Annexure

A.1 TABLES FOR CHAPTER 4

Table 4.1: Mean and standard deviation of hits and false alarms in each experimental condition in Experiment 1 [N=18]

		Hi	its		False Alarms				
	Sequential Presentation		Simultaneous Sequer Presentation Presen		Sequenti Presenta	al tion	Simultaneous Presentation		
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	
Unchanged Location	.762	.125	.759	.121	.068	.069	.051	.050	
Random Location	•577	.104	.588	.098	.218	.094	.198	.154	
Average	.669	.114	.673	.109	.143	.081	.124	.102	

Table 4.2: Mean and standard deviation of d primes and betas in each experimentalcondition in Experiment 1 [N=18]

		c	1'		Beta				
	Sequential Presentation Mean SD		Simultaneous Presentation		Sequential Simultane Presentation Presentation		eous tion		
			Mean	SD	Mean SD Mean		Mean	SD	
Unchanged Location	2.568	.962	2.815	1.009	68.329	195.373	180.784	350.589	
Random Location	1.021	.357	1.158	.511	1.439	.403	1.7401	.645	
Average	1.794	0.660	1.986	.760	34.884	97.888	91.2624	175.617	

Table 4.3: Repeated measures ANOVA of d primes for modes of presentation and locationsin Experiment 1 [N=18]

Source	df	MS	F	р	partial η^2
Presentation Mode[A]	1	.664	1.089	.311	.060
Error[A]	17	.609			
Location [B]	1	46.199	82.592	.000	.829
Error [B]	17	.559			
A×B	1	.055	.140	.713	.008
Error [A×B]	17	•394			

Table 4.4: Bayesian repeated measures ANOVA of dprimes for modes of presentation andlocations in Experiment 1 [N=18]

Models	P[M]	P[M data]	BF _M	BF_{10}	Error%
Null Model [Incl. Participants]	.020	2.491×10 ⁻¹²	9.962×10 ⁻¹²	1	
Presentation Mode[A]	.020	7 . 456×10 ⁻¹³	2.983×10 ⁻¹²	.299	.684
Location[B]	.020	.635	6.957	2.549×10 ¹¹	2.579
A + B	.020	.279	1.546	1.119×10 ¹¹	5.084
A + B +[A × B]	.020	.086	.378	3.464×10 ¹⁰	1.734

Table 4.5: Repeated measures ANOVA of betas for modes of presentation and locations inExperiment 1 [N=18]

Source	df	MS	F	р	partial η^2
Presentation Mode[A]	1	57212	1.236	.282	.068
Error[A]	17	46304			
Location [B]	1	272179	7.944	.012	.318
Error [B]	17	34261			
A×B	1	56603	1.224	.284	.067
Error [A×B]	17	46248			

Table 4.6: Repeated measures ANOVA of dprimes for locations and selected swaps in sequential presentation in Experiment 1 [N=18]

Source	df	MS	F	р	partial η^2
Location[A]	1	185.717	60.407	.000	.780
Error[A]	17	3.074			
swaps [B]	3	1.429	1.108	•355	.061
Error [B]	51	1.290			
A×B	3	0.873	.848	•474	.047
Error [A×B]	51	1.029			

Table 4.7: Bayesian repeated measures ANOVA of d primes for locations and selected swaps in sequential presentation in Experiment 1 [N=18]

Models	P[M]	P[M data]	BF _M	BF_{10}	Error%
Null Model [Incl. Participants]	.020	1 . 275×10 ⁻¹⁹	5.098×10 ⁻¹⁹	1	
Location[A]	.020	.881	29.497	6.909×10 ¹⁸	1.416
Swaps[B]	.020	8.462×10 ⁻²¹	3 . 385×10 ⁻²⁰	.066	.553
A + B	.020	.104	.466	8.190×10 ¹⁷	1.569
A + B + [A × B]	.020	.015	.061	1.179×10 ¹⁷	1.588

Table 4.8: Mean and standard deviation of hits and false alarms in each experimentalcondition in Experiment 2 [N=18]

		Hi	its		False Alarms				
	Sequential Presentation		Simultaneous Presentation		Sequential Presentation		Simultaneous Presentation		
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	
Unchanged Location	.598	.131	.721	.151	.122	.129	.046	.061	
Random Location	.571	.091	.604	.099	.209	.174	.176	.113	
Average	.584	.111	.662	.125	.165	.216	.134	.087	

