical model for solidification
of pure substance in a mould, however the model involves semi-infinite consideration for the
liquid domain. Recently, Chakraborty and Dutta [2003] employed an analytical model involving
quasi-steady state and semi-infinite consideration and studied cyclic melting and freezing of phase
change materials (PCM) used for thermal management of electronic device. More recently, Natale
et al. [2010] proposed explicit analytical solutions for one-dimensional two-phase free boundary
problems considering shrinkage and volumetric expansion. Once again, solution involves semi
infinite formulation for liquid phase, and the report although discussed the theory, it is devoid of
any case study.

Among the reports concerning 2-D and 3-D numerical modeling, Bennon and Incropera
[1987a,b] proposed a numerical scheme based on volume averaged continuum model for
solidification of binary alloys. Voller et al. [1987] and Brent et al. [1988] proposed fixed grid
based enthalpy updating scheme to capture growing solid-liquid interface during solidification.
Recently, Chakraborty [2017] proposed a modification of enthalpy updating scheme originally
proposed by Voller et al. [1987] and Brent et al. [1988] to address solidificationwith large difference
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in specific heats for solid and liquid phases.

Since analytical model involving shrinkage or volumetric expansion has rarely received
research attention [Natale et al., 2010], the present study is aspired toward developing an
semi-analytical model of solidification considering effect of difference in solid-liquid phase
densities, and valid for finite domain. The moving interface due to solid-liquid phase transition is
addressed by conservation of mass and energy at the interface, while the change in total domain
length due to volumetric expansion or shrinkage is tackled by considering overall mass balance for
the combined solid and liquid domain. In order to validate the proposed model for finite domain,
solidification ofwaterwithout considering volumetric expansion (samedensity for solid and liquid
phase) has been studied, and results are compared with those obtained from existing enthalpy
updating based numerical model [Voller et al., 1987; Brent et al., 1988; Chakraborty, 2017]. Once
the validation provided reasonable agreement indicating the robustness of the proposed model,
case studies corresponding to volumetric expansion and shrinkage (different densities for solid
and liquid phases) are described. Results are discussed for two different case studies namely
(i) solidification of water involving volumetric expansion and (ii) solidification of paraffin (P116)
involving shrinkage.

2.2MATHEMATICAL MODEL
The generic problem to be studied for the present chapter is shown in figure 2.1, where

liquid PCM initially at a temperature (Ti) greater than its melting temperature Tm is placed inside
an insulated cavity. As the bottom surface is exposed to a cold temperature (Tc<Tm) andmaintained
at Tc, solidification ensues from the bottom surface. For the entire process all the remaining surfaces
barring the bottom surface are kept insulated. The bottom cooling orientation is particularly chosen
as it ensures complete suppression of free convection in the liquid domain for most of the pure
substances or eutectic solutions. Evenwith bottom cooled orientation, free convectionmight ensue
due to density anomaly of water around 4 oC, or due to shrinkage induced flow [Chiang and
Tsai, 1992b,a]. However, effect of such convection can be considered sufficiently negligible if the
hydraulic diameter of the cavity based on the area perpendicular to the direction of solidification
is much smaller than the length scale along the direction of solidification. In the absence of free
convection or shrinkage induced flow, the heat transfer process can be completely attributed to the
diffusion mechanism.

The heat transfer model involving phase change process belongs to a special class of heat
transfer problems predominantly recognized as “Stefan problem” or moving interface problem.
Two boundaries of the solid domain are defined by the fixed cold surface at the bottom (figure 2.1)
and the moving solid–liquid interface at top. On the other hand the boundaries of the liquid
domain are defined by the moving solid-liquid interface at bottom and the moving end at
the top due to volumetric expansion or shrinkage. Hence, both the boundaries associated
with the liquid domain are moving boundaries. Even though, these problems have extensive
applications, the analytical solutions are available only for semi-infinite domain. In the present
model, the solidification domain is diligently chosen to be finite, and a rigorous step-by-step
semi-analytical approach is developed to address solidification process involving shrinkage or
volumetric expansion.

