
2
B meson decays

In this chapter we briefly discuss about B meson decays within the framework of Effective Field
Theory (EFT). In particular, we discuss decays induced by the quark level transition b → sl+l− (l = e, µ)
and b→ c l ν̄ (l = e, µ, τ).

2.1 EFT approach
The intuitive idea behind effective theories is that one can calculate even without knowing the exact

theory. For e.g., in order to design and construct bridges and buildings, the engineers are not supposed to
the know about weak interactions or grand unified theories. The inputs required are Newtonian mechanics,
theory of elasticity and fluid flow theories. This is because the engineering design depends on parameters
which are relevant at the macroscopic scales of order meters and hence the details of short distance physics
such as electroweak interactions, quantum gravity are not required.

In nature, several interesting phenomena occur over a wide range of energy, length, and time scales.
For e.g., so far, we have been able to explore from microscopic scales as small as one billionth of the size
of an atom (104 GeV in energy scale) to macroscopic scales as large as the size of our observable universe
(10−42 GeV in energy scale). Given this huge range, it would have been almost impossible to do physics if
all physical phenomena had taken place at the same scale. Owing to this separation of scales, one can use
the approximation to set to infinity (zero) all scales that are much larger (smaller) than the typical energy E
of the physical process of interest. In this approximation, physics at scales much different from E becomes
irrelevant and can be safety neglected. If required, these effect can be reintroduced in perturbation theory.
This strategy is adopted by physicists in all sub-domains. EFTs are a model building technique which
implements the above strategy to construct a quantitative framework which enables precise calculation at a
given scale. In high energy physics, EFT theories are usually constructed using hierarchies in the energy
scales. However, other quantities such as lengths, times, velocities, momenta can also be used.

An EFT provides simplified description of an underlying physical theory. This is achieved by using
appropriate degrees of freedom relevant at the energy scale of interest. For e.g., in most of the problems
in nuclear physics, we deal with nucleons rather than quarks. Even though it is known that the nucleons
are made up of quarks, at the relevant energy scales in nuclear physics, quarks cannot be considered as the
dynamical degrees of freedom. Only when the probing energy is increased, these degrees of freedom become
relevant. Therefore, nuclear interactions can be considered as the effective theory of strong interactions.
Similarly, classical mechanics can be considered as effective theory of quantum and relativistic mechanics.
For macroscopic particles moving with velocities much smaller than the speed of light, classic mechanics
is the appropriate theory to explain the dynamics of the system. Therefore in some sense, the ideas of EFT
are “obvious.” However, implementing them in a mathematically consistent way within the framework of
quantum field theory is not so apparent.
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2.1.1 What is EFT?
Let’s start with the big picture. The big picture is that ”there is interesting picture at all scales.” What

EFT let us do is, it allows to tease out this interesting physics at all scales. So in particular, we can focus on
a particular scale and find interesting physics there using the tool of EFT. Now this is a little different than
how we have been studying physics. If we think about drawing a diagram from our freshman year till now
about how we learned physics, it was not by kind of focusing in on individual particular scales, but more
from a kind of bottom-up point of view. So let us draw a picture of how we study physics (see Fig. 2.1).

Figure 2.1: Bottom-up approach of learning physics.

We start with classical mechanics (CM), classical electromagnetic theory (EMT), Newtonian gravity
and then we build on these things. So we learn quantum mechanics (QM) which builds on CM and special
theory of relativity (STR) which is building on both CM and EMT. At some point we learn general theory
of relativity (GTR) and quantum field theory (QFT). GTR builds upon STR and Newtonian gravity whereas
QFT synthesize, say string theory.

What we do in EFT is exact opposite of that. We are going to be taking one of the blobs in Fig. 2.1,
in particular QFT, and we will be looking deep inside it trying to make more and more specific field theories,
i.e., we will be taking QFT or perhaps derivatives of it and figuring out how to take a very general theory,
like QFT for the SM, and finding things that are more specific and in some ways more powerful than just
having the original theory we started with - more powerful in the sense of being able to do calculations. So
why do we want to do that. There’s a couple of different reasons:

• As we go up in the chart presented in Fig. 2.1, it becomes more beautiful as we can write down
a synthesis of physics in fewer lines but it also becomes harder to compute things. For e.g., if we
just wanted to compute the energy spectrum of hydrogen, and we know very well that we can do
that in QM. And particularly it’s a classic example, and fairly easy. However, if we try to do that in
QFT, it’s much harder because QFT, in some sense, has too much for that problem. Another is the
elliptical orbits of the planets, which are easier in Newtonian gravity than in GTR. There are many
more examples.
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• EFT allows us to compute more accurately in a simple fashion. So what we want when we think
about EFT is we want the simplest frame work that captures the essential physics. We don’t want to
carry along for the ride a whole bunches of superfluous things that are not important for the problem
we are trying to deal with. But we also don’t want to give up anything. So even if we are giving up
something in our leading order description, we want to retain the ability to correct that leading order
description - order by order in some expansions. So that we can make it as precise as we desire i.e.,
we can correct it, in principle, to arbitrary precision. So what we are doing is that we are taking QFT
and we are expanding it. And the lowest order determine that description is an EFT and that EFT may
have different fields. It may have different symmetries. And it certainly have ability to calculate in a
different fashion than the original theory. But we will keep higher order terms in that expansion and
therefore, we will be able to correct it to arbitrary precision just by expanding to higher and higher
order.