Table 4.9: Mean and standard deviation of d primes and betas in each experimentalcondition in Experiment 2 [N=18]

		c	1'		Beta				
	Sequential Presentation		Simultaneous Presentation		Sequential Presentation		Simultaneous Presentation		
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	
Unchanged Location	1.896	1.021	2.824	.941	161.206	365.131	193.586	369.461	
Random Location	1.164	.545	1.300	.517	2.435	1.891	1.989	1.089	
Average	1.530	0.783	2.062	.729	81.820	183.511	97.787	185.275	

Table 4.10: Repeated measures ANOVA of d primes for modes of presentation and locations in Experiment 2 [N=18]

Source	df	MS	F	р	partial η^2
Presentation Mode[A]	1	5.099	15.609	.001	·479
Error[A]	17	.327			
Location [B]	1	22.906	34.587	.000	.670
Error [B]	17	.662			
A×B	1	2.822	10.370	.005	.379
Error [A×B]	17	.272			

Table 4.11: Bayesian repeated measures ANOVA of d primes for modes of presentation andlocations in Experiment 2 [N=18]

Models	P[M]	P[M data]	BF _M	BF ₁₀	Error%
Null Model [Incl. Participants]	.020	1.312×10 ⁻⁸	5 . 249×10 ⁻⁸	1	
Presentation Mode[A]	.020	4 . 259×10 ⁻⁸	1.704×10 ⁻⁷	3.245	1.088
Location[B]	.020	.009	.037	6.936×10 ⁵	1.900
A + B	.020	.184	.904	1.404×10 ⁷	1.430
A + B +[A × B]	.020	.807	16.685	6.147×10 ⁷	4.871

Table 4.12: Repeated measures ANOVA of betas for modes of presentation and locations inExperiment 2 [N=18]

Source	df	MS	F	р	partial η^2
Presentation Mode[A]	1	4589	.113	.741	.007
Error[A]	17	40612			
Location [B]	1	552407	5.886	.027	.257
Error [B]	17	93852			
A×B	1	4849	.119	.734	.007
Error [A×B]	17	40784			

Table 4.13: Repeated measures ANOVA of dprimes for locations and selected swaps in sequential presentation in Experiment 2 [N=18]

Source	df	MS	F	р	partial η^2
Location[A]	1	21.378	8.323	.010	.329
Error[A]	17	2.568			
Swaps [B]	<u>1.875</u>	22.568	5.188	.013	.234
Error [B]	31.877	4.350			
A×B	3	1.795	1.760	.166	.094
Error [A×B]	51	1.020			

[Underlined dfindicates value after applying Greenhouse Geisser correction]

Table 4.14: Bayesian repeated measures ANOVA of d primes for locations and selectedswaps in sequential presentation in Experiment 2 [N=18]

Models	P[M]	P[M data]	BF _M	BF_{10}	Error%
Null Model [Incl. Participants]	.020	3 . 388×10 ⁻⁴	.001	1	
Location[A]	.020	.005	.019	13.836	1.690
Swaps[B]	.020	.032	.132	94.137	•439
A + B	.020	.806	16.631	2.379×10 ³	1.071
A + B +[A × B]	.020	.157	.745	463.353	1.890

Table 4.15: Mixed ANOVA for comparison of Experiment 1 [N=18] and Experiment 2 [N=18] with modes of presentation and locations as repeated measures

Source	df	MS	F	р	partial η^2
Between Participants					
Experiment [A]	1	.322	.281	.600	.008
Error[A]	34	1.146			
Within Participants					
Presentation Mode[B]	1	4.721	10.087	.003	.229
A×B	1	1.041	2.225	.145	.061
Error[B]	34	.468			
Location [C]	1	67.083	109.826	.000	.764
A×C	1	2.022	3.311	.078	.089
Error [C]	34	.611			
B×C	1	1.832	5.502	.025	.139
A×B×C	1	1.045	3.136	.086	.084
Error [A×B]	34	.333			

