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Cooling curve prediction for controlled unidirectional

solidification under influence of shrinkage: semi‐analytical
approach

3.1 INTRODUCTION
Quality of casting products can be significantly improved by controlling the crystal growth

rate. Both dendritic and equiaxed grain structures depend strongly on crystal growth rate along
the crystallographic direction. Uncontrolled solidification processes may lead to the formation
of porous and columnar material with an extremely non-homogeneous composition distribution.
These undesirable micro-structures can be avoided by adopting an optimal cooling rate (K/s)
during the crystal growth. The present work focuses on determining suitable cooling curves to
obtain desired unidirectional crystal growth rates, by implementing a semi-analyticalmodel. Here,
cooling curve as the time history of temperature evolution at the cold boundary. The proposed
semi-analytical heat transfer model is diffusion driven, and, accounts for shrinkage effect during
solidification.

Directional single crystal growth has many applications related to production of high
frequency turbine blades, solar absorbermaterials, photovoltaicmaterials, andmanymore. Crystal
growth is the fundamental phenomenon that defines the grain structure during solidification
processes. Favourable mechanical properties such as strength and hardness of cast products can
be achieved by controlling grain structure [Gokhale and Patel, 2005; Lopez et al., 2003; Hemanth,
1999]. Attempts have been made to refine micro-structure of castings by adding refiner and
modifier to the melt, in order to improve the mechanical strength of cast products [Liao et al.,
2002]. One of the most important factors that influence the growth of micro-structure is the
cooling rate (K/s) [Zhuang and Langer, 1989; Zhang et al., 2000, 2008]. Zhuang and Langer
[1989] achieved fine equiaxed grain structure of Co-Cr-Mo alloys by employing fast cooling rate
during casting. Zhang et al. [2008] studied a fast cooling technology using a copper mold for
solidification of Al356 alloy. Hosseini et al. [2013] also studied the effect of cooling rate on
mechanical properties, solidification parameters and micro-structures of LM13 alloy. Zhang et al.
[2008] and Hosseini et al. [2013] concluded that higher cooling rate and shorter solidification
time causes further refinement of micro-structures, resulting segregation-free micro-structures
with homogeneous distribution of micro-porosity. Boettinger et al. [1984] reported prevalence of
conventional dendritic or eutectic structures at low crystal growth rate condition. Boettinger et al.
[1984] also suggested the possibility of obtaining micro-segregation-free single phase structures at
higher crystal growth rates. Sarreal andAbbaschian [1986] and Taha et al. [2002] reported existence
of optimal cooling rate for achievingmaximumamount of non-equilibrium eutectic (NEE) phase in
the directionally solidified sample of non-eutectic alloys. Sarreal and Abbaschian [1986] and Taha
et al. [2002] interpreted this phenomenon as a result of back diffusion, dendrite tip under-cooling,
and eutectic temperature depression. Eskin et al. [2005] and Du et al. [2007] studied the effect of
cooling rate on non-eutectic Al-Cu alloy casts, and made similar conclusion on the existence of an
optimumcooling rate. Kasperovich et al. [2008] investigated non-eutectic Al-Cu alloy solidification
under the large range of cooling rates (0.01-20000 K/s) to conclude the similar trend. Kasperovich
et al. [2008] also used 2-D pseudo-front tracking (PFT) model developed by Du and Jacot [2005] to
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predict the eutectic fractions, and validated the numerical results with experimental data.

Uncontrolled cooling rate causes inhomogeneous distribution of grain-size and
micro-porosity which may lead to severe casting defects [Zhang et al., 2008; Hosseini et al.,
2013]. Challenge of determining appropriate cooling curve to ensure desired crystal growth rate
received considerable attention from several research groups [Dorschu, 1968; Mullin and Nỳvlt,
1971; Lukens et al., 1981; Gandin, 2000b,a; Alkemper et al., 1998]. The experimental investigation
by Dorschu [1968] involves controlling the cooling rate during gas metal arc welding process.
Mullin and Nỳvlt [1971] presented a mathematical model to predict cooling curves based on
data measured during crystallization process. Lukens et al. [1981] monitored the cooling rate of
the weld metal by means of infrared technique in order to study micro-structures near the weld
bead. Gandin [2000b,a] described a 1-D heat flow model to study uni-directional solidification of
pure Al and Al-Si alloy. Gandin [2000b,a] determined the interface velocity using experimentally
obtained cooling curves incorporating the shrinkage effect. Alkemper et al. [1998] described a
simple control of solidification parameters like velocity, and temperature gradient of the melt
during an experimental study involving unidirectional solidification of Al-Si alloy.

The procedure of predicting the solid-liquid interface velocities, and the effect of crystal
growth rate on micro-structures are abundant in literature [Gokhale and Patel, 2005; Lopez
et al., 2003; Hemanth, 1999; Liao et al., 2002; Zhuang and Langer, 1989; Zhang et al., 2000, 2008;
Hosseini et al., 2013; Boettinger et al., 1984; Sarreal and Abbaschian, 1986; Taha et al., 2002;
Eskin et al., 2005; Du et al., 2007; Kasperovich et al., 2008; Du and Jacot, 2005; Dorschu, 1968;
Mullin and Nỳvlt, 1971; Lukens et al., 1981; Gandin, 2000b,a; Alkemper et al., 1998]. However,
the prediction of appropriate cooling curve to obtain desired crystal growth rate considering
shrinkage effect is hardly investigated. There exists a visible gap in the research area associated
with theoretical prediction of cooling curve to attain controlled crystal growth. All the existing
solidification models deal with solving forward problems, where solid-liquid interface growth
and temperature evolution of the domain is obtained for prescribed boundary conditions (namely
Dirichlet, Neumann, and, mixed boundary conditions). The present study aims to develop amodel
which is capable of solving inverse problem. The inverse problem deals with determining suitable
temperature evolution at the cold boundary to obtain prescribed unidirectional crystal growth
rate. The proposed model accounts for shrinkage effect, and capable of predicting cooling curve
during complete solidification of amelt sample of finite length. The cooling curve prediction by the
model is validated byusing it as the transient boundary condition for an existing enthalpyupdating
scheme based numerical model. The proposed model is also applied to empirical data reported
in literature, to validate the model against experimental results. All the validations showcased
excellent fit. The proposed model will facilitate controlled unidirectional crystal growth rate by
providing cooling rate (K/s) as an input for the experiments involving directional solidification.