So some examples of this are non-relativistic expansion of QFT to non-relativistic QM or doing a
post-Newtonian expansion in GTR to go back towards Newtonian gravity. We don’t have to stop at the first
term, we can keep higher-order terms. And in that way, we can calculate, for e.g., energy levels in hydrogen
atom using a non-relativistic framework that encodes all the ingredients of QFT. or we can look at orbits of
planets and relativistic corrections and general relativistic corrections by expanding this theory.

2.1.2 Main ingredients of EFTs
So let’s say that we picked a physical system and wanted to describe it. What are the things that we

should do in order to develop an EFT?

• Degrees of freedom: The first thing we need to do is to figure what relevant degree of freedom are?
What are the things that actually matters for the problem we want to study?

• Symmetries: The second step in building an EFT consists in identifying the symmetries that constrain
the form of the effective action, and therefore the dynamics of the system. Symmetries can come
in many different flavors: they can be global, gauged, accidental, spontaneously broken, anomalous,
approximate, contracted, etc. EFT may have more symmetry than the theory we started with. This is
because we have neglected something, so we could have more symmetry.

• Expansion parameters: To figure out expansion parameters along with leading order description of the
theory. For example, in particle physics these expansion parameters are usually ratios of energy scales
E/Λ, where E is the characteristic energy scale of the process of interested in, and Λ is the typical
energy scale of the UV physics one is neglecting. The expansion parameters may also include ratios
of velocities (e.g. v/c in a non-relativistic limit), angular momenta (as in a semi-classical expansion),
or small dimensionless couplings. Observable quantities are calculated in perturbation theory as series
in these small parameters.

For e.g. in the context of QFT, the first point implies what fields we are using? The symmetry is
basically guiding about interactions. If we have gauge symmetry, than of course we are going to write down
something we respects that symmetry this will tell us something about the interaction terms. And finally
these expansion parameters goes under the rubric of what is called power counting, meaning that we should
be able to assign a definite order in the expansion parameter to each term in the effective action. This ensures
that only a finite number of terms contribute at any given order in perturbation theory, and that we can decide
upfront which terms to keep in the action based on the desired level of accuracy. If we have these three things
together and we figure out the leading order description, then we have an EFT. For more details about the
most commonly used EFTs in high energy physics, see for e.g., [145–148].
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2.1.3 An example: Fermi theory of β decay
Let us consider the weak decays of B mesons within the context of standard model (SM). The weak

decays of B mesons occur at the scale of the mass of b quark which is ∼ 5 GeV. The SM contains heavy
degrees of freedom such as t quark, W or Z bosons having mass O(100) GeV. As we are interested in the
effects of the heavy particles at energies which are much smaller than their masses, we can integrate them
out and use the resulting effective Lagrangian. Therefore, it is useful to construct an effective theory from
the full theory of electroweak interactions where the heavy degrees of freedom do not appear explicitly. This
on one hand allows simplification of the analysis and on other hand enables us to zoom into the scale at
which the given process occurs. Further, depending upon the required precision, one can always include
higher order terms. This can be demonstrated using the theory of β decay proposed by Enrico Fermi.

Figure 2.2: Left panel corresponds to the Feynman diagram of β decay in the full theory whereas the right panel
represents the effective four-fermion interaction of β decay in EFT.

The β decay n → pe−ν̄e is induced by the charged current transition d → ue−ν̄e. This interaction
occurs at the tree level within the SM. The Feynman diagram for β decay in the full theory is shown in left
panel of Fig. 2.2. The SM amplitude corresponding to this diagram is

−iM =

(
ig

2
√

2

)2

Vud [ūγµ(1− γ5)d]

[ −igµν
k2 −m2

W

]
[ēγν(1− γ5)νe] (2.1)

Here, the maximum momentum transferred through the propagator is k2 = (md−mu)2 which is very small
compared to the mass of W boson m2

W . Hence, the following approximation is justified

1

k2 −m2
W

' − 1

m2
W

, k2 << m2
W . (2.2)

In view of the above approximation, the amplitude can be written as

M =
g2

8m2
W

Vud [ūγµ(1− γ5)d] [ēγµ(1− γ5)νe] +O(
k2

m2
W

). (2.3)

The O(k2/m2
W ) terms in the above amplitude can be safely neglected and the local effective Hamiltonian

for the β decay process can be written as

Heff =
GF√

2
Vud [ūγµ(1− γ5)d] [ēγµ(1− γ5)νe] . (2.4)

Here GF /
√

2 = g2/8m2
W is the effective weak coupling known as Fermi constant. The above effective

Hamiltonian corresponds to a four point interaction with strength ∼ GF . The diagram for this four point
interaction is shown in right panel of Fig. 2.2. Thus we see that the the heavy propagator has now disappeared
in the low energy process. In fact it is hidden in the effective coupling GF .

