Development of algae assisted Microbial Fuel Cell for power generation and algae cultivation

A Thesis submitted by Amitap Khandelwal

in partial fulfillment of the requirements for the award of the degree of **Doctor of Philosophy**

Indian Institute of Technology Jodhpur Department of Bioscience & Bioengineering May 2021

Declaration

I hereby declare that the work presented in this Thesis titled *Development of algae assisted Microbial Fuel Cell for power generation and algae cultivation,* submitted to the Indian Institute of Technology Jodhpur in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy, is a bonafide record of the research work carried out under the supervision of Dr. Meenu Chabbra. The contents of this thesis in full or in parts, have not been submitted to, and will not be submitted by me to, any other Institute or University in India or abroad for the award of any degree or diploma.

Amital

Amitap Khandelwal P14BL003

Certificate

This is to certify that the thesis titled *Development of algae assisted Microbial Fuel Cell for power generation and algae cultivation*, submitted by *Amitap Khandelwal* (P14BL003) to the Indian Institute of Technology Jodhpur for the award of the degree of *Doctor of Philosophy*, is a bonafide record of the research work done by him under my supervision. To the best of my knowledge, the contents of this report, in full or in parts, have not been submitted to any other Institute or University for the award of any degree or diploma.

Meenu Chabbra Ph.D. Thesis Supervisor

Acknowledgements

Before writing anything, I'd like to express my deepest gratitude & thanks to my *Gurumaharaj Shree Shree 108 Shree Prakashanand Ji Maharaj, Gurumata Mrs. Kiran,* and *Goddess Bhagwati* for their countless blessings, unconditional love, for giving me this life & for providing me the opportunity to pursue my dreams.

A Ph.D. journey is not a bed of roses. There are tons of highs & the lows, yeses & the noes through which a research scholar passes. This section chronicles the people who helped me professionally and personally, making my doctoral experience a smooth one. In this context, first of all, I want to thank my supervisor Dr. Meenu Chhabra from the deepest bottom of my heart for making my dream come true of being a graduate. She tried her best to shape & nourishes me in order to develop the right research aptitude and good writing skills in me. I am really thankful to her for providing valuable guidance, encouragement and constant support throughout my Ph.D. tenure. I want to thank her for not entertaining my low-grade research ideas; this is how she made me learn to focus on the quality of research rather than the number of publications. Her inimitable research aptitude, outstanding creativity & immense knowledge of interdisciplinary sciences always reflected during our discussions, and inspired me in many aspects. I'd also like to show my heartfelt thanks & gratitude to my doctoral committee members, Dr. Ambesh Dixit, Dr. Samanwita Pal & Dr. Amit Mishra, for their astute comments & scientific suggestions, which certainly helped me to improve my thesis work. I want to acknowledge technical staff, Mr. Bharat Pareek from the Department of Bioscience & Bioengineering, Mr. Dhavalbhai Raiyani, Mr. Bharat & Mr. Vikram from Department of Mechanical Engineering, and Mr. Mukesh from Center for Advanced Scientific Equipment (CASE), for helping me during my experiments & handling of sophisticated instruments.

This journey would not have been completed without my friends *Rakshanda, Neethu, Naveen, Pooja, Arpan, Gautam, Bhuwnesh, Ayeman, Bhawna, Deepak, Rahul & Satya* who kept me motivated & filled me with loads of happiness, and memories throughout my stay at IIT Jodhpur. I want to specially thank *Rakshanda Jakhoria* for being a true friend and helping me in every possible way such as troubleshooting, writing, drawing good graphics etc. I'd like to specially mention my gang *Naveen, Pooja & Arpan* who not only helped me inside the lab but also made my life so much easier, and happier outside the lab. I want to convey my sincere thanks to my friend *Dr. Neethu Bhaskar* from IIT Kharagpur, for helping me throughout my Ph.D. journey in every possible way. I also want to express my word of thanks to my labmates *Dr. Ankisha Vijay, Sachin, Arti,* and *Akansha* for their helping hand, and constant support in every aspect. I'd like to specially acknowledge *Dr. Ankisha* for keeping a healthy and peaceful environment in the lab. I want to appreciate *Abhilasha Thakur & Bhawna* for assisting me in some last moment experiments, and thesis formatting, respectively. I also want to thank my college friend *Ms. Sonu* for always being with me in every ebbs and flows of life.