3.2MATHEMATICAL MODEL
Diverse directional solidification processes like Bridgman technique [Bridgman, 1931], high

rate solidification (HRS) [Tingquist and Laux, 1974], liquid-metal cooling (LMC) [Giamei and
Tschinkel, 1976], and vertical gradient freeze (VGF) [Das et al., 2013] methods have been employed
by several research groups to acquire single crystal growth. Bridgman technique [Bridgman, 1931]
pioneers among all the existing directional solidification methods [Bridgman, 1931; Tingquist and
Laux, 1974; Giamei and Tschinkel, 1976; Das et al., 2013], and, most of the directional solidification
studies are associated with this technique.

The Bridgman technique [Bridgman, 1931] involves slow pulling of the liquidmelt through
differentially heated zones. The upper and lower zones are maintained above and below the
melting point temperature of the sample material respectively. A thermal insulation separates
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the upper hot zone from the lower cold zone. The crystal growth rate in Bridgman technique
[Bridgman, 1931] coincides with the pulling speed of the melt through the differentially heated
zones. One can overcome the complications associated with the melt pulling in Bridgman
technique by imposing suitable cooling rate at the two ends of a fixed immobile melt sample
[Gandin, 2000b,a; Alkemper et al., 1998]. The key to control the directional crystal growth rate
from fixed immobile melt sample is finding the appropriate time dependent heat flux conditions at
the melt boundaries. For directional solidification of pure metal or eutectic alloy, the temperature
of the crystal growth front (solid-liquid interface) always remains at freezing point (Tm for pure
metal) or eutectic temperature (Te for eutectic alloys). The evolution of the length of solid phase
(distance between the solid-liquid interface and the cold end: Ls(t) =

∫ t
0 vidt) can be easily obtained

from the desired crystal growth rate (vi). Therefore, the time dependent heat flux q′′c (t) to control
the crystal growth rate essentially depends on the temperature evolution at the cold end (Since,
q′′c (t) = ks[Tm −Tc(0, t)]/Ls(t)). So, we can conclude, that obtaining controlled single crystal growth
from an immobile melt sample of fixed length akin to Bridgman method has a strong dependence
on the successful prediction of cooling curve: Tc(0, t).

The domain of interest for present problem under consideration is same as shown in
figure 2.1. Once again the domain addresses directional solidification of metals with shrinkage.
The bottom cooling configuration and the high slenderness ratio (l/d) of the cavity ensures
complete suppression of free convection thus, heat transfer is purely diffusion driven. Similar
assumptions for the model were considered as discussed for the previous problem. The present
study deals with predicting the suitable transient cold temperature boundary condition (T (0, t) =
Tc(0, t)) for a prescribed growth rate of interface dxi/dt = vi

desired or f (t).

A domain filled with liquid melt maintained at a temperature Ti above the melting point
(Tm) is the initial condition. The cooling ensues by reducing temperature of the bottom end of the
cavity at a constant rate (∂Tc/∂ t =Cr) until the bottom end reaches melting temperature (Tm). The
cold boundary temperature varies as Tc(0, t) = Ti −Crt (till Tc(0, t) = Tm), which is a time dependent
Dirichlet type boundary condition. For the present study, a time step based approach with time
averaged constant temperature boundary condition is used for each time step (∆t) [Chakraborty
et al., 2017]. The time averaged temperature of cold boundary T (k)

c during a given time step∆t(k) can
be shown to be T (k)

c = T (k−1)
c −Cr(∆t(k)+∆t(k−1))/2. With this time averaged temperature boundary

condition, temperature distribution in the liquid domain prior to onset of solidification can be
expressed after (k)th time step as,

T (k)
l = T (k)

c +
∞

∑
n=1

exp

(
−αl(2n−1)2π2∆t(k)

4L2
0

)
sin
(
(2n−1)πx

2L0

)
G(k)

n 0 ⩽ x ⩽ L0 (3.1)

Gn appearing in Eq. 3.1 is calculated from orthogonality condition. Gn depends on temperature
distribution obtained at the previous time step ∆t(k−1) and is expressed as follows,

G(k)
n =

2Cr(∆t(k)+∆t(k−1))

(2n−1)π
+ exp

(
−αl(2n−1)2π2∆t(k−1)

4L2
0

)
G(k−1)

n (3.2)

Where, G(1)
n = 2Cr∆t(1)/(2n−1)π , and L0 is the initial length of the liquid domain before the onset

of solidification.

Once, Tc(0, t) = Tm, a ND approach is implemented for the further derivation of
solidificationmodel. The governing Eq. 2.1-2.3 are obtained in dimensionless form consideringND
temperature θϕ = (Ti −Tϕ )/(Ti −Tc(0, t)), ND distance X = x/L0 and ND time Fo = αlt/L2

0 (Fourier
Number), and are given as follows.

