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VC Vulcan Carbon 
F-VC Fluorinated Vulcan Carbon 
DI Deionized water 
EIS Electrochemical Impedance Spectroscopy 
CV Cyclic Voltametry 
IV Current-Voltage 
I-t Current-time 
GCD Galvanostatic Charge discharge 
VOC Volatile organic Compound 
PPC Persistent Photoconductivity 
LOD Limit of detection 
DC Direct Current 
Ace Acetone 
EtOH Ethanol 
MeOH Methanol 
tBuOH t-butyl alcohol 
PrOH Iso-Propanol 
MEK butanone 
Chl Chloroform 
AcOEt Ethylacetate 
Tol Toluene 
DCM di-chloro methane 
DMF dimethyl formamide 
Pentanal Pentanal 
ACN Acetonitrile 
Hexane Hexane 
TEA Triethylamine 
DEA diethylamine 



 
 

xx 

RT Room Temperature 
RH Relative humidity 
 