I want to convey my deepest gratitude & regards to my mother, *Mrs. Kalawati* & my father, *Mr. Jagdish Khandelwal*, for their consistent support, and love. I am so grateful to them for always being with me in every decision of my life. I also want to thank my siblings *Amrita* & *Neerat*, for their enduring care, affection, and support. I do apologize if I missed any name in this section.

Amitap Khandelwal Ph.D. Student

List of Figures

Figures	Title	Page
1.1	A schematic representation of the theme employed in this thesis work.	3
2.1	Various close cultivation systems: A) Horizontal tube PBR, B) Vertical tube PBR, C) Flat panel PBR and D) CSTR type PBR	8
2.2	Illustration showing comparison between conventional algae cultivation systems and MFC based algae cultivation	10
2.3	Schematic showing a typical MFC and its working principle	11
2.4	Illustration showing different electron transfer mechanism A) direct electron transfer, B) electron transfer by Nano-wires, C) electron transfer through mediators	13
2.5	A typical MFC showing power generation and algae cultivation	19
2.6	Schematic showing different algae assisted MFC configurations a) single chamber; b) Dual chamber; c) H-shaped; d) dual chamber integrated with external photobioreactor & e) three chamber with desalination	19
3.1	Schematic presentation of the strategy employed in the current study.	26
3.2	A) Schematic representation of microbial fuel cell (MFC), and B) MFC reactor used in the study	27
3.3	FTIR spectrum obtained for intact algae biomass, lipid extracted algae (LEA) biomass and isolated lipids	28
3.4	The profile of voltage (across external resistor 1000 ohm) with time, obtained for different experimental MFCs. Arrow indicate addition of LEA/FP	29
3.5	A) Polarization curve obtained for different experimental MFCs. B) Graph showing area under the curve as energy produced by LEA-fed MFC during last batch cycle	31
3.6	Cyclic voltagrams of A) LEA-fed MFCs and B) FP-MFCs respectively, (I) CV of MFCs during stable power generation, (II) CV of anodes having biofilm after the end of batch cycle (III) CV of a fresh anode. C) and D) first derivative of colonized anodes of LEA-fed and FP MFC respectively	32
3.7	Algae growth as observed in cathode chamber with different experimental MFCs	33
4.1	a) Schematic depicting the design and function of a MFC used in the study. b) Photograph showing the real experimental MFCs operating outdoors	38
4.2	X-ray diffractograms obtained for a) clay, b) rock phosphate, and c) rock phosphate blended clay	39
4.3	a) Profile of voltage with respect to time obtained for different MFC reactors. b) Polarization curve	40
4.4	Algal growth curve obtained for different MFC reactors	42
4.5	Graph showing the relative abundance at a) Phylum level, b) class level, and c) family level	43
4.6	A heat map showing the taxonomy assignment for each OTU. [Intense colour (Red) represents OTU having relatively higher abundance whereas light color (yellow) represents OTUs having relatively lower abundance].	44
4.7	Energy curves obtained for different MFC reactors	45
5.1	a) Schematic of the top-bottom configuration of MFC reactor employed in the study, and b) fabricated composite electrode	50
5.2	XRD graphs obtained for a) MnO2 NPs, b) Fe3O4 NPs, c) CuO NPs, d) pristine graphite, and e) composite graphite/CuO	51
5.3	SEM images of a) CuO NPs, b) MnO2 NPs, c) Fe3O4 NPs, d) pure graphite electrode, e) graphite/CuO composite electrode, f) EDX spectra of graphite/CuO composite electrode, g) algal cells on composite electrode, and h, i, j, k) EDX elemental mapping	52
5.4	Polarization curves obtained for different MFC reactors	53
5.5	Algal growth kinetics observed for different MFC reactors	54
5.6	Cyclic voltammograms a) CV curves normalized by cathodic surface area, and b) first derivative of reverse scan of CV curves	55
	A.1 MFC reactor used in the study A.2 Outdoor MFC reactor used in the study	60 61