∂θϕ

∂Fo
= α∗

ϕ
∂ 2θϕ

∂X2 (3.3)
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dX∗
i

dFo
=−βsα∗

s

θm

∂θs

∂X

∣∣∣∣
X∗

i

+
βlα∗

l
θm

∂θl

∂X

∣∣∣∣
X∗

i

(3.4)

L∗(k) = L∗(k−1)+

(
1− ρs

ρl

)(
X∗(k)

i −X∗(k−1)
i

)
(3.5)

If the ND interface location is defined as X∗
i (Fo) = xi(t)/L0 and the ND overall length is defined

as L∗(Fo) = L(t)/L0, then the modified boundary conditions pertaining to solid domain for the
subsequent time-steps can be written as: θs(0,Fo) = 1 and θs(X∗

i ,Fo) = θm(Fo). Where, θm(Fo) is
defined as (Ti − Tm)/(Ti − Tc(0, t)). Similarly for the liquid domain, the boundary conditions are
defined as θl(X∗

i ,Fo) = θm(Fo) and ∂θl/∂X |X=L∗ = 0.

βϕ=s,l and αϕ=s,l appearing in dimensionless Stefan condition (Eq. 3.4) at the interface are
defined as: βϕ = ρϕ cpϕ (Ti −Tm)/ρshsl and α∗

ϕ = αϕ/αl . For prescribed crystal growth rate, dX∗
i /dFo

appearing in Eq. 3.4 is a constant value.

Time step based treatment of initial condition proposed by Chakraborty et al. [2017] is
adopted to solve Eq. 3.3-3.5. The solution of the previous time-step is used as the initial condition
for the current time-step. The system of equations described by Eq. 3.3-3.5 needs to be solved
simultaneously to obtain θϕ profile. The analytical solution of heat diffusion Eq. 3.3 for solid and
liquid domains for the present ND time-step (∆F(k)

o ) can be written as:

θ (k)
s = 1+

(θ (k)
m −1)X

X∗(k)
i

+
∞

∑
n=1

exp

(
−α∗

s n2π2∆F(k)
o

X∗(k)2
i

)
sin

(
nπX

X∗(k)
i

)
C(k)

n 0 ⩽ X ⩽ X∗(k)
i (3.6)

θ (k)
l = θ (k)

m +
∞

∑
n=1

exp

−(2n−1)2π2∆F(k)
o

4
(

L∗(k)−X∗(k)
i

)2

sin

(2n−1)π
(

X −X∗(k)
i

)
2
(

L∗(k)−X∗(k)
i

)
D(k)

n

X∗(k)
i ⩽ X ⩽ L∗(k) (3.7)

Where, θ (k)
ϕ=s,l represents ND temperature distribution in the solid and liquid domain at (k)th time

step. During each time steps, the temperature at the cold boundary is considered to be having a
time averaged constant value over the duration of the corresponding time-step. This time averaged
temperature keeps decreasing for each successive time steps. The ND interface location (X∗(k)

i )
appearing in Eq. 3.6-Eq. 3.7, is specified by the desired crystal growth rate or interface velocity. Cn

and Dn appearing in Eq. 3.6 and Eq. 3.7 arise from the orthogonality condition. They depend on
ND temperature distributions in solid and liquid domain, obtained at the previous ND time step
∆F(k−1)

o .

C(k)
n =

2

X∗(k−1)
i

∫ X∗(k−1)
i

0

θ (k−1)
s −

(
θ (k−1)

m −1
)

X

X∗(k−1)
i

−1

sin

(
nπX

X∗(k−1)
i

)
dX (3.8)

D(k)
n =

2(
L∗(k−1)−X∗(k−1)

i

) ∫ L∗(k−1)

X∗(k−1)
i

(
θ (k−1)

l −θ (k−1)
m

)
sin

(2n−1)π
(

X −X∗(k−1)
i

)
2
(

L∗(k−1)−X∗(k−1)
i

)
dX (3.9)

θ (k−1)
ϕ , X∗(k−1)

i and L∗(k−1) in Eq. 3.8 and Eq. 3.9 are obtained from the previousND time step∆F(k−1)
o .

The temperature distributions in the solid and liquid domains have been completely
defined by Eq. 3.6-3.9. Finding the initial temperature distributions in the liquid region is trivial
during onset of solidification. However, defining initial temperature distribution in the solid
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region during the onset of solidification is challenging, as solid domain is yet to be evolved at
this stage. By considering a very small time step (∆t ∼ 1 µs), a very small value of ND interface
location (X∗

i → 0) is attainable. All the exponential terms appearing in Eq. 3.6 tends to be zero
as limX∗

i →0, hence, θs → 1 + (θm − 1)X/X∗
i . Therefore, for the first time-step during which the

onset of solidification is considered, the temperature distribution simply becomes θ (1)
s ≈ 1+(θ (1)

m −
1)X/X∗(1)

i , provided the chosen time step is extremely small (∆t ≈ 1 µs). Thus, estimation of C(1)
n

becomes redundant.

Another possible way of selecting θ (1)
s after a very small time instant (∆t ∼ 1 µs) during

the onset of solidification can be derived through the isothermal condition of the interface during
liquid-solid phase transformation. Solid domain is extremely thin (X∗

i → 0) during the onset of
solidification. Therefore, the entire solid region except the cold boundary may be considered to
be at freezing point (Tm) during the onset of solidification. The cold boundary however, is at a
temperature Tc(0, t) < Tm during this onset. From this definition θ (1)

s (X) can be considered to be
a step function, having a singularity at X = 0. The value of θ (1)

s is unity at X = 0, and, it is θm

everywhere else (0 < X ≤ X∗(1)
i ). Once again, the calculation of C(1)

n is redundant. Based on the
above discussions, two alternative options of ND temperature distribution can be obtained during
the onset of solidification. For a very small time-step (∆t ∼ 1 µs), two alternative θ (1)

s profiles are
expressed as follows.