Models	P[M]	P[M data]	BF _M	BF ₁₀	Error %
Null Model [Incl. Participants]	.053	4.953×10 ⁻²⁰	8.915×10 ⁻¹⁹	1	
Presentation Mode [A]	.053	7 . 148×10 ⁻²⁰	1 . 287×10 ⁻¹⁸	1.443	0.894
Location [B]	.053	0.016	0.292	3 . 226×10 ⁺¹⁷	1.603
A + B	.053	0.206	4.657	4 . 150×10 ⁺¹⁸	6.462
A + B + [A × B]	.053	0.22	5.091	4 . 451×10 ⁺¹⁸	1.796
Experiment [C]	.053	1.226×10 ⁻²⁰	2 . 207×10 ⁻¹⁹	0.248	2.528
A + C	.053	1.745×10 ⁻²⁰	3 . 141×10 ⁻¹⁹	0.352	1.919
B + C	.053	0.005	0.082	9 . 157×10 ⁺¹⁶	1.581
A +B +C	.053	0.056	1.075	1.138×10 ⁺¹⁸	3.994
A + B + [A × B] +C	.053	0.076	1.484	1.538×10 ⁺¹⁸	10.692
A + C + [A × C]	.053	6.563×10 ⁻²¹	1.181×10 ⁻¹⁹	0.132	2.546
A + B + C+ [A × C]	.053	0.033	0.607	6.587×10 ⁺¹⁷	4.327
A + B + [A × B] + C+ [A × C]	.053	0.04	0.747	8.042×10 ⁺¹⁷	3.087
B + C + [B × C]	.053	0.008	0.141	1.567×10 ⁺¹⁷	24.561
A + B + C+ [B × C]	.053	0.081	1.597	1.645×10 ⁺¹⁸	4.151
A + B + [A × B] + C + [B × C]	.053	0.1	2.004	2.023×10 ⁺¹⁸	2.852
$A + B + C + [A \times C] + [B \times C]$.053	0.047	0.891	9.524×10 ⁺¹⁷	2.544
$A + B + [A \times B] + C + [A \times C] + [B \times C]$.053	0.059	1.134	1.197×10 ⁺¹⁸	3.233
$A + B + [A \times B] + C + [A \times C] + [B \times C]$ $+[A \times B \times C]$.053	0.053	0.999	1.062×10 ⁺¹⁸	6.146

Table 4.16: Bayesian mixed ANOVA for comparison of Experiment 1 [N=18] and Experiment 2 [N=18] with modes of presentation and locations as repeated measures

A.2 TABLES FOR CHAPTER 5

		Hi	its		False Alarms				
	Sequentia Presentat	al tion	Simultaneous S Presentation		Sequential Presentation		Simultane Presentat	eous tion	
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	
Unchanged Location	.598	.101	.706	.140	.154	.143	.077	.102	
Random Location	.615	.123	.600	.116	.199	.145	.288	.132	
Average	.606	.111	.653	.128	.176	.144	.182	.117	

Table 5.1: Mean and standard deviation of hits and false alarms in each experimentalcondition in Experiment 3 [N=18]

Table 5.2: Mean and standard deviation of d primes and betas in each experimentalcondition in Experiment 3 [N=18]

		d'				Beta				
	Sequentia Presentat	al tion	Simultaneous Presentation		Sequential Presentation		Simultaneous Presentation			
	Mean	SD	Mean	SD	SD Mean SD		Mean	SD		
Unchanged Location	1.450	.501	2.466	.966	2.882	2.151	160.227	361.518		
Random Location	1.257	.501	.875	.319	1.803	.953	1.323	.696		
Average	1.354	.501	1.670	.643	2.342	1.52	80.775	181.107		

Table 5.3: Repeated measures ANOVA of d primes for modes of presentation and locations in Experiment 3 [N=18]

Source	df	MS	F	р	partial η^2
Presentation Mode[A]	1	1.806	7.459	.014	.305
Error[A]	17	.242			
Location [B]	1	14.333	60.598	.000	.781
Error [B]	17	.237			
A×B	1	8.792	23.061	.000	.576
Error [A×B]	17	.381			

Table 5.4: Bayesian repeated measures ANOVA of dprimes for modes of presentation andlocations in Experiment 3 [N=18]