The model is developed with the following assumptions: (i) phase change process is
driven by 1-D heat diffusion mechanism, (ii) material properties of solid and liquid phases are
different, although individual phase properties does not vary with temperature and considered to
be constants, and (iii) hydraulic diameter corresponding to the cavity cross section is small enough
with respect to the cavity height so that convection due to density anomaly of water and shrinkage
induce flow is negligible. With these assumptions the 1-D heat diffusion equation for each of the
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Figure 2.1 : Mathematical model of generic problem.

phases can be written as:

∂Tϕ

∂ t
= αϕ

∂ 2Tϕ

∂x2 (2.1)

where, αϕ = kϕ/ρϕ cpϕ is thermal diffusivity of PCM, and subscript ϕ = l,s represents liquid and
solid phases respectively. For the solid domain the boundary conditions are: T (0, t) = Tc and
T (xi, t) = Tm while, for liquid domain the boundary conditions are: T (xi, t) = Tm and ∂T/∂x|x=L = 0.
Tϕ=l,s appearing in Eq. 2.1 represents temperature distribution at solid and liquid domains, and xi

represents the solid liquid interface. In order to address the effect of different densities of solid
and liquid (ρs ̸= ρl), mass conservation must be used to identify the interface location xi(t) as well
as the total length of the domain L(t). Since the mass of solid after solidification must be equal to
mass of liquid before solidification (dms = dml), for constant cross-sectional area(A): ρsdxs = ρldxl ,
where differential volume of solid and liquid phases are given by dvϕ = Adxϕ . Tϕ=s,l in solid and
liquid domain are coupled through Stefan condition or the energy balance at the interface. Noting
the fact ρsdxs = ρldxl , the energy balance equation at the interface can be written as:

ρshsl
dxi

dt
= ks

∂Ts

∂x

∣∣∣∣
xi

− kl
∂Tl

∂x

∣∣∣∣
xi

(2.2)

where, hsl denotes latent heat of solidification. In a similar fashion, mass balance for the entire
domain at consecutive time interval provides the formulation for finding the total length L(k) at a
given time instant as follows:

L(k) = L(k−1)+

(
1− ρs

ρl

)(
x(k)i − x(k−1)

i

)
(2.3)

where, superscript (k) and (k−1) represent present and previous time-steps.

Although, the boundary conditions for this problem are well defined, implementing initial
condition, particularly for the solid domain poses a severe limitation. As the cavity is initially
filled with liquid phase, initial condition for the liquid domain is straight forward and can be
considered as T (x,0) = Ti > Tm. However, obtaining the initial condition for solid domain is not so
trivial as solid phase does not even exist at time t = 0. To circumvent the ill posed nature of initial
condition for the solid domain, the semi-infinite solution can still be used for an extremely small
initial time-step during which semi-infinite consideration is valid. The semi-infinite formulation
considers the boundary conditions as being T |x=0 = Tc and T |x→∞ = Ti, and temperature at the
liquid domain asymptotically reaches Ti. When the semi-infinite formulation (Eq. 2.4-2.6) reported
by Rappaz and Dantzig [2009] is used for a very small time-step of ∆t = 10−6 s, the length scale
over which this asymptotic temperature profile is achieved is found out to be of the order of
O∼10−3−10−4 mm, which ismuch smaller than the overall length-scale of the solidification domain
under consideration (O∼10 mm). Hence, validity of semi-infinite formulation during the initiation
of solidification for such small time-step can be considered to be reasonable. A time-step of
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∆t = 10−6 s is considered to allow the growth of the initial solid domain, and temperature profile
of the solid and liquid domains are obtained by the following semi-infinite formulations [Rappaz
and Dantzig, 2009].

Ts(x, t) = Tc +
(Tm −Tc)

er f (ζ )
er f
(

x
2
√

αst

)
0 ⩽ x ⩽ xi (2.4)

Tl(x, t) = Ti −
(Ti −Tm)

er f c
(

ζ
√

αs
αl

)er f c
(

x
2
√

αlt

)
xi ⩽ x ⩽ ∞ (2.5)

xi = 2ζ
√

αst (2.6)

ζ is unknown and is obtained numerically after substituting Eq. 2.4, Eq. 2.5 and Eq. 2.6 in Stefan
equation (Eq. 2.2). Once the Tϕ=s,l are obtained along with xi at time t = 10−6 s from Eq. 2.4-2.6, this
information can be used as initial condition for subsequent time steps.