θ (1)
s = 1+(θ (1)

m −1)X/X∗(1)
i (3.10)

and,

θ (1)
s =

{
1 X = 0

θ (1)
m 0 < X ≤ X∗(1)

i
(3.11)

The effect of these two alternatives initial solid temperature profiles on the final outcome of
predicted cooling curve will be expounded further in the subsequent section.

The temperature distribution in the liquid domain θl can be calculated by using Eq. 3.7, 3.9,
and 3.1. Substitution of θs and θl from Eq. 3.6 and 3.7 in Eq. 3.4 leads to the following expression.

dX∗
i

dFo
=

βsα∗
s (1−θ (k)

m )

θ (k)
m X∗(k)

i

− βsα∗
s

θ (k)
m X∗(k)

i

∞

∑
n=1

(−1)nnπ exp

(
−α∗

s n2π2∆F(k)
o

X∗(k)2
i

)
C(k)

n +

βlα∗
l

θ (k)
m (L∗(k)−X∗(k)

i )

∞

∑
n=1

(2n−1)π
2

exp

(
−(2n−1)2π2∆F(k)

o

4(L∗(k)−X∗(k)
i )2

)
D(k)

n (3.12)

In the above formulation, θm(Fo) is the only unknown. The interface growth rate (dX∗
i /dFo) is

known in terms of desired crystal growth rate. Since, θm(Fo) is defined as (Ti−Tm)/(Ti−Tc(0, t)). By
finding the solution for θm(Fo) from Eq. 3.12, we can evaluate Tc(0, t). In order to solve unknown
θm(Fo) from Eq. 3.12, a simple semi-analytical scheme is applied as described in following steps.

1. Solidification starts, as Tc(0, t) reaches below the melting temperature Tm and thus, θm=1 at
Fo = 0 during the onset of solidification.

2. Consider a very small time-step (∆t ∼ 1 µs). Approximate temperature distribution in the
solid from Eq. 3.10 or Eq. 3.11.

3. Obtain D(1)
n from Eq. 3.9 by calculating θ 0

l from Eq. 3.1.
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4. dX∗
i /dFo appearing on the left hand side of Eq. 3.12 is known in terms of prescribed crystal

growth rate or interface velocity U∗
i . Therefore, ND interface location (X∗(k)

i ) can be easily
comprehended as,

X∗(k)
i = X∗(k−1)

i +U∗
i ∆F(k)

o (3.13)

After the very first time-step during the onset of solidification, the interface location must be
X∗(1)

i =U∗
i ∆F(1)

o , as the initial interface location is X∗(0)
i = 0.

5. Evaluate L∗(1) from Eq. 3.5.

6. All the parameters appearing in Eq. 3.12 are known except θ (1)
m . Replacing dX∗

i /dFo withU∗
i

and consideringC(1)
n = 0, two alternative formulations for θ (1)

m can be obtained based on two
alternative θ (1)

s profiles (Eq. 3.10 and Eq. 3.11). The two alternative formulations to evaluate
θ (1)

m are as follows:

θ (1)
m =

X∗(1)
i(

U∗
i X∗(1)

i +βsα∗
s
)[βsα∗

s

X∗(1)
i

+
βlα∗

l

(L∗(1)−X∗(1)
i )

∞

∑
n=1

(2n−1)π
2

exp

(
−(2n−1)2π2∆F(1)

o

4(L∗(1)−X∗(1)
i )2

)
D(1)

n

]
(3.14)

and,

θ (1)
m =

βlα∗
l

U∗
i (L∗(1)−X∗(1)

i )

∞

∑
n=1

(2n−1)π
2

exp

(
−(2n−1)2π2∆F(1)

o

4(L∗(1)−X∗(1)
i )2

)
D(1)

n (3.15)

7. Once θ (1)
m is obtained fromEq. 3.14 or Eq. 3.15, calculate T (1)

c (t) from the definition of θm. Also,
calculate ND temperature distribution in the solid domain (θ (1)

s ) and liquid domains θ (1)
l by

substituting θ (1)
m in Eq. 3.10 or 3.11 and Eq. 3.7 respectively.

8. The second time-step need not necessarily be a small time-step. Calculation of C(2)
n differs

in a suggestive manner, depending upon which of the solid domain temperature profile is
chosen (among Eq.3.10 and Eq.3.11) for the first time step. Substitution of Eq. 3.10 in Eq. 3.8
consistently produces C(2)

n = 0, and maintains the unambiguous linear profile in the solid
domain (θ (2)

s = 1+(θ (2)
m −1)X/X∗(2)

i ). Choosing θ (1)
s profile fromEq. 3.10 for the first time-step,

perpetually renders C(k)
n = 0 for all subsequent time-steps. Therefore, a linear temperature

distribution is always maintained in the solid domain till the entire sample is solidified.

On the other hand, substitution of Eq. 3.11 in Eq. 3.8 will require numerical integration of the
right hand side of Eq. 3.8 in order to obtainC(2)

n , as θ (1)
s profile is a step function (Eq. 3.11). As

far as the liquid domain is concerned, the substitution of θ (1)
l profile in Eq. 3.9 will produce

the following recursive formulation for D(2)
n .