Models	P[M]	P[M data]	BF _M	BF_{10}	Error%
Null Model [Incl. Participants]	.020	1 . 027×10 ⁻⁹	4 . 109×10 ⁻⁹	1	
Presentation Mode[A]	.020	8.377×10 ⁻¹⁰	3•351×10 ⁻⁹	.815	1.426
Location[B]	.020	4 . 094×10⁻⁵	1.638×10⁻⁴	3.984×10 ⁴	3.789
A + B	.020	5.680×10⁻⁵	2 . 272×10 ⁻⁴	5.529×10 ⁴	1.300
A + B +[A × B]	.020	1	4.092×10 ⁴	9.733×10 ⁸	2.454

Table 5.5: Repeated measures ANOVA of betas for modes of presentation and locations inExperiment 3 [N=18]

Source	df	MS	F	Р	partial η^2
Presentation Mode[A]	1	110730	3.386	.083	.166
Error[A]	17	32705			
Location [B]	1	115176	3.526	.078	.172
Error [B]	17	32661			
A×B	1	112091	3.43	.081	.168
Error [A×B]	17	32683			

Table 5.6: Repeated measures ANOVA of dprimes for locations and selected swaps in sequential presentation in Experiment 3 [N=18]

Source	df	MS	F	Р	partial η^2
Location[A]	1	.009	.007	·937	.000
Error[A]	17	1.412			
Swaps [B]	<u>2.131</u>	32.950	10.138	.001	.374
Error [B]	36.234	3.181			
A×B	3	1.939	1.932	.136	.102
Error [A×B]	51	1.004			

[Underlined df indicates value after applying Greenhouse Geisser correction]

Table 5.7: Bayesian repeated measures ANOVA of d primes for locations and selected swaps in sequential presentation in Experiment 3 [N=18]

Models	P[M]	P[M data]	BF _M	BF ₁₀	Error%
Null Model [Incl. Participants]	.020	1.835×10⁻ ⁶	7 . 341×10 ⁻⁶	1	
Location[A]	.020	3 . 249×10 ⁻⁷	1.3×10 ⁻⁶	.177	1.067
Swaps[B]	.020	.817	17.910	4,453×10 ⁵	.613
A + B	.020	.143	.668	7.798×10 ⁴	1.095
A + B +[A× B]	.020	.039	.164	2 . 148×10 ⁴	3.653

Table 5.8: Mixed ANOVA for comparison of Experiment 2 [N=18] and Experiment 3 [N=18] with modes of presentation and locations as repeated measures

Source	df	MS	F	р	partial η^2
Between Participants					
Experiment [A]	1	2.897	2.695	.110	.073
Error	34	1.075			
Within Participants					
Presentation Mode[B]	1	6.486	22.810	.000	.402
A×B	1	.418	1.470	.234	.041
Error[B]	34	.284			
Location [C]	1	36.739	81.752	.000	.706
A×C	1	.500	1.113	.299	.032
Error [C]	34	.449			
B×C	1	10.788	33.022	.000	•493
A×B×C	1	.826	2.529	.121	.069
Error [A×B]	34	.327			