Here it should be emphasize that one can have higher dimensional operators on the r.h.s of Eq. (2.4)
corresponding to the terms O(k2/m2

W ) in Eq. (2.3). These higher dimensional operators are actually the
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Figure 2.3: Penguin vertices resolved in terms of elementary vertices [149].

derivatives of the dimension-6 operator. Depending upon the requires precision, these higher dimension
operators can be included the analysis. This forms the basis of operator product expansion (OPE) where
we generally expand the product of two charged current operators into a series of effective local operators.
An effective coupling constant, known as Wilson coefficient (WC), is associated with each of these local
operators. These WCs measure the strength of the corresponding operator. From Eq. (2.4), it is obvious that
in the β decay, the leading local effective operator is a dimension-6 operator with the WC equal to one.

In a similar way, SM can be considered an effective theory of new physics construed at a scale much
higher than the weak energy scale. In many of the new physics models, SM can be recovered in the low
energy scale limit through the decoupling of the heavy particles that have a mass much larger than the weak
scale. The effects of physics at higher energy scales can be parametrized with effective operators and their
associated coefficients at a given energy scale. Therefore, even if new heavy particles remain unobserved at
the current collider facilities, the EFT formalism allows probing of new physics through corrections to the
SM observables which are added in an expansion in the inverse power of the new physics scale after the new
particles have been integrated out from the theory.

We now discuss this formalism in the context of B decays.

2.2 Effective Hamiltonian for B decays
Owing to Glashow–Iliopoulos–Maiani (GIM) mechanism, flavour changing neutral current (FCNC)

interactions do not occur at the tree level in the SM. They can only occur at the loop level viaW± vertex. The
effective operators for FCNC processes are obtained by calculating penguin and box diagrams by resolving
them in terms of basic vertices as shown Fig. 2.3 and Fig. 2.4, respectively.

These effective operators for strangeness changing processes are given by [149]:

Box(∆S = 2) =
∑
i

λ2
i

G2
F

16π2
M2
WS0(xi)(s̄d)V−A(s̄d)V−A (2.5)
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Figure 2.4: Box vertices resolved in terms of elementary vertices [149].

Box(T3 = 1/2) =
∑
i

λi
GF√

2

α

2π sin2 θW
[−4B0(xi)](s̄d)V−A(ν̄ν)V−A (2.6)

Box(T3 = −1/2) =
∑
i

λi
GF√

2

α

2π sin2 θW
B0(xi)(s̄d)V−A(µ̄µ)V−A (2.7)

s̄Zd =
∑
i

iλi
GF√

2

e

2π2
M2
Z

cos θW

sin θW
C0(xi)s̄γµ(1− γ5)dεµZ (2.8)

s̄γd = −
∑
i

iλi
GF√

2

e

8π2
D0(xi)s̄(q

2γµ − qµ 6q)(1− γ5)dεµ (2.9)

s̄Gad = −
∑
i

iλi
GF√

2

gs
8π2

E0(xi)s̄α(q2γµ − qµ 6q)(1− γ5)T aαβdβε
µ
G (2.10)

s̄γ′d =
∑
i

iλ̄i
GF√

2

e

8π2
D′0(xi)s̄[iσµλq

λ[mb(1 + γ5)]]dεµ (2.11)

s̄G′ad =
∑
i

iλ̄i
GF√

2

gs
8π2

E′0(xi)s̄α[iσµλq
λ[mb(1 + γ5)]]T aαβdβε

µ
G . (2.12)

Here λi = V ∗isVid and qµ is the momenta of outgoing gluon or photon whereas εµ, εµZ , ε
µ
G are the polarization

vectors of photon, Z and gluon, respectively. The matrix elements of FCNC processes can be calculated by
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making use of these effective operators. These processes are governed by a set of gauge independent ba-
sic structure functions [149]: S0(xi), X0(xi), Y0(xi), Z0(xi), E0(xi), D

′
0(x), E

′
0(xi). Running on the same

lines, one can write operators for b̄d, b̄s and c̄u processes.