List of Tables

Table	Title	Page
2.1	List of prominent algal species and their major cell constitutes	7
2.2	Pros & cons associated with conventional algae cultivation systems	9
2.3	Summary of different separators used in MFCs	12
2.4	Summary of prominent scaled-up studies in MFCs	16
2.5	Different strains of microalgae & the corresponding dissolved oxygen (DO) and power output obtained in algae assisted MFCs	20
2.6	Summary of COD removal and algal biomass generation in algae assisted MFCs.	22
3.1	Summary of results obtained in different MFC setups	30
3.2	Comparison of energy output from the closed loop process presented in this study with conventional algae cultivation and algal biomass utilization	35
4.1	Physical characterization of different separators used in this study	39
4.2	Table showing MFCs performance operated with different separators	42
4.3	Energy analysis of outdoor MFC reactors	46
4.4	Cost assessment and analysis for a MFC employed in the study	47
5.1	Table showing comparative results obtained for different NPs used in varying concentration in MFC reactors	53
5.2	Summary of the results obtained from different MFC reactors	56
A.1	List of all the chemicals and reagents used in the complete study	59

Symbol	Description
А	Ampere
С	Celsius
E	Cell Potential
F	Faraday Constant
I	Current
М	Molar
Р	Power
R	Gas Constant/Resistance
Т	Temperature
V	Volt
W	Watt
Cm	Centimeter
d	Day
g	Gram
h	Hour
kg	Kilogram
I/L	Liter
m	Milli
m ²	Square meter
m ³	Cubic meter
ppm	Parts Per Million
рН	Hydrogen Ion Concentration
α	Alpha
β	Beta
γ	Gamma
ε	Epsilon
η	Eta
θ	Theta
μ	Micro
Ω	Ohm
ω °	Omega
	Degree
%	Percentage

List of Abbreviations

Abbreviation	Full form
AEM	Anion Exchange Membrane
BES	Bio electrochemical System
CA	Chronoamperometry
CEM	Cation Exchange Membrane
COD	Chemical Oxygen Demand
CSTR	Continuous Stir Tank Reactor
CV	Cyclic Voltammetry
DO	Dissolved Oxygen
EDX	Energy Dispersive X- Ray Spectroscopy
EET	Extracellular Electron Transfer
EIS	Electrochemical Impedance Spectroscopy
EPA	Environmental Protection Agency
FAME	Fatty Acid Methyl Ester
FP	Fruit Pulp
HRT	Hydraulic Retention Time
HTC	Hydrothermal Carbonization
LDPE	Low Density Polythene
LEA	Lipid Extracted Algae
MCC	Microbial Carbon Capture Cell
MFC	Microbial Fuel Cell
NEP	Net Energy Production
NER	Net Energy Recovery
NGS	Next Generation Sequencing
OCP	Open Circuit Potential
OCV	Open Circuit Voltage
ORR	Oxygen Reduction Reaction
OTU	Operational taxonomic Unit
PBR	Photo-bioreactor
PEM	Proton Exchange Membrane
PMFC	Photosynthetic Microbial Fuel Cell
QIIME	Quantitative Insight Into Microbial Ecology
RP	Rock Phosphate
SEM	Scanning Electron Microscope
SHE	Standard Hydrogen Electrode
SRA	Sequence Read Archive
TN	Total Nitrogen
TP	Total Phosphorus
WHC	Water Holding Capacity
XRD	X-ray Diffraction