Models	P[M]	P[M data]	BF _M	BF ₁₀	Error %
Null Model [Incl. Participants]	.053	6.678×10 ⁻¹⁹	1 . 202×10 ⁻¹⁷	1	
Presentation Mode [A]	.053	6 . 215×10 ⁻¹⁸	1 . 119×10 ⁻¹⁶	9.307	7.154
Location [B]	.053	8.891×10 ⁻⁸	1.600×10 ⁻⁶	1.331×10 ⁺¹¹	0.775
A + B	.053	8 . 535×10 ⁻⁶	1 . 536×10 ⁻⁴	1.278×10 ⁺¹³	1.99
A + B + [A × B]	.053	0.362	10.202	5.417×10 ⁺¹⁷	2.724
Experiment [C]	.053	3.626×10 ⁻¹⁹	6.527×10 ⁻¹⁸	0.543	0.798
A + C	.053	3 . 233×10 ⁻¹⁸	5.819×10 ⁻¹⁷	4.841	1.065
B + C	.053	6 . 524×10 ⁻⁸	1 . 174×10 ⁻⁶	9.769×10 ⁺¹⁰	1.869
A +B +C	.053	6.339×10 ⁻⁶	1 . 141×10 ⁻⁴	9.492×10 ⁺¹²	1.796
A + B + [A × B] +C	.053	0.302	7.785	4 . 521e +17	2.618
A + C + [A × C]	.053	9 . 956×10 ⁻¹⁹	1 . 792×10 ⁻¹⁷	1.491	1.812
A + B + C+ [A × C]	.053	2 . 271×10 ⁻⁶	4.087×10⁻⁵	3.401×10 ⁺¹²	2.505
$A + B + [A \times B] + C + [A \times C]$.053	0.126	2.595	1.887e +17	7.3
B + C + [B × C]	.053	2 . 428×10 ⁻⁸	4 . 370×10 ⁻⁷	3.635×10 ⁺¹⁰	4.367
A + B + C+ [B × C]	.053	2 . 844×10 ⁻⁶	5 . 119×10 ⁻⁵	4.259×10 ⁻¹²	9.013
$A + B + [A \times B] + C + [B \times C]$.053	0.125	2.571	1.871×10 ⁺¹⁷	3.629
A + B+ C + [A × C] + [B × C]	.053	9.640×10 ⁻⁷	1 . 735×10 ⁻⁵	1.444×10 ⁺¹²	4.187
$A + B + [A \times B] + C + [A \times C] + [B \times C]$.053	0.048	0.906	7 . 173×10 ⁺¹⁶	3.637
$A + B + [A \times B] + C + [A \times C] + [B \times C]$ $+[A \times B \times C]$.053	0.037	0.7	5.608×10 ⁺¹⁶	3.479

Table 5.9: Bayesian Mixed ANOVA for comparison of Experiment 2 [N=18] and Experiment 3 [N=18] with modes of presentation and locations as repeated measures

Table 5.10: Mean and standard deviation of hits and false alarms in each experimental condition in Experiment 4 [N=18]

	Hits					False Alarms				
	Sequential Presentation		Simultane Presentat	Simultaneous Presentation		Sequential Presentation		Simultaneous Presentation		
	Mean	SD	Mean	SD	Mean	SD	Mean	SD		
Unchanged Location	.582	.157	.772	.107	.199	.190	.090	.106		
Random Location	.610	.151	.647	.139	.241	.165	.255	.172		
Average	.596	.154	.709	.123	.220	.177	.172	.139		

Table 5.11: Mean and standard deviation of d primes and betas in each experimentalcondition in Experiment 4 [N=18]

	d'					Beta			
	Sequential Presentation		Simultane Presenta	Simultaneous Presentation		Sequential Presentation		Simultaneous Presentation	
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	
Unchanged Location	1.456	1.161	2.382	0.749	105.657	302.256	40.390	159.508	
Random Location	1.215	.932	1.153	0.543	41.647	170.334	1.465	.909	
Average	1.336	1.047	1.768	0.646	73.652	236.295	20.928	80.209	

Table 5.12: Repeated measures ANOVA of d primes for modes of presentation and locations in Experiment 4 [N=18]

Source	df	MS	F	р	partial η^2
Presentation Mode[A]	1	3.359	3.096	.096	.154
Error[A]	17	1.085			
Location [B]	1	9.715	31.006	.000	.646
Error [B]	17	.313			
A×B	1	4.396	11.826	.003	.410
Error [A×B]	17	.372			

Table 5.13: Bayesian repeated measures ANOVA of dprimes for modes of presentation andlocations in Experiment 4 [N=18]

Models	P[M]	P[M data]	BF _M	BF_{10}	Error%
Null Model [Incl. Participant]	.020	8 . 186×10 ⁻⁹	.003	1	
Presentation Mode[A]	.020	.001	.005	1.470	1.085
Location[B]	.020	.059	.252	72.278	.844
A +B	.020	.133	.612	162.148	1.89
A + B +[A × B]	.020	.806	16.626	984.679	2.574

Table 5.14: Repeated measures ANOVA of betas for modes of presentation and locations inExperiment 4 [N=18]

Source	df	MS	F	Р	partial η^2
Presentation Mode[A]	1	50038	1.354	.261	.074
Error[A]	17	36957			
Location [B]	1	47680	1.279	.274	.070
Error [B]	17	37288			
A×B	1	2832	.071	.793	.004
Error [A×B]	17	39879			

Table 5.15: Repeated measures ANOVA of dprimes for locations and selected swaps in sequential presentation in Experiment 4 [N=18]