The effective Hamiltonian for the decay of a B meson can be written as

Heff =
∑
k

CkOk. (2.13)

Here Ok denotes the operators such as (s̄d)V−A(s̄d)V−A, (s̄d)V−A(ūu)V−A etc. The Wilson coefficients
Ck are simply the linear combination of the various structure functions listed above. These operators play
very important role in the phenomenology of weak decays and are classified into six categories [150]:

Current-Current Operators (Fig. 2.5 (a)) :

Q1 = (c̄αbβ)V−A (s̄βcα)V−A Q2 = (c̄b)V−A (s̄c)V−A (2.14)

QCD-Penguins Operators (Fig. 2.5 (b)) :

Q3 = (s̄b)V−A

∑
q

(q̄q)V−A Q4 = (s̄αbβ)V−A

∑
q

(q̄βqα)V−A (2.15)

Q5 = (s̄b)V−A

∑
q

(q̄q)V+A Q6 = (s̄αbβ)V−A

∑
q

(q̄βqα)V+A (2.16)

Electroweak-Penguins Operators (Fig. 2.5 (c)) :

Q7 =
3

2
(s̄b)V−A

∑
q

eq (q̄q)V+A Q8 =
3

2
(s̄αbβ)V−A

∑
q

eq (q̄βqα)V+A (2.17)

Q9 =
3

2
(s̄b)V−A

∑
q

eq (q̄q)V−A Q10 =
3

2
(s̄αbβ)V−A

∑
q

eq (q̄βqα)V−A (2.18)

Magnetic-Penguins Operators (Fig. 2.5 (d)) :

Q7γ =
e

8π2
mbs̄iσ

µν(1 + γ5)biFµν Q8G =
g

8π2
mbs̄iσ

µν(1 + γ5)T aijbjG
a
µν (2.19)

∆S = 2 and ∆B = 2 Operators (Fig. 2.5 (e)) :

Q(∆S = 2) = (s̄d)V−A(s̄d)V−A Q(∆B = 2) = (b̄d)V−A(b̄d)V−A (2.20)

Semi-Leptonic Operators (Fig. 2.5 (f)) :

Q7V = (s̄b)V−A(ēe)V Q7A = (s̄b)V−A(ēe)A (2.21)

Q9V = (b̄s)V−A(ēe)V Q10A = (b̄s)V−A(ēe)A (2.22)

Q(ν̄ν) = (s̄b)V−A(ν̄ν)V−A Q(µ̄µ) = (s̄b)V−A(µ̄µ)V−A (2.23)

As the decays are observed only at the hadronic level, we have to use the OPE technique to calculate
an amplitude for a hadronic decay. The amplitude for a hadronic decay A→ B can be written as

M(A→ B) = 〈B|Heff |A〉 =
GF√

2

∑
i

V i
CKMCi(µ)〈B|Oi(µ)|A〉 . (2.24)

Here 〈B|Oi(µ)|A〉 is the hadronic matrix elements and Ci(µ) is the WC with a scale dependence of µ. The
short distance (perturbative) effects are embedded in the WC whereas the hadronic matrix elements contain
the long distance (non-perturbative) contributions. The hadronic matrix elements are parametrized in terms
of the helicity amplitudes which depend on various form factors (FF). These FFs are calculated by using
non-perturbative methods such as QCD sum rule, relativistic quark model, lattice QCD etc. In case of heavy
flavours such as B meson, the heavy quark effective theory (HQET) is a quite useful tool to calculate the
FFs.
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Figure 2.5: These are diagrams in the full theory [150]. In diagram (d), the cross represents a mass-insertion which
shows that the magnetic penguins originate from the mass-term on the external line in the QCD or QED
penguin diagrams.

2.3 Decays induced by quark level transition b→ s l+ l−

The quark level interaction b→ s l+ l− is forbidden at the tree level in the SM and can occur only at
the loop level. Therefore it can serve as an important tool to test higher order corrections to the SM and also
explore physics beyond SM. Feynman diagrams in the SM for b → s l+ l− quark level transition, without
including QCD corrections, are depicted in Fig. 2.6.

This quark level transition induces various decays such as

• the semileptonic B decays B → (Xs, K, K
∗) l+ l−,
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Figure 2.6: Feynman diagrams for b→ s l+ l− transition with in the SM.

• the purely leptonic decay Bs → l+ l−,

• the semileptonic Bs decay Bs → φ l+ l−.

Therefore b → s l+ l− transition provides a large number of observables to explore new physics. The
effective Hamiltonian for b→ s l+ l− in the SM can be written as

Heff = −4GF√
2
VtsV

∗
tb

10∑
i=1

Ci(µ)Oi(µ) , (2.25)

where the operatorsOi and corresponding Wilson coefficientsCi are given in Ref. [151]. The WCsCi which
encode the short distance physics is a scale dependent quantity. These WCs are calculated at matching scale
µ = mW in a perturbative expansion of αs(mW ). However, as the physical processes occur at the scale mb,
hence µ has to be evaluated at the mb scale using the renormalization group (RG) equations. The WCs can
be expanded as