D(2)
n = exp

−(2n−1)2π2∆F(1)
o

4(L∗(1)−X∗(1)
i )

2

D(1)
n (3.16)

9. Obtain X∗(2)
i and L∗(2) from Eq. 3.13 and Eq. 3.5 respectively. Substitute C(2)

n , D(2)
n , X∗(2)

i , L∗(2)

and dX∗
i /dFo =U∗

i in Eq. 3.12 to calculate θ (2)
m and hence, T (2)

c .
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10. For subsequent time-steps C(k)
n and D(k)

n can be calculated by direct substitution of Eq. 3.6
and 3.7 in Eq. 3.8 and 3.9 respectively. The substitutions leads to the following simplified
recursive formulations forC(k)

n and D(k)
n .

C(k)
n =

 0 θ (1)
s = 1+(θ (1)

m −1)X/X∗(1)
i

exp
(

−α∗
s n2π2∆F(k−1)

o

X∗(k−1)
i

2

)
C(k−1)

n θ (1)
s = θ (1)

m
(3.17)

D(k)
n = exp

 −(2n−1)2π2∆F(k−1)
o

4
(

L∗(k−1)−X∗(k−1)
i

)2

D(k−1)
n (3.18)

11. ObtainC(k)
n , D(k)

n , X∗(k)
i , L∗(k) from Eq. 3.17, 3.18, 3.13, and 3.5 respectively and, substitute them

along with dX∗
i /dFo =U∗

i in Eq. 3.12 to evaluate θ (k)
m and hence, T (k)

c . Repeat steps 10 and 11
till the entire domain is solidified.

Steps 1-11 concludes the semi-analytical scheme to obtain the cooling curve Tc(0, t), and
temperature profile Tϕ (x, t) during unidirectional solidification of a melt sample of finite length.

The incorporation of the shrinkage effect in the proposed model is limited to the bulk
volume change (macroscopic) incurred by the reduction in the overall length of the domain due to
solidification. However, from the micro-structure point of view, predominant effect of shrinkage
is the formation of micro-porosity. For the present study, shrinkage induced micro-porosity has
been neglected, which can be considered as a shortcoming of the proposed model.

3.3 VALIDATION AND CASE STUDIES
The semi-analytical model developed in the previous section postulates two alternative

ND temperature profiles (θ (1)
s ) within the solid region during the onset of solidification (Eq. 3.10

and Eq. 3.11). The influence of these two alternative temperature profiles is studied by comparing
the predicted cooling curves obtained from these two formulations (Eq. 3.10 and Eq. 3.11). Cooling
curves are predicted for unidirectional solidification of pure Al with prescribed crystal growth rate
of vi = dxi/dt = 100 µm/s. Shrinkage effect has been neglected for this preliminary analysis of the
model. The thermo-physical properties of pure Al are considered to be: kl = 90 W/mK, ks = 350
W/mK, cps = 875 J/kgK, cpl = 1250 J/kgK, hsl = 398 kJ/kg, and Tm = 933.04 K. Initial temperature of
the molten Al is considered to be Ti = 939.84 K. Length of the domain is taken to be L(t) = 100 mm.
The cooling rate till the cold boundary reaches melting point (Tm) is chosen to beCr = 0.02 K/s. The
temperature profile in the liquid domain is obtained using Eq. 3.1 till cold boundary temperature
(Tl(0, t)) reaches melting temperature Tm. Once, cold boundary temperature reaches melting point
(Tl(0, t) = Tm), steps 1-11 of the semi-analytical scheme are followed without implementing the
shrinkage effect. Exclusion of shrinkage effect renders Eq. 2.3 and 3.5 to be redundant. L∗ can be
replaced by unity in Eq. 3.7, Eq. 3.9, Eq. 3.12, Eq. 3.14-3.16 and Eq. 3.18. The first time step during
the onset of solidification has been considered to be 1 µs, and for the subsequent calculation, time
step is chosen to be ∆t = 1 s. During the implementation of the scheme, the first cooling curve is
predicted by using θ (1)

s profile from Eq. 3.10. The second cooling curve is obtained by considering
θ (1)

s profile from Eq. 3.11.

Figure 3.1(a) shows the comparison of cooling curve obtained from these two alternative
profile assumptions of (θ (1)

s ). From figure 3.1(a), one can observe that both the profiles (Eq. 3.10
and Eq. 3.11) provide exactly identical cooling curves for the specified interface velocity. Therefore,
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(a) (b)

(c)

Figure 3.1 : (a) Effect of alternative θ (1)
s profiles on cooling curves obtained during solidification

of pure Al, (b) comparison of numerically obtained interface velocity with desired
constant interface velocity vi = 100 µm/s based on which cooling curve is predicted, and
(c) comparison between numerically and semi‐analytically (proposed model) predicted
temperature profiles along the solidifying Al melt sample at different time instants without
considering shrinkage effect.

either of these two profiles can be considered as the initial temperature distributionwithin the solid
phase during the onset of solidification. The exactly identical outcome from these two different
profiles can be attributed to the extremely small first time step (1 µs). However, from the point
of view of computational efforts, θ (1)

s profile given by Eq. 3.10 is much more advantageous as
compared to the θ (1)

s profile given by Eq. 3.11. Profile assumption by Eq. 3.10 renders calculation
of C(k)

n (Eq. 3.8) to be perpetually redundant. Eq. 3.6 with C(k)
n = 0 appears to be time independent.

However, a close look at Eq. 3.6 reveals both θ (k)
m and X∗(k)

i are time dependent, hence θ (k)
s is bound

to be time dependent.