Source	df	MS	F	р	partial η^2
Location[A]	1	1.374	•497	.490	.043
Error[A]	17	2.764			
Swaps [B]	3	8.228	4.453	.007	.169
Error [B]	51	1.848			
A×B	<u>1.923</u>	•954	.580	.567	.041
Error [A×B]	56.356	1.645			

[Underlined *df* indicates value after applying Greenhouse Geisser correction]

Table 5.16: Bayesian repeated measures ANOVA of d primes for locations and selected swaps in sequential presentation in Experiment 4 [N=18]

Models	P[M]	P[M data]	BF _M	BF_{10}	Error%
Null Model [Incl. Participants]	.020	.064	.271	1	
Location[A]	.020	.016	.065	.252	.771
Swaps[B]	.020	.715	10.043	10.953	1.666
A + B	.020	.184	.904	2.901	1.064
A + B +[A × B]	.020	.021	.086	.330	2.029

Table 5.17: Mixed ANOVA for comparison of Experiment 2 [N=18] and Experiment 4 [N=18] with modes of presentation and locations as repeated measures

Source	df	MS	F	Р	partial η^2
Between Participants					
Experiment [A]	1	2.145	1.496	.230	.042
Error[A]	34	1.434			
Within Participants					
Presentation Mode[B]	1	8.367	11.854	.002	.259
A×B	1	.090	.128	.723	.004
Error[B]	34	.706			
Location [C]	1	31.228	64.018	.000	.653
A×C	1	1.393	2.856	.100	.077
Error [C]	34	.488			
B×C	1	7.131	22.151	.000	.394
A×B×C	1	.087	.270	.607	.008
Error [A×B]	34	.322			

Models	P[M]	P[M data]	BF _M	BF ₁₀	Error %
Null Model [Incl. Participants]	.053	6.288×10 ⁻¹³	1 . 132×10 ⁻¹¹	1	
Presentation Mode [A]	.053	1 . 126×10 ⁻¹¹	2 . 027×10 ⁻¹⁰	17.912	3.802
Location [B]	.053	4•552×10 ⁻⁵	8.194×10 ⁻⁴	7 . 239×10 ⁺⁷	4.274
A + B	.053	0.005	0.093	8.204×10 ⁺⁹	2.48
A + B + [A × B]	.053	0.447	14.562	7 . 112×10 ⁺¹¹	1.677
Experiment [C]	.053	3 . 216×10 ⁻¹³	5.789×10 ⁻¹²	0.511	21.973
A + C	.053	4.535×10 ⁻¹²	8 . 163×10 ⁻¹¹	7.212	2.216
B + C	.053	1 . 996×10⁻⁵	3 . 593×10 ⁻⁴	3 . 175×10 ⁺⁷	1.868
A +B +C	.053	0.002	0.044	3 . 910×10 ⁺⁹	1.97
A + B + [A × B] +C	.053	0.234	5.49	3.717×10 ⁺¹¹	3.227
A + C + [A × C]	.053	1.160×10 ⁻¹²	2.087×10 ⁻¹¹	1.844	2.604
A + B + C+ [A × C]	.053	6.816×10⁻⁴	0.012	1.084×10 ⁺⁹	4.596
A + B + [A × B] + C+ [A × C]	.053	0.063	1.209	1.001×10 ⁺¹¹	4.685
B + C + [B × C]	.053	1 . 345×10⁻⁵	2 . 422×10 ⁻⁴	2 . 140×10 ⁺⁷	6.787
A + B + C+ [B × C]	.053	0.003	0.052	4 . 543×10 ⁺⁹	36.022
$A + B + [A \times B] + C + [B \times C]$.053	0.181	3.988	2.884×10 ⁺¹¹	2.173
$A + B + C + [A \times C] + [B \times C]$.053	4 . 736×10 ⁻⁴	0.009	7.531×10 ⁺⁸	6.499
$A + B + [A \times B] + C + [A \times C] + [B \times C]$.053	0.047	0.884	7.445×10 ⁺¹⁰	3.096
$A + B + [A \times B] + C + [A \times C] + [B \times C]$ $+[A \times B \times C]$.053	0.016	0.298	2.587×10 ⁺¹⁰	3.405

Table 5.18: Bayesian mixed ANOVA for comparison of Experiment 2 [N=18] and Experiment 4 [N=18] with modes of presentation and locations as repeated measures