Ci = C0
i +

αs
4π
C

(1)
i +

(αs
4π

)2
C

(2)
i +O(α3

s) ,

whereC(0)
i is the tree level contribution which is non-zero only for theO2 operator. The matching conditions

at µ = mW have been calculated with two loop accuracy [152] for which one needs to include the anomalous
degrees of freedom in RG equations up to an accuracy of three loops. The calculations of these anomalous
dimensions, within SM, can be found in Ref. [153, 154]. The O9 operator mixes with the O1,...,6 operators
through the diagrams mediated by virtual photon decaying into a lepton pair. Moreover, the operatorO7 also
gets modified by these operators. Therefore the effective WCs take the following forms after RG evolutions
[155]:

Ceff7 =
4π

αs
C7 −

1

3
C3 −

4

9
C4 −

20

3
C5 −

80

9
C6,

Ceff8 =
4π

αs
C8 + C3 −

1

6
C4 + 20C5 −

10

3
C6,

Ceff9 =
4π

αs
C9 + Y (q2),

Ceff10 =
4π

αs
C10,

with

Y (q2) = h(q2,mc)
(4

3
C1 + C2 + 6C3 + 60C5

)
− 1

2
h(q2,mb)

(
7C3 +

4

3
C4 + 76C5 +

64

3
C6

)
− 1

2
h(q2, 0)

(
C3 +

4

3
C4 + 16C5 +

64

3
C6

)
+

4

3
C3 +

64

9
C5 +

64

27
C6.

23



The function h is defined as

h(q2,mb) = −4

9

(
ln
m2
q

µ2
− 2

3
− z
)
− 4

9
(2 + z)

√
|z − 1| ×

{
arctan 1√

z−1
, z > 1

ln 1+
√

1−z√
z
− iπ

2 , z ≤ 1
,

where z =
4m2

q

q2 .

In the following we discuss various decays in the b→ sl+ l− sector.

2.3.1 Inclusive semileptonic decay B → Xs l
+ l−

The differential decay rate for B → Xs l
+ l− within SM is given by

dB(B → Xsl
+ l−)

dŝ
= B(B → Xclν̄)

α2

4π2f(z)κ(z)

|VtbV ∗ts|2
|Vcb|2

(1− ŝ)2

√
1− 4m̂l

2

ŝ

×
[
|Ceff9 |2(1 +

2m̂l
2

ŝ
)(1 + 2ŝ) + 4|Ceff7 |2(1 +

2m̂l
2

ŝ
)(1 +

2

ŝ
)

+|C10|2[(1 + 2ŝ) +
2m̂l

2

ŝ
(1− 4ŝ)]

+12Re(Ceff7 Ceff∗9 (1 +
2m̂l

2

ŝ
))
]
. (2.26)

Here m̂i = m/mb,pole, ŝ = s/m2
b,pole and z = m2

c/m
2
b . Further, f(z) and κ(z) represent the phase space and

QCD corrections [156], respectively. As, within SM, B → Xs l
+ l− occurs at the loop level with diagrams

mediated by γ and Z boson, the semi-leptonic operators O7, O9 and O10 are relevant for this decay mode.
The decay mode B → Xs l

+ l− has relatively small theoretical uncertainties as compared to the exclusive
decay counterparts. As far as experiments are concerned, the inclusive decays are less readily accessible.

2.3.2 Exclusive semileptonic decay B → K l+ l−

The effective Hamiltonian for B → K µ+ µ− is the same as that of B → Xs l
+ l−. The B → K

matrix element,M(B → Kl+l−) = 〈l(p−)l̄(p+)K(pK)|Heff |B̄(pB)〉, can be parameterized in terms of
form factors

〈K(pK)|s̄γµb|B̄(pB)〉 = (2pB − q)µf+(q2) +
m2
B −m2

K

q2
qµ
[
f0(q2)− f+(q2)

]
,

〈K(pK)|s̄iσµνqνb|B̄(pB)〉 = −
[
(2pB − q)µq2 − (m2

B −m2
K)qµ

] fT (q2)

mB +mK
, (2.27)

where q = (p+ + p−). In the large recoil region, matrix element can be calculated using QCD factoriza-
tion [157, 158]. In high-q2 region, this decay can be studied by operator product expansion (OPE) with the
use of improved Isgur-Wise form factor relations.