In order to obtain close form solution in terms of non-dimensional (ND) temperature
profile, Eq. 2.1 is non-dimensionlized considering dimensionless: temperature θϕ = (Tϕ −Tc)/(Ti−
Tc), distance X = x/L0 and time Fo = αlt/L2

0 where, L0 and αl are initial length of the liquid phase
(L0 = L|t=0) and thermal diffusivity corresponding to liquid region.

∂θϕ

∂Fo
= α∗

ϕ
∂ 2θϕ

∂X2 (2.7)

α∗
ϕ appearing in 2.7 is defined as α∗

ϕ = αϕ/αl . Representing ND interface location as X∗
i (Fo) =

xi(Fo)/L0 and non dimensional overall length as L∗(Fo) = L(Fo)/L0, the modified ND initial and
boundary conditions pertaining solid domain for the subsequent time-steps can be written as:
θs(X ,0) = θs(X ,10−6) obtained from Eq. 2.4, and θs(0,Fo) = 0, θs(X∗

i ,Fo) = θm respectively. Similarly
for the liquid domain initial condition for subsequent time-step is θl(X ,0) = θl(X ,10−6) obtained
from Eq. 2.5, θl(X∗

i ,Fo) = θm and ∂θl/∂X |X=L∗ = 0, where, θm = (Tm − Tc)/(Ti − Tc). The initial
interface locationX∗

i |t=0 = xi|t=10−6/L0 can be obtained fromEq. 2.6. TheND formof Stefan equation
(Eq. 2.2) can be expressed as follows.

dX∗
i

dFo
= βsα∗

s
∂θs

∂X

∣∣∣∣
X∗

i

−βlα∗
l

∂θl

∂X

∣∣∣∣
X∗

i

(2.8)

where, βϕ = ρϕ cpϕ (Ti −Tc)/ρshsl . Similarly the overall length updating formulation reduces to the
following non dimensional form.

L∗(k) = L∗(k−1)+

(
1− ρs

ρl

)(
X∗(k)

i −X∗(k−1)
i

)
(2.9)

It is pertinent to mention here that L∗|t=0 = 1 and for shrinkage (ρs > ρl): L∗ will evolve into a value
< 1 as solidification ensues, and reverse is true for volumetric expansion (ρs < ρl) (i.e L∗ > 1 as
solidification proceeds). Also, change in L∗ can be considered to be negligible during evaluation of
initial Tϕ distribution and xi by using semi-infinite formulation (Eq. 2.4-2.6) for an extremely small
time step (∆t = 10−6 s).

A recent study by Chakraborty et al. [2017] on semi-analytical modeling of droplet
evaporation revealed that a time-step based treatment of initial condition is capable of producing
better accuracy in solutions if the problem deals with phase transition involving moving interface
or moving boundary conditions. Following the same line of action, the initial condition for a
particular time-step is adopted from the solution obtained at previous time-step. The system of
equations described by Eq. 2.7-2.9 needs to be solved simultaneously to obtain θϕ profile and X∗

i .
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If we denote the present time step with superscript (k) and previous time step with superscript
(k − 1) then the analytical solution of heat diffusion Eq. 2.7 for solid and liquid domains for the
present time-step (∆F(k)

o ) can be written as:

θ (k)
s =

θmX

X∗(k)
i

+
∞

∑
n=1

exp

(
−α∗

s n2π2∆F(k)
o

X∗(k)2
i

)
sin

(
nπX

X∗(k)
i

)
Cn 0 ⩽ X ⩽ X∗(k)

i (2.10)

θ (k)
l = θm +

∞

∑
n=1

exp

(
−(2n−1)2π2∆F(k)

o

4(L∗(k)−X∗(k)
i )2

)
sin

(
(2n−1)π(X −X∗(k)

i )

2(L∗(k)−X∗(k)
i )

)
Dn

X∗(k)
i ⩽ X ⩽ L∗(k) (2.11)

Where, θ (k)
ϕ=s,l represents non dimensional temperature distribution in the solid and liquid domain

at (k)th time step. Cn and Dn appearing in Eq. 2.10 and Eq. 2.11 depends on ND temperature
distribution obtained by solving at previous time step ∆F(k−1)

o and are defined as follows:

Cn =
2

X∗(k−1)
i

∫ X∗(k−1)
i

0

(
θ (k−1)

s − θmX

X∗(k−1)
i

)
sin

(
nπX

X∗(k−1)
i

)
dx (2.12)

Dn =
2

(L∗(k−1)−X∗(k−1)
i )

∫ L∗(k−1)

X∗(k−1)
i

(
θ (k−1)

l −θm

)
sin

(
(2n−1)π(X −X∗(k−1)

i )

2(L∗(k−1)−X∗(k−1)
i )

)
dx (2.13)

Where, θ (k−1)
ϕ , X∗(k−1)

i and L∗(k−1) are obtained at previous time step ∆F(k−1)
o . Formulation for X∗(k)

i

at current time-step can be obtained by substitution of θ (k)
ϕ (Eq. 2.10, 2.11) in Eq. 2.8.

dX∗
i

dFo
=

βsα∗
s θm

X∗(k)
i

+
βsα∗

s

X∗(k)
i

∞

∑
n=1

(−1)nnπ exp

(
−α∗

s n2π2∆Fo

X∗(k)2
i

)
Cn

−
βlα∗

l

(L∗(k)−X∗(k)
i )

∞

∑
n=1

(2n−1)π
2

exp

(
−(2n−1)2π2∆Fo

4(L∗(k)−X∗(k)
i )2

)
Dn (2.14)

Once the required formulations for θϕ , X∗
i and L∗ are obtained from system of Eq. 2.9-2.14, the

semi-analytical approach can be described by the following steps:

1. Obtain the initial θϕ and X∗
i from semi-infinite solutions given by Eq. 2.4-2.6 for a very small

time step (∆t = 10−6 s is used for the present study). Since the effect of shrinkage or volumetric
expansion are negligible for such small time scale, change of L∗ can be considered to be
negligible for this initial evaluation.

2. Using these initial θϕ and X∗
i obtain Cn and Dn using numerical integration of Eq. 2.12 and

2.13.

3. Obtain X∗
i and L∗ by simultaneously solving Eq. 2.14 and Eq. 2.9 in an iterative manner.

Eq. 2.14 can be solved using iterative Euler’s method described as follows:

X∗(k)
i( j) = X∗(k−1)

i +0.5[ f (k−1)+ f (k)( j−1)]∆F(k)
o (2.15)

Where, subscript ( j) is iteration step, superscript (k) represents time-step. f (k)( j−1) =

f (k)(X∗
i( j−1),L

∗
( j−1)) represents right hand side of Eq. 2.14, and f (k−1) represents the same at

previous time-step. The first guess for f (k)(0) can be considered to be f (k−1) value from the

previous time-step. Updating of L∗(k)
j can be obtained by using Eq. 2.9. Repeat step 3 till

convergence for X∗(k)
i and L∗(k) is obtained (X∗(k)

i( j) −X∗(k)
i( j−1)≤10−6 and L∗(k)

( j) −L∗(k)
( j−1)≤10−6).
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4. Update θ (k)
ϕ using Eq. 2.10- 2.11.

5. For subsequent time-steps Cn and Dn can be calculated by direct substitution of Eq. 2.10
and 2.11 in Eq. 2.12 and 2.13 respectively which provides following simplified recursive
expressions forCn and Dn.

C(k)
n = exp

−α∗
s n2π2∆Fo

X∗(k−1)
i

2

C(k−1)
n (2.16)

D(k)
n = exp

 −(2n−1)2π2∆Fo

4(L∗(k−1)−X∗(k−1)
i )

2

D(k−1)
n (2.17)

6. For subsequent time-intervals follow the described steps in the order 5, 3, and 4 to update
X∗(k)

i , L∗(k), and θ (k)
ϕ .

Steps 1-6 concludes the semi-analytical scheme to obtain θϕ , X∗
i and L∗ during 1-D directional

solidification in finite domain.