Table 5.19: Mean and standard deviation of hits and false alarms in each experimental condition in Experiment 5 [N=18]

	Hits					False Alarms				
	Sequential Presentation		Simultane Presenta	Simultaneous Presentation		Sequential Presentation		Simultaneous Presentation		
	Mean	SD	Mean	SD	Mean	SD	Mean	SD		
Unchanged Location	.632	.089	.716	.101	.104	.079	.056	.058		
Random Location	.627	.101	.650	.112	.213	.112	.234	.100		
Average	.629	.095	.683	.106	.158	.095	.145	.079		

Table 5.20: Mean and standard deviation of d primes and betas in each experimentalcondition in Experiment 5 [N=18]

		c	1'		Beta				
	Sequential Presentation		Simultan Presenta	Simultaneous Presentation		Sequential Presentation		Simultaneous Presentation	
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	
Unchanged Location	1.913	•774	2.556	.923	114.062	323.645	137.460	309.346	
Random Location	1.198	.463	1.189	.520	1.556	.696	1.352	.642	
Average	1.556	.618	1.873	.722	57.809	162.170	69.406	154.994	

Table 5.21: Repeated measures ANOVA of d primes for modes of presentation and locationsin Experiment 5 [N=18]

Source	df	MS	F	р	partial η^2
Presentation Mode[A]	1	1.809	6.949	.017	.290
Error[A]	17	.260			
Location [B]	1	19.505	43.690	.000	.720
Error [B]	17	.446			
A×B	1	1.917	5.468	.032	.243
Error [A×B]	17	.351			

Table 5.22: Bayesian repeated measures ANOVA of d primes for modes of presentation and locations in Experiment 5 [N=18]

Models	P[M]	P[M data]	BF _M	BF ₁₀	Error%
Null Model [Incl. Participant]	.020	3.035×10 ⁻⁸	1 . 214×10 ⁻⁷	1	
Presentation Mode[A]	.020	2 . 262×10 ⁻⁸	9.048×10 ⁻⁸	•745	.895
Location[B]	.020	.130	.596	4.272×10 ⁶	1.385
A + B	.020	.238	1.247	7.832×10 ⁶	1.700
A + B +[A × B]	.020	.633	6.888	2.084×10 ⁷	2.632

Table 5.23: Repeated measures ANOVA of betas for modes of presentation and locations in Experiment 5 [N=18]

Source	df	MS	F	р	partial η^2
Presentation Mode[A]	1	2421	.076	.786	.004
Error[A]	17	31715			
Location [B]	1	278140	4.073	.060	.193
Error [B]	17	68282			
A×B	1	2507	.079	.782	.005
Error [A×B]	17	31703			

Table 5.24: Repeated measures ANOVA of d primes for locations and selected swaps insequential presentation in Experiment 5 [N=18]

Source	df	MS	F	р	partial η^2
Location[A]	1	32.186	14.124	.002	•454
Error[A]	17	2.279			
Swaps [B]	3	6.234	2.251	.094	.117
Error [B]	51	2.769			
A×B	3	.651	.513	.675	.029
Error [A×B]	51	1.271			

Table 5.25: Bayesian repeated measures ANOVA of d primes for locations and selected swaps in sequential presentation in Experiment 5 [N=18]

Models	P[M]	P[M data]	BF _M	BF ₁₀	Error%
Null Model [Incl. Participants]	.020	.002	.006	1	
Location[A]	.020	.352	2.175	227.101	2.131
Swaps[B]	.020	.002	.007	1.138	.820
A + B	.020	.581	5.542	374.475	1.339
A + B +[A × B]	.020	.064	.272	41.023	2.086

Table 5.26: Mixed ANOVA for comparison of Experiment 2 [N=18] and Experiment 5 [N=18] with modes of presentation and locations as repeated measures

Source	df	MS	F	р	partial η^2
Between Participants					
Experiment [A]	1	.239	.201	.657	.006
Error	34	1.188			
Within Participants					
Presentation Mode[B]	1	6.490	22.117	.000	•394
A×B	1	.417	1.421	.242	.040
Error[B]	34	.293			
Location [C]	1	42.343	76.382	.000	.692
A×C	1	.068	.123	.728	.004
Error [C]	34	•554			
B×C	1	4.695	15.081	.000	.307
A×B×C	1	.044	.140	.710	.004
Error [A×B]	34	.311			