The proposed semi-analytical model is validated in four different manners. The first
validation involves studying unidirectional solidification of pure Al with constant crystal growth
rate. Shrinkage effect is not considered (i.e. ρl = ρs = 2250 kg/m3) for this first case study. The
second, third and fourth validations (all validations are associated with solidification of pure Al)
aim at testing the reliability of the cooling curve prediction from the model, when shrinkage effect
is considered.
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The second validation involves solving inverse (evaluation of cooling curve for specified
interface growth rate) and forward (evaluation of interface growth rate from the cooling curve
obtained by solving of the inverse problem) problems associated with unidirectional constant
crystal growth rate. The third validation aims at addressing time-varying crystal growth rate by
solving inverse and forward problems. The fourth and final validation involves comparison of
predicted cooling curve from the proposed model with experimentally measured cooling curve
reported by Gandin [2000b]. The reported crystal growth rate of pure Al by Gandin [2000b] was
found out to be time dependent.

The first validation involves the following steps: (i) cooling curve is obtained (figure 3.1(a))
from the proposed model for a predefined constant unidirectional crystal growth rate of 100 µm/s.
(ii) Crystal growth rate and temperature distribution is re-evaluated during solidification of the
same sample from another well-established enthalpy updating scheme based numerical model
[Voller et al., 1987; Brent et al., 1988; Chakraborty, 2017] with Tc(0, t) as boundary condition. (iv)
The re-evaluated crystal growth rate from the numerical model [Voller et al., 1987; Brent et al.,
1988; Chakraborty, 2017] is compared with the input crystal growth rate to the proposed model
(for predicting Tc(0, t)). If the predicted Tc(0, t) from the proposed model is correct, then these
two growth rates must closely match. Similarly, the temperature distributions obtained from the
inverse (obtaining cooling curve for prescribed crystal growth rate) and forward (obtaining crystal
growth rate from prescribed cooling curve) problems must be identical.

The proposed semi-analytical model is self-sufficient to solve both inverse and forward
problems, and is capable to attain self-validate. However, in order to obtain wider acceptability
of the proposed model, the forward problem is solved by using an existing finite volume based
numerical model involving enthalpy updating scheme [Voller et al., 1987; Brent et al., 1988;
Chakraborty, 2017]. The enthalpy updating scheme based numerical model [Voller et al., 1987;
Brent et al., 1988; Chakraborty, 2017] under consideration is inadequate to address shrinkage effect.
Therefore, cooling curve obtained from the present model is validated for its legitimacy, without
considering the effect of shrinkage. The numerical model is based on a volume averaged energy
equation (Eq. 2.18) [Chakraborty, 2017] and is capable of solving transient temperature distribution
and solid-liquid interface location during the unidirectional solidification of a melt sample.

Figure 3.1(b) shows time evolution of interface velocity obtained by solving numerical
model (Eq. 2.18) proposed by Chakraborty [2017]. Cooling curve (Tc(0, t)) shown in figure 3.1(a)
is used as the cold boundary condition to solve Eq. 2.18. The cooling curve shown in figure 3.1(a),
have two distinct trends before and after the onset of solidification. The first part of cooling curve
before the onset of solidification is define by Tc(0, t) = Ti −Crt, with Ti = 939.84 K and Cr = 0.02
K/s. The second part of predicted cooling curve (figure 3.1(a)) is approximated by Gaussian fitting
(with maximum RMS error O ∼ 10−5). The Gaussian fitting is given as follows,

Tc(0, t) =
5

∑
n=1

anexp

((
−(t −bn)

cn

)2
)

(3.19)

Where, a1 = 966.5, a2 = 30.62, a3 = −1.277, a4 = 0.5712, a5 = 0.0004776, b1 = −2224, b2 = 2372,
b3 = 148.4, b4 = 236.7, b5 = 854.1, c1 = 11720, c2 = 1391, c3 = 372.8, c4 = 295.2, c5 = 88.84. From
figure 3.1(b), it can be observed that the solid-liquid interface velocity (vi) obtained from the
numerical model [Voller et al., 1987; Brent et al., 1988; Chakraborty, 2017], closely approximates to
100 µm/s with a maximum error of ±1.3 µm/s. Therefore, the validation of the cooling curve can
be considered to be satisfactory. Figure 3.1(c) shows comparison of the temperature distribution
along the solidifying melt sample, obtained at different time instants from the proposed model
and the referred numerical model [Voller et al., 1987; Brent et al., 1988; Chakraborty, 2017].
Good agreement between the temperature profiles obtained from these two models can be clearly
observed.
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(a) (b)

Figure 3.2 : (a) Cooling curves with and without shrinkage effect for Al for constant interface growth
velocity of 100 µm/s, and initial liquid domain length of 100 mm, and (b) validation of
interface velocity obtained from the forward model with different guessed values of ND
solid domain length scale (X∗

i ) during the onset of solidification.

The second case study involves predicting the cooling curve for intended constant interface
growth rate of 100 µm/s, when shrinkage effect is taken into account. The second validation is
obtained through comparing the inputs and solutions of the inverse and the forward problems.
Densities of solid and liquid phases of pure Al is considered to be ρs = 2550 kg/m3 and ρl =
2250 kg/m3. Rest of the thermophysical properties, initial length of the melt sample, and initial
temperature of the domain are kept unchanged. The constant cooling rate of the bottom boundary
prior to the onset of solidification is maintained atCr = 0.02 K/s.