These form factors can be related to a single form factor ξP (q2) in the leading order in (1/E) expan-
sion. A factorization scheme is chosen with f+(q2) = ξP (q2) [159] within QCD factorization. The form
factors obey the following symmetry relations [159, 160]

f0

f+
=

2E

mB

[
1 +O(αs) +O

( q2

m2
B

√
ΛQCD
E

)]
,

fT
f+

=
mB +mK

mB

[
1 +O(αs) +O

(√ΛQCD
E

)]
. (2.28)
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The form factor f+(q2) = ξP (q2) is taken from light cone sum rule (LCSR) calculations [161]. Using the
QCD factorization results, matrix element can be written as

M(B → Kl+l−) = i
GFαe√

2π
VtbV

∗
tsξP (q2)

[
FV p

µ
B(l̄γµl) + FAp

µ
B(l̄γµγ5l) + FP l̄γ5l

]
. (2.29)

The functions Fi = Fi(q
2)(i = V,A, P ) are defined as

FA = C10, (2.30)

FV = C9 +
2mb

mB

TP (q2)

ξP (q2)
, (2.31)

FP = mlC10

[m2
B −m2

K

q2

( f0(q2)

f+(q2)
− 1
)
− 1
]
, (2.32)

where the amplitude TP is defined in Ref. [158]. The decay rate of B → Kl+l− in SM can be given as

ΓSM
l =

Γ0

3

∫ q2
max

q2
min

dq2 ξ2
P (q2)λ3/2(|FA|2 + |FV |2) (2.33)

×
{

1 +O
(
m4
l

q4

)
+
m2
l

M2
B

×O
(
αs,

q2

M2
B

√
ΛQCD
E

)}
,

where

Γ0 =
G2
Fα

2
e|VtbV ∗ts|2

512π5m3
B

, (2.34)

λ = m4
B +m4

K + q4 − 2(m2
Bm

2
K +m2

Bq
2 +m2

Kq
2). (2.35)

Here mB and mK are the masses of B and K meson, respectively.

In high-q2 region this decay can be studied by operator product expansion (OPE) with the use of
improved Isgur-Wise form factor relations. The QCD operator identity [162, 163]

i∂ν(s̄ iσµν b) = i∂µ(s̄b)−mb(s̄ γµ b)− 2(s̄ i
←
Dµ b), (2.36)

allows us to derive an improved Isgur-Wise relation between fT and f+,

fT (q2, µ) =
mB (mB +mK)

q2
[κ(µ)f+(q2) +

2 δ
(0)
+ (q2)

mB
] +O

(
αs

Λ

mb
,

Λ2

m2
b

)
, (2.37)

=
mB (mB +mK)

q2
κ(µ) f+(q2) +O

(
Λ

mb

)
, (2.38)

where δ(0)
+ (q2) is the Heavy Quark Effective Theory (HQET) form factor which is defined in [162]. The

µ-dependent coefficient κ is given by

κ(µ) = (1 + 2
D

(v)
0 (µ)

C
(v)
0 (µ)

)
mb(µ)

mB
. (2.39)

which includes O(αs) corrections. The HQET Wilson coefficients C(v)
0 , D

(v)
0 are given in [163].

The form factors are parameterized as [164]

fi(s) =
fi(0)

1− s/m2
res,i
{1 + bi1

(
z(s)− z(0) +

1

2
(z(s)2 − z(0)2)

)
}, s = q2, (2.40)

z(s) =

√
τ+ − s−

√
τ+ − τ0√

τ+ − s+
√
τ+ − τ0

, τ0 =
√
τ+

(√
τ+ −

√
τ+ − τ−

)
, τ± = (mB ±mK)2 ,

where i = +, T, 0. The values of fi(q2 = 0) are taken from LCSR calculations. Input to the B → K form
factor parameterization are taken from Ref. [164].
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2.3.3 Exclusive semileptonic decay B → K∗ l+ l−

The decay B → K∗ l+ l− provides plethora of observables to probe new physics. The complete
angular distribution for the decay B → K∗ l+ l− is described by four independent kinematic variables: the
lepton-pair invariant mass squared q2, two polar angles θµ and θK and the angle φ between the planes of the
dimuon and Kπ decays, as shown in Fig. 2.7.

Figure 2.7: The description of the polar angles θµ, θK and φ in the angular distribution of B0 → K∗0(K+π−)µ+µ−

decay.

The differential decay distribution of B → K∗ l+ l− decay can be written as

d4Γ(B → K∗(→ Kπ)l+ l−)

dq2 d cos θl d cos θK dφ
=

9

32π
J(q2, θl, θK , φ) . (2.41)

where

J(q2, θl, θK , φ) = J1s sin2 θK + J1c cos2 θK + (J2s sin2 θK + J2c cos2 θK) cos 2θl

+ J3 sin2 θK sin2 θl cos 2φ+ J4 sin 2θK sin 2θl cosφ

+ J5 sin 2θK sin θl cosφ+ (J6s sin2 θK + J6c cos2 θK) cos θl (2.42)

+ J7 sin 2θK sin θl sinφ+ J8 sin 2θK sin 2θl sinφ+ J9 sin2 θK sin2 θl sin 2φ .

