Contents

	Page
Abstract	I
Acknowledgements	lii
Contents	V
List of Figures	Ix
List of Tables	Xv
List of Symbols	Xvii
List of Abbreviations	Xix

Chapter 1: INTRODUCTION

1.1	Nanomaterials	1
1.2	Nanomaterials for Energy Applications	1
1.3	Nanomaterials for Gas Sensors	2
1.4	Modification of Nanomaterials by Doping	3
1.5	Fluorine as a Dopant	4
1.6	Advantages and Applications of Fluorination	5
	1.6.1 Fluorinated Metal Oxides	5
	1.6.2 Fluorocarbons	6
1.7	Literature Survey	6
	1.7.1 Fluorination of Carbon Materials	6
	1.7.2 Electrolytes in Supercapacitors	10
	1.7.3 Humidity Sensors for Healthcare Applications	11
	1.7.4 Fluorinated α -Fe ₂ O ₃ Nanostructures and its Magnetic Properties	15
	1.7.5 Fluorinated Tin Oxide for VOC sensors	17
1.8	Objectives and Scope of the Thesis	20
1.9	Conclusions	20
Chapter 2: Exi	perimental Methods	23
2.1	Introduction	23
2.2	Structural and Morphological Analysis	23
	2.2.1 X-ray Difffaraction (XRD)	23
	2.2.2.Scanning Electron Microscopy (SEM)	24
	2.2.3 Transmission Electron Microscopy (TEM)	24
	2.2.4 Surface Area Analysis (Brunauer-Emmett-Teller)	24
2.3	Compositional Analysis	24
-	2.3.1 X-ray Photoelectron Spectroscopy (XPS)	24
	2.3.2 Fourier Transform Infrared Spectroscopy (FTIR)	24
	2.3.3 Raman Spectroscopy	24
2.4	Magnetic Measurements	25
2.5	Electrochemical Characterization	25
-	2.5.1 Cyclic Voltammetry (CV)	25
	2.5.2 Galvanostatic Charge-Discharge (GCD)	26
	2.5.3 Electrochemical Impedance Spectroscopy (EIS)	26
2.6	Fabrication of Interdigitated Electrodes	27
2.7	Conclusions	28
Chapter 3: Flu	orination of Graphitic Nanocarbons for Supercapacitors	29
3.1	Introduction	29
2	3.1.1 Objectives of Work	30
3.2	Experimental	30
-	3.2.1 Fluorination of Graphitic Carbon	30
	3.2.2 Device Fabrication	30
	3.2.3 Material Characterization	30
	3.2.4 Electrochemical Measurements	30
3.3	Results and Discussion	31

3.3.1 Fluorination of Vulcan Carbon

	3.3.2 Electrochemical Properties of Fluorinated Vulcan Carbon	77
	3.3.3 Energy Storage Performance of Fluorinated Vulcan Carbon	37
		39
2.4	3.3.4 Energy Storage Performance of Fluorinated Carbon from Polymeric Waste	41
3.4	Conclusions	41
Chapter 4: Flu	orine based Organic Electrolyte for Ultrafast EDLCs	43
4.1	Introduction	43
4.1	4.1.1 Objectives of Work	
4.2		44
4.2	Experimental	44
	4.2.1 Materials	44
	4.2.2 Ionic Conductivity Measurements	45
	4.2.3 Device Fabrication	45
	4.2.4 Electrochemical Measurements	45
4.3	Results and Discussion	45
	4.3.1 Electrolyte Characterization	46
	4.3.2 Supercapacitor Geometry	47
	4.3.3 Electrochemical Properties	47
	4.3.4 Energy Storage Performance	49
	4.3.5 Cyclic Stability	52
	4.3.6 Electrochemical Impedance Analysis	53
	4.3.7 Electrolyte Performance with Graphene Petal Electrodes	54
4.4	Conclusions	55
Chapter 5. Or	ganic Humidity Sensor for Healthcare Applications	67
-	Introduction	57
5.1		57
5.5	5.1.1 Objectives of Work	57
5.2	Experimental 5.2.1 Device Fabrication	58
		58
	5.2.2 Characterization	58
	5.2.3 Humidity Sensing Setup	58
	5.2.4 Humidity Sensing Characteristics	58
5.3	Results and Discussion	59
	5.3.1 Optimization of Sensor	59
	5.3.2 Characteristics of Humidity Sensor	60
	5.3.3 Sensitivity of Humidity Sensor	61
	5.3.4 Stability of Humidity Sensor	63
	5.3.5 Specificity of Humidity Sensor	63
	5.3.6 Humidity Sensing Mechanism	64
	5.3.7 Water-F-TEDA Interaction	66
	5.3.8 Humidity Sensor as Breath Monitoring Device	67
	5.3.9 Humidity Sensor as Touch-less Skin Moisture Sensor	68
5.4	Conclusions	68
Chapter 6: Flu	iorinated α -Fe ₂ O ₃ Nanostructures and Applications	71
6.1	Introduction	71
0.1	6.1.1 Objectives of Work	71 71
6.2	Experimental	72
0.2	6.2.1 Materials	
	6.2.2 Characterization	72 72
	6.2.3 Magnetic Measurements	73
	6.2.4 Photoelectrochemical Measurements	73
6 7	Results and Discussion	73 73
6.3		73
	6.3.1 Oriented Growth in α -Fe ₂ O ₃ 6.3.2 Estimation of Eluorine in α -Fe ₂ O	73
	6.3.2 Estimation of Fluorine in α -Fe ₂ O ₃	75
	6.3.3 Structure and Morphology: Dendritic α -Fe ₂ O ₃	76
	6.3.4 Ferromagnetic Behaviour of Fluorinated α -Fe ₂ O ₃	77
<i>c</i> .	6.3.5 Photoelectrochemical Property	81
6.4	Conclusions	81

Chapter 7: Fluorinated SnO₂ for VOCs Detection

7.1	Introduction	83
	7.1.1 Objectives of Work	84
7.2	Experimental	84
	7.2.1 Fabrication of Pristine and Fluorinated SnO_2 Film	84
	7.2.2 Characterization	84
	7.2.3 Low-Temperature Conductivity Measurements	84
	7.2.4 Fabrication of Al Mesh Heater	84
	7.2.5 Temperature Measurements	85
	7.2.6 Photoconductivity Measurements	85
	7.2.7 Gas Sensing Measurements	85
7.3	Results and Discussion	85
	7.3.1 Concept of Work	85
	7.3.2 Gas Sensing Mechanism	87
	7.3.3 Optimization of Fluorination	87
	7.3.4 XPS of F-SnO ₂	88
	7.3.5 F-SnO ₂ : Optical and Electrical Characteristics	90
	7.3.6 Sensor Integrated with Transparent Metal Mesh Heater	91
	7.3.7 F-SnO ₂ Photoresponse: Persistent Photoconductivity	92
	7.3.8 Response Towards Humidity	95
	7.3.9 Gas Sensing Characteristics	95
	7.3.10 Sensor-Reset Process	98
7.4	Conclusions	98
Chapter 8: Co	nclusion and Future Outlook	101
8.1	8.1.1 Summary	101
	8.1.2 Future Scope of the Work	102
Appendix I: List of Published Papers		

105