2.3 VALIDATION AND CASE STUDIES
To validate this newly developed scheme, solidification of water without considering

volumetric expansion (ie. ρl = ρs = 1000 kg/m3) is considered. The other thermo-physical properties
of water are considered to be: kl = 0.6 W/mK, ks = 2.3 W/mK, cps = 2000 J/kgK, cpl = 4000 J/kgK,
hsl = 335 kJ/kg, and Tm = 273.16 K, while initial temperature, cold side temperature and length of
the domain are chosen to be Ti = 283.16 K, Tc = 263.16 K and L = 20 mm. It is pertinent to mention
here that the overall length of the domain is no longer time independent (ie. L ̸= f (t)) if ρl = ρs, so
that Eq. 2.3 and 2.9 become redundant and L∗ appearing in Eq. 2.10-2.17 can simply be replaced
by L∗ = 1. The results obtained from proposed semi-analytical are compared with the numerical
results obtained from enthalpy updating scheme proposed byVoller et al. [1987]; Brent et al. [1988],
andChakraborty [2017]. The reference numericalmodel involves solving a single volume averaged
energy equation (Eq. 2.18) [Chakraborty, 2017] which is valid for the entire domain consisting of
fully solid phase, fully liquid phase as well as interface where liquid and solid phases coexist.

∂T
∂ t

=
∂
∂x

(
k

ρcps

(
∂T
∂x

))
− hsl

cps

∂ fl

∂ t
−
(

cpl

cps
−1
)

∂
∂ t

[ fl(T −Tm)] (2.18)

In Eq. 2.18, k = flkl +(1− fl)ks represents volume averaged thermal conductivity, and 0 ≤ fl ≤ 1
represents liquid volume fraction. Solution of Eq. 2.18 involves simultaneous evaluation of T and
fl using enthalpy updating scheme proposed by Chakraborty [2017].

Variation of X∗
i with Fo and spatial distribution of θϕ at t = 150s obtained from the proposed

semi-analytical model and reference numerical model [Chakraborty, 2017] are compared and
shown in figure 2.2(a) and (b). The absolute difference between predicted θϕ by these two
models are also plotted along the direction of solidification for different time instants and shown
in figure 2.3. The inset in figure 2.3 also shows the absolute difference between dimensional
temperature (Tϕ ) predicted by these two models. From these comparisons it is evident that
difference between X∗

i obtained by these twomodels is of the order of∼ 100 µm. On the other hand
θϕ agrees within 6.5% of accuracy for these two models, and maximum difference in Tϕ is found
out to be close to ∼ 1 oC. The difference between the predicted results by these two models can be
attributed to their inherent solution approach. While the proposed model addresses the coupling
of temperature distributions in solid and liquid domain through interface by means of Stefan
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(a) (b)

Figure 2.2 : (a) Comparison of predicted solid–liquid interface (X∗
i ) evolution in time by proposedmodel

with numerical model, and (b) spatial variation of ND temperature at t = 150s.

Figure 2.3 : Absolute error analysis of ND and dimensional(inset) temperature with space at different
time instants.

equation (Eq. 2.2, 2.8), the finite volume based numerical model couples between the temperature
(T ) and liquid fraction ( fl) at specific grid points by means of enthalpy updating method. The
enthalpy updatingmethod is essentially a numerical scheme that involves omission of neighboring
temperature effects on enthalpy updating at a particular grid point while using a relaxation factor
to compensate for this omission. Since θϕ in the solid and liquid domain (figure 2.2(b)) are linear
and exponential respectively, even a slight mismatch between the interface location leads to a
comparatively large deviation in temperature profile. However, the difference in results obtained
from these two models are found to be within permissible limit (∼ 100 µm for X∗

i , and 6.5% for θϕ )
and the comparison can be considered to be satisfactory.

The confidence built by reasonable agreement of predictions by these two models
motivated us to apply the proposed semi-analytical model for case studies involving volumetric
expansion and shrinkage (ρs ̸= ρl). The proposed semi-analytical model is verified by two
case-studies relevant to volumetric expansion and shrinkage respectively. For volumetric
expansion, solidification of water has been chosen as the model problem, while for shrinkage,
solidification of paraffin (P116) is considered.