In the limit of neglecting lepton mass, the Ji’s depend on the six K∗ spin amplitudes AL,R‖ , AL,R⊥ , AL,R0 . For
massive leptons, these Ji’s depend on one more additional complex amplitude At. For example,

J1s =
(2 + β2

l )

4
[|AL⊥|2 + |AL‖ |2 + |AR⊥|2 + |AR‖ |2] +

4m2
l

q2
Re(AL⊥A

R∗
⊥ +AL‖A

R∗
‖ ) . (2.43)

We can now define the optimized observables like P1, P2, P ′4, P ′5, P ′6, P ′8 [165]:

〈P1〉 =
1

2

∫
bin dq

2[J3 + J̄3]∫
bin dq

2[J2s + J̄2s]
, 〈P2〉 =

1

8

∫
bin dq

2[J6s + J̄6s]∫
bin dq

2[J2s + J̄2s]
(2.44)

〈P3〉 = −1

4

∫
bin dq

2[J9 + J̄9]∫
bin dq

2[J2s + J̄2s]
〈P ′4〉 =

1

N ′bin

∫
bin
dq2[J4 + J̄4] , , (2.45)

〈P ′5〉 =
1

2N ′bin

∫
bin
dq2[J5 + J̄5] , 〈P ′6〉 = − 1

2N ′bin

∫
bin
dq2[J7 + J̄7] (2.46)

〈P ′8〉 =
1

N ′bin

∫
bin
dq2[J8 + J̄8] (2.47)

where J̄i’s can be obtained from Ji’s by all weak phases conjugated. The normalization factor is defined as

N ′bin =

√
−
∫
bin
dq2[J2s + J̄2s]

∫
bin
dq2[J2c + J̄2c] . (2.48)
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The analysis of B → K∗ l+ l− in the low-q2 region is based on QCD factorization (QCDF) [158]
and its quantum field-theoretical formulation, Soft-Collinear Effective Theory (SCET). The analysis of
B → K∗ l+ l− in the high-q2 region is based on the heavy-quark effective theory framework [163]. The
main sources of uncertainties in the low-q2 region are:CKM elements, the form factors, the unknown 1/mb

subleading corrections, the quark masses and the renormalization scale µb. In the high-q2 region, there is an
additional correction of O(1/mb) to the improved Isgur-Wise form factor relations.

2.3.4 Purely leptonic decay Bs → l+ l−

The purely leptonic decay Bs → l+ l− is chirally suppressed within the SM and hence has a smaller
branching ratio in comparison to that of the semileptonic decays induced by b → sl+ l− transition. Within
the SM, Bs → l+ l− is dominated by the Z0-penguin and box diagrams involving top quark. The SM
prediction of branching ratio of Bs → µ+ µ− is ∼ 3× 10−9. This decay has been experimentally observed
with a branching ratio close to the SM value [166, 167].

The branching ratio in the SM is given by

B(Bs → l+ l−) =
G2
Fα

2MBsm
2
µf

2
bsτBs

16π3
|V ∗tsVtb|2

√
1− 4(m2

l /M
2
Bs

)|C10|2 , (2.49)

where fbs is decay constant and τBs is Bs meson lifetime.

2.4 Decays induced by quark level transition b→ cτ ν̄
The quark level transition b→ cτ ν̄ occurs at tree level in the SM, as shown in Fig. 2.8. Neglecting

QCD effects, the SM amplitude for this diagram can be written as

−iM =

(
ig

2
√

2

)2

Vcb
[
c̄γµ(1− γ5)b

][ −igµν
q2 −m2

W

][
l̄γν(1− γ5)νl

]
.

With the same approximation as taken in β decay, q2 << m2
W , the SM effective Hamiltonian is obtained as

Heff =
GF√

2
Vcb
[
c̄γµ(1− γ5)b

][
l̄γν(1− γ5)νl

]
+O

( q2

m2
W

)
=

4GF√
2
Vcb
[
c̄γµ

(1− γ5)

2
b
][
l̄γν

(1− γ5)

2
νl
]

=
4GF√

2
Vcb
[
c̄γµPLb

][
l̄γνPLνl

]
=

4GF√
2
VcbOV L,

where OVL = (c̄γµPLb) (τ̄ γµPLν). Thus the effective Hamiltonian for the quark level transition b → c τ ν̄
in the SM depends only on one operator, OV L. Therefore, the effective Hamiltonian for b→ c τ ν̄ transition
in the SM is given by

Heff =
4GF√

2
VcbOVL . (2.50)

This quark level transition induces decays such as B → Dτ ν̄, B → D∗τ ν̄ and Bc → J/ψ τν.