In figure 3.2(a), the solid line shows the cooling curve obtained during solidification of
pure Al with prescribed growth rate of 100 µm/s, when shrinkage effect is considered. This
cooling curve is obtained from the proposed inverse model considering shrinkage effect. The
cooling curve shown by dashed line in figure 3.2(a) corresponds to the no-shrinkage condition.
It is evident from figure 3.2(a), that complete solidification of the domain is achieved faster, when
shrinkage effect is considered. This result is physically consistent. The cooling curve addressing
shrinkage effect (solid line in figure 3.2(a)) is used as the boundary condition for the forwardmodel
to evaluate the time evolution of crystal growth rate. Figure 3.2(b) shows the time evolution of
crystal growth rate. The agreement between the predicted interface velocity and intended interface
velocity is found out to be excellent (error limit is within 1 %). For the forward problem, length
scale of the solid domain at the onset of solidification is unknown. One of the obvious choice
of this initial length scale can be directly calculated based on intended crystal growth rate (for
∆t(1) = 0.05 s, xi = ∆t(1)vi = 5 µm and X∗

i = 0.00005). However, to check the robustness of the
method, three different values of X∗

i (initial non dimensional length of solid region) are assumed
during onset of solidification. From figure 3.2(b) it can be observed that all these initial length
assumptions converge to the intended interface velocity with 99 % accuracy. The small error in
forward calculation of the interface growth rate can be attributed to the time averaged treatment
of cold boundary temperature for individual time steps, and, numerical errors associated with the
implementation of the semi-analytical scheme.

Experimental study of unidirectional solidification inherently accounts for the shrinkage
effect. The models derived from the theory may, or, may not address shrinkage effect. The
predicted cooling curves (Tc(0, t)) in figure 3.2(a) have different gradients on the basis of shrinkage
and no shrinkage assumptions in the model. For both of these assumptions, we have considered
the same crystal growth rate of 100 µm/s, and same initial melt sample length of 100 mm. For
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pure Al the shrinkage coefficient is defined as ρl/ρs ≈ 0.882. Due to shrinkage, 100 mm long melt
sample should ideally reduce to 88.2 mm solid, once the complete solidification of the sample
is achieved. With a crystal growth rate of 100 µm/s, the complete solidification of 100 mm melt
sample, after onset of solidification, should be achieved during a time duration of 882 s (solid
line in figure. 3.2(a)) whereas, if we ignore shrinkage, 100 mm long melt sample will turn into
100 mm long solid after solidification during a period of 1000 s (dashed line in figure 3.2(a)).
Therefore, cooling rate (K/s) obtained from the shrinkage model is larger than the cooling rate
predicted by no-shrinkage model. Usage of the cooling curve (Tc(0, t)) obtained from no-shrinkage
model to a real experiment will cause a slower crystal growth rate as compared to the desired
value. If we do not account for the shrinkage effect in the model to predict Tc(0, t), the mismatch in
experimentally obtained directional crystal growth rate from the desired valuewill keep increasing
with decreasing ρl/ρs value.

The third case study is associated with prediction of cooling curve, when the desired
unidirectional crystal growth rate varies with time (vi = f (t)). The accuracy of the predicted Tc(0, t)
from the proposed model is scrutinized for time varying crystal growth rate condition. To begin
with, a time varying crystal growth rate is obtained in the following manner. (i) The temperature
at the bottom cold boundary of themelt sample is brought down to freezing point temperature (Tm)
from its initial temperature (Ti) with a cooling rate ofCr = 0.02 K/s. (ii) Once the bottom boundary
reaches (Tm), a constant heat flux (heat flux removal rate q′′ = 102250 W/m2) condition is applied at
this boundary. (iii) For this constant heat flux boundary condition, time dependent crystal growth
rate (dxi/dt = vi(t)), and temperature history at the bottom of the sample (cooling curve Tc(0, t)) are
evaluated.

The third validation involves using this time dependent crystal growth rate (obtained from
constant heat flux boundary condition) as the input to the inverse problem to evaluate the cooling
curve (T (0, t) = Tc(0, t)). The cooling curve obtained from the inverse model is compared with the
original Tc(0, t) evaluated from the constant heat flux (heat removal) boundary condition.

The cooling curve (Tc(0, t)) obtained from the inverse model is also cross verified in the
following manner. (i) Tc(0, t) obtained by solving the inverse problem is used as the boundary
condition for the forward problem to evaluate time varying crystal growth rate (vi(t)). (ii) Time
evolution of crystal growth rate (vi(t)) from the forward model is compared with the original vi(t)
evaluated from the constant heat flux (heat removal) boundary condition.

The solution of Eq. 2.1-2.3 after the onset of solidification with constant heat flux (heat
removal) boundary condition are given as follows Ozisik [2002]:

Ts =
q′′(x− x(k)i )

ks
+Tm +

∞

∑
n=1

exp

−αs(2n−1)2π2∆t(k)

4x(k)i
2

cos

(
(2n−1)πx

2x(k)i

)
C(k)

n (3.20)

Tl = Tm +
∞

∑
n=1

exp

(
−αl(2n−1)2π2∆t(k)

4(L(k)− x(k)i )2

)
sin

(
(2n−1)π(x− x(k)i )

2(L(k)− x(k)i )

)
D(k)

n (3.21)

with,

C(k)
n = exp

−αs(2n−1)2π2∆t(k)

4x(k−1)
i

2

C(k−1)
n (3.22)

D(k)
n = exp

(
−αl(2n−1)2π2∆t(k)

4(L(k)− x(k)i )2

)
D(k−1)

n (3.23)
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(a) (b)

Figure 3.3 : (a) Comparisonbetween cooling curves (Tc(0, t)) obtained fromtheproposed inversemodel
and the forward model with constant heat flux boundary condition, and (b) comparison of
interface velocities (vi(t)) obtained from the forwardmodels with Tc(0, t) and constant heat
flux boundary conditions.

where C(1)
n = 0 and D(1)

n can be calculated from Eq. 3.9 by replacing all the ND parameters with
dimensional parameters (replace X , X∗

i , L∗, θl , θm with x, xi, L, Tl , Tm respectively).