Variation of θϕ , X∗
i , and L∗ with ND time Fo during solidification of water is shown in

figure 2.4(a). The initial temperature Ti, cold side temperature Tc, initial domain length L0 and
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(a) (b)

Figure 2.4 : Spatial variation θϕ at different time instants for solidification of: (a) water considering
volumetric expansion, and (b) paraffin considering shrinkage.

all the thermo-physical properties apart from ρs and ρl are chosen to be same as the validation
problem. ρs = 918 kg/m3, and ρl = 1000 kg/m3 for water have been considered for the present
case study. The temperature gradient at the interface decreases abruptly in the liquid domain
(figure 2.4(a)), which is physically consistent with Stefan equation (Eq. 2.2, 2.8). Also, X∗

i can be
identified by this sudden decrement of gradient in θ . From figure 2.4(a), it is also to be noted that
although the initial value of L∗

0 is unity, L∗ keeps increasing from its initial value as the solidification
process progresses in time denoting the volumetric expansion. After complete solidification is
obtained, the final value of L∗ is found out to be L∗

f = 1.089, which is consistent with the mass
balance ρlL0 = ρsL f where, L0 and L f are initial and final dimensional length of the domain.

Case study 2 involves solidification of paraffin (p116) forwhich ρs > ρl and the solidification
process is characterized by shrinkage. Thermo-physical properties of solid and liquid paraffin
(melting temperature Tm = 329.16 K at atmospheric condition) are as follows: ks = 0.29 W/mK,
ρs = 910 kg/m3, cps = 2400 J/kgK, kl = 0.2 W/mK, ρl = 800 kg/m3, cpl = 2000 J/kgK, and hsl = 195
kJ/kg, while (Ti) and (Tc) are chosen to be Ti = 339.16 K, Tc = 319.16 K and the L0 is considered
to be L0 = 20 mm. Variation of θϕ , X∗

i , and L∗ with ND time Fo during solidification of paraffin is
shown in figure 2.4(b). Similar to the case study with water X∗

i in figure 2.4(b) can be identified by
the location where gradient in θ changes abruptly. In figure 2.4(b), gradual decrement of L∗ with
increasing Fo confirms that the shrinkage phenomena is successfully captured by the model. Once
again L∗

f = 0.8791 confirms the overall mass balance.

Finally, the models with and without considering volume expansion/shrinkage effects
are compared in terms of evolution of solid-liquid interface with time for water and paraffin in
figure 2.5. It is pertinent to mention here that solidification time for water is much lesser than
that of paraffin as ksw >> ksp and klw > kl p, where ksw, klw, ksp, and kl p are solid and liquid phase
thermal conductivity of water and paraffin respectively. From figure 2.5 it is evident that the time
required to obtain complete solidification of water is under-predicted if volumetric expansion
is not considered, on the other hand no-shrinkage consideration significantly over-predicts the
total solidification time for paraffin. The increment of required time duration for complete
solidification of water and decrement of the same for solidification of paraffin predicted by the
propose volumetric expansion/shrinkage model are physically consistent as volume expansion
effectively increases the total length of the domain to be solidified, while shrinkage effectively
reduce the total domain length.

It is evident from the above study; the semi-analytical model is capable enough to solve
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Figure 2.5 : Solid–liquid interface growth with time for water and paraffin

the problems where cooling conditions are known, and corresponding crystal growth rate and
temperature distribution within the domain are to be estimated. However, the controlled crystal
growth during experimentation can only be obtained if prior knowledge of the cooling condition
is obtainable. Thus, the next chapter concerns problems where boundary condition corresponding
to time-dependent crystal growth is approximated.

2.4 SUMMARY
A semi-analytical 1-D transient heat diffusion model is developed to predict the effect

of density difference between solid and liquid phases during solidification of pure substance.
The semi-analytical model is first validated for finite domain without considering volume
expansion/shrinkage effect by comparing the results with those obtained from existing enthalpy
updating based numerical model. Once reasonable agreement from the validation is obtained,
case studies pertaining to volumetric expansion and shrinkage are performed. Case study
corresponding to volumetric expansion is performed by applying the proposed model to
predict temperature, interface and overall domain length during solidification of water, while
solidification of paraffin is chosen for case study associated with shrinkage. The predicted time
duration for complete solidification by proposedmodel considering volumetric expansion (ρs < ρl)
is found out to bemore than that without considering volumetric expansion (ρs = ρl), while reverse
is found to be true for case study involving shrinkage (ρs > ρl), and both the results successfully
captures physically consistency.

…
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