The Feynman diagrams for B → Dτν and B → D∗τν decays in the SM are depicted in the right
panel of Fig. 2.8. The B → D∗τν vector and axial vector operator matrix elements, which depend on the
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Figure 2.8: Feynman diagrams for b→ c τ ν̄ transition (left) and B → D/D∗ τ ν̄ decays (right) in the SM.

momentum transfer between B and D∗, can be expressed as

〈D∗(k, ε)|cγµb|B(p)〉 =− iεµνρσεν∗pρkσ
2V (q2)

mB +mD∗
,

〈D∗(k, ε)|cγµγ5b|B(p)〉 =εµ∗(mB +mD∗)A1(q2)− (p+ k)µ(ε∗q)
A2(q2)

mB +mD∗

− qµ(ε∗q)
2mD∗

q2
[A3(q2)−A0(q2)] ,

(2.51)

where

A3(q2) =
mB +mD∗

2mD∗
A1(q2)− mB −mD∗

2mD∗
A2(q2) , (2.52)

with A3(0) = A0(0). The form factors V,A0, A1, A2 can be written in terms of the heavy quark effective
theory (HQET) form factors as [101, 168]

V (q2) =
mB +mD∗

2
√
mBmD∗

hV (w(q2)) ,

A1(q2) =
(mB +mD∗)

2 − q2

2
√
mBmD∗(mB +mD∗)

hA1(w(q2)) ,

A2(q2) =
mB +mD∗

2
√
mBmD∗

[
hA3(w(q2)) +

mD∗

mB
hA2(w(q2))

]
,

A0(q2) =
1

2
√
mBmD∗

[
(mB +mD∗)

2 − q2

2mD∗
hA1(w(q2))

− m2
B −m2

D∗ + q2

2mB
hA2(w(q2))− m2

B −m2
D∗ − q2

2mD∗
hA3(w(q2))

]
,

(2.53)

where the HQET form factors are given in [168].

The complete angular distribution of the decayB → D∗(→ Dπ) τ ν̄ in the presence of new physics
can be parameterized in terms of four kinematic variables θD, θτ , φ and q2. Here θD is the angle between B
and D mesons where D meson comes from D∗ decay, θτ is the angle between τ and B and φ is the angle
between D∗ decay plane and the plane defined by the tau momenta whereas q2 = (pB − pD∗)2, where pB
and pD∗ are the four momenta of B and D∗ respectively.
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The hadronic amplitudes in B → D τ ν̄ are defined as

HλD
VL,R,λ

(q2) = ε∗µ(λ) 〈D(λD)|c̄γµ(1∓ γ5)b|B〉 ,
HλD
SL,R,λ

(q2) = 〈D(λD)|c̄(1∓ γ5)b|B〉 ,
HλD
T,λλ′(q

2) = −HλD
T,λ′λ(q2) = ε∗µ(λ)ε∗ν(λ′) 〈D(λD)|c̄σµν(1− γ5)b|B〉 . (2.54)

where λD and λ denote the D meson and virtual intermediate boson helicities (λD = s and λ = 0,±1, t) in
the B rest frame, respectively. The nonzero amplitudes are given below.

Hs
V,0(q2) = Hs

VL,0
(q2) = Hs

VR,0
(q2) =

√
λD(q2)

q2
F1(q2),

Hs
V,t(q

2) = Hs
VL,t

(q2) = Hs
VR,t

(q2) =
m2
B −m2

D√
q2

F0(q2),

Hs
S(q2) = Hs

SL
(q2) = Hs

SR
(q2) ' m2

B −m2
D

mb −mc
F0(q2),

Hs
T (q2) = Hs

T,+−(q2) = Hs
T,0t(q

2) = −
√
λD(q2)

mB +mD
FT (q2). (2.55)

The three body decay B → D τ ν̄ can be studied by two independent parameters: (a) q2 = (pB −
pD)2, where pB and pD are four momentum of B and D meson and (b) θ, the angle between the τ lepton
momentum and the momentum of virtual boson in the rest frame of B meson. By integrating over θ,
we can find the differential decay rate with respect to q2. Using the effective Hamiltonian in Eq. (2.50)
and calculating the helicity amplitudes [99], one can calculate the differential decay rate for B → D τ ν̄
decay [101].

Recently several groups have updated the theoretical predictions of the ratiosRD andRD∗ (ratios of
decay rates of B → D(∗) τ ν̄τ and B → D(∗) (e/µ) ν̄ ) using different approaches, see for e.g., refs. [169–
172]. Ref. [169] improved the SM prediction of RD by making use of the lattice calculations of B → D l ν̄
form factors [173, 174] along with stronger unitarity constraints. The value of RD∗ has been updated in
[170] by performing a combined fit to the B → D(∗) l ν̄ decay distributions and including uncertainties
in the form factor ratios at O(αs, ΛQCD/mc,b) in HQET. Ref. [171] obtained the SM prediction for RD∗
by using heavy quark symmetry relations between the form factors and including recent inputs from lattice
calculations and experiments. The SM prediction for RD∗ was obtained in [172] by including the available
known corrections at O(αs, ΛQCD/mc,b) in the HQET relations between the form factors along with the
unknown corrections in the ratios of the HQET form factors. This was done by introducing additional factors
and fitting them from the experimental data and various lattice inputs.
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