Figure 3.3(a) shows the comparison between the cooling curves (Tc(0, t)) predicted from the
proposed inversemodel and forwardmodel (Eq. 3.20) with constant heat flux boundary condition.
Crystal growth rate (vi(t) shown in figure 3.3(b) with the solid line) predicted by the forwardmodel
(Eq. 3.20-3.23, and Eq. 2.2) with constant heat flux boundary condition is used as the input to solve
the inverse problem. The comparison shown in figure 3.3(a) furnishes extremely good agreement
between the two cooling curves.

The cooling curve (Tc(0, t)) obtained from the inverse model (dashed line in figure 3.3(a)) is
then used as the boundary condition (Dirichlet type boundary condition) to the forward model
to recalculate vi(t). Figure 3.3(b) shows the comparison between the crystal growth rates (vi)
obtained from forward models with cooling curve (Tc(0, t)) and constant heat flux boundary
conditions respectively. Once again, the agreement between the two predictions is found out to
be excellent. The small difference between the results shown in figure 3.3(b) can be attributed
to the time averaged treatment of cold boundary temperature for individual time steps (for
Tc(0, t) boundary condition), and, numerical errors associated with the implementation of the
semi-analytical scheme.

The fourth and the final case study provides themost significant validation of the proposed
model, since it involves comparison of the inversemodel predictionwith the experimental data. An
experimental setup similar to the present study (figure 2.1) involving unidirectional solidification
of pure Al and Al-Si alloy is reported by Gandin [2000b,a]. Properties of 99.99 wt% pure Al are
considered (ρs = 2535 kg/m3, ρl = 2370 kg/m3, kl = 90 W/mK, ks = 210 W/mK, cps = 1183 J/kgK,
cpl = 1087 J/kgK, hsl = 398 kJ/kg, and Tm = 933.04 K [Gandin, 2000b]).

A melt sample of 119 mm length is initially maintained at an uniform temperature of
1030.84 K [Gandin, 2000b]. Unidirectional solidification in the melt sample is achieved by heat
removal from the bottom [Gandin, 2000b]. During the solidification process, temperature was
continuously monitored at different locations of the solidifying melt sample, and local cooling
curves at the thermocouple locationswere plotted. Seven thermocoupleswere placed at an interval
of 20 mm starting from the bottom of the melt sample. Average interface velocity was estimated
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Figure 3.4 : Comparison of predicted cooling curves obtained from the proposed model and
thermocouple data (thermocouple data at a distance of 60 mm from the bottom chiller)
by Gandin [2000b].

by recording the time delay of attaining the freezing temperature at successive thermocouple
locations. The interface velocity was also evaluated by using a one dimensional heat flow model.
The interface velocities obtained from experimental measurement and semi-analytical solution
showed reasonable agreement.

For the present validation, average interface velocity, estimated by Gandin [2000b] (in
figure 5(b) of Gandin [2000b] with adiabatic boundary condition), is used as the input to the
proposed inverse model. The cooling curve (Tc(t)) at the third thermocouple location [Gandin,
2000b] is predicted. The third thermocouple is located at a distance of 60 mm from the water
cooled copper chill in the original experiment [Gandin, 2000b]. The cold bottom boundary for the
proposed inverse model is chosen to coincide with the third thermocouple location in the original
experiment [Gandin, 2000b]. In our proposed model, the cooling of the bottom boundary from the
initial temperature (1030.84 K) to the freezing point (Tm = 933.04 K) replicates the cooling curve
data from the third thermocouple location (from figure 3 by Gandin [2000b]). During this initial
cooling process (till Tc(0, t) = Tm), the temperature distribution in the sample melt is obtained using
forward model (Well defined boundary condition). Once the bottom boundary attains freezing
point temperature, the interface velocity data, estimated by Gandin [2000b] (from figure 5.b by
Gandin [2000b]), is used as the input to the proposed inverse model for evaluating Tc(0, t).

Figure 3.4 shows the comparison between the cooling curves obtained from the proposed
inverse model, and, thermocouple data reported by Gandin [2000b] (the dark solid line and
dash-dot line framed within the vertical bars in figure 3.4). The comparison shown in figure 3.4
furnishes fairly good agreement (maximum absolute error: 2.85 K). Therefore, the reliability and
robustness of the proposed model are conclusively ascertained.

3.4 SUMMARY
A 1-D semi-analytical transient heat diffusion model is developed, which is capable of

predicting cooling curves for desired unidirectional crystal growth rate during solidification of
pure or eutectic materials. The shrinkage effect is incorporated in the proposed model. Four
different case studies are performed to validate the proposed model. The first case study validates
the proposed model with existing enthalpy updating scheme based numerical model. The second
case study is validated by solving inverse and forward problems associated with constant crystal
growth rate. The third case study involves prediction and validation of cooling curve for time
varying crystal growth rate. The fourth and the most crucial validation of the proposed model
is presented by comparison between cooling curves obtained from the model prediction and
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experimentally measured data. Shrinkage during solidification is considered for all the validating
case studies except the first one. All the case studies produced remarkably good validation (with
maximum error limit within 1.5 %), ascertaining the reliability and robustness of the proposed
model. The proposed model will be rendered beneficial to obtain prior knowledge of cooling
curves for controlled crystal growth rate.

…
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