Abstract

The Thesis aims to explore the potential of ligand-based one dimensional (1D) ¹⁹F NMR methods (with ¹H, ²H NMR and ODNP: Overhauser Dynamic Nuclear Polarization whenever required) to provide the qualitative and quantitative description of molecular interactions in solutions, for a selected (a) Ligand-Protein (b) Agrochemicals-Humic Acid and (c) Solute-Solvent type fluorinated systems in *in vitro* fashion.

The Thesis illustrates the application of ¹⁹F transverse relaxation and diffusion analysis unravelling interaction of organofluorines with (a) serum and digestive proteins, (b) humic acid (HA). Extraction of exchange rate between the free and bound state of the organofluorine is accomplished through ¹⁹F constant time fast pulsing CPMG experiments allowing determination of the lifetime of the complex. ¹⁹F diffusion measurements are found to be more reliable leading to easier interpretation of kinetic parameters using suitable binding isotherms. ¹⁹F-¹H and ¹H-¹H Saturation Transfer Difference measurements enabled prediction of the binding mode. ¹⁹F spectral analysis in addition to ¹H NMR highlighted the influence of HA on photo-degradation of a fluorinated agrochemical.

Further a successful attempt is made to establish a new approach to investigate the trifluoroethanol solvation dynamics inducing structural transition of melittin employing a combination of solvent detected low field ¹⁹F relaxation and ¹⁹F ODNP. A direct determination of molecular correlation times from low field ¹⁹F longitudinal relaxation simplifies the analysis. Further, the preferential solvation of carbohydrates is also investigated in TFE: D₂O cosolvent mixture to benchmark the high field ²H and low field ¹⁹F NMR relaxation measurements for investigating such processes.

•••