Models	P[M]	P[M data]	BF _M	BF ₁₀	Error %
Null Model [Incl. Participants]	.053	2.678 ×10 ⁻²⁰	4 . 820×10 ⁻¹⁹	1	
Presentation Mode [A]	.053	1.517×10 ⁻²⁰	2 . 731×10 ⁻¹⁹	0.567	2.329
Location [B]	.053	0.068	1.322	2 . 555×10 ¹⁸	1.834
A + B	.053	0.122	2.506	4 . 564×10 ¹⁸	2.744
A + B + [A × B]	.053	0.098	1.948	3.648×10 ¹⁸	1.550
Experiment [C]	.053	8.249×10 ⁻²¹	1.485×10 ⁻¹⁹	0.308	1.450
A + C	.053	4.438×10 ⁻²¹	7.989×10 ⁻²⁰	0.166	1.230
B + C	.053	0.026	.480	9.698×10 ¹⁷	1.458
A +B +C	.053	0.047	.887	1.754×10 ¹⁸	3.200
A + B + [A × B] +C	.053	0.04	.753	1.499×10 ¹⁸	3.361
A + C + [A × C]	.053	1.203×10 ⁻²¹	2 . 166×10 ⁻²⁰	0.045	3.017
A + B + C+ [A × C]	.053	0.013	.230	4.717×10 ¹⁷	2.307
A + B + [A × B] + C+ [A × C]	.053	0.011	.198	4.068×10 ¹⁷	3.063
B + C + [B × C]	.053	0.095	1.900	3.565×10 ¹⁸	3.503
A + B + C+ [B × C]	.053	0.186	4.104	6.933×10 ¹⁸	2.254
A + B + [A × B] + C+ [B × C]	.053	0.165	3.548	6.149×10 ¹⁸	4.096
A + B+ C + [A × C] + [B × C]	.053	0.051	0.969	1.907×10 ¹⁸	4.155
$A + B + [A \times B] + C + [A \times C] + [B \times C]$.053	0.047	0.879	1.738×10 ¹⁸	6.583
$A + B + [A \times B] + C + [A \times C] + [B \times C]$ $+[A \times B \times C]$.053	0.032	0.589	1.183×10 ¹⁸	5.975

Table 5.27: Bayesian mixed ANOVA for comparison of Experiment 2 [N=18] and Experiment 5 [N=18] with modes of presentation and locations as repeated measures

Table 5.28: Mixed ANOVA for comparison of Experiments 2, 3, 4, and Experiment 5 [N=18 in each experiment] with modes of presentation and locations as repeated measures

Source	df	MS	F	р	partial η^2
Between Participants					
Experiment [A]	3	1.294	1.117	0.348	0.047
Error	68	1.158			
Within Participants					
Presentation Mode[B]	1	11.49	24.012	< .001	0.261
A×B	3	0.194	0.405	0.75	0.018
Error[B]	68	0.479			
Location [C]	1	64.845	156.388	< .001	0.697
A×C	3	0.538	1.298	0.282	0.054
Error [C]	68	0.415			
B×C	1	16.509	48.003	< .001	0.414
A×B×C	3	0.473	1.375	0.258	0.057
Error [A×B]	68	0.344			

	P[M]	P[M data]	BF _M	BF ₁₀	Error %
Null Model [Incl. Participants]	.053	2 . 103×10 ⁻³¹	3.785×10⁻³⁰	1	
Presentation Mode [A]	.053	3 . 418×10 ⁻²⁹	6.152×10 ⁻²⁸	162.518	2.329
Location [B]	.053	1.852×10 ⁻¹¹	3.334×10 ⁻¹⁰	8.807×10 ¹⁹	1.834
A + B	.053	1 . 231×10 ⁻⁷	2 . 216×10 ⁻⁶	5.854×10 ²³	2.744
A + B + [A × B]	.053	0.817	80.266	3.884×10 ³⁰	1.55
Experiment [C]	.053	2.013×10 ⁻³²	3.623×10 ⁻³¹	0.096	1.45
A + C	.053	3 . 330×10 ⁻³⁰	5.994×10 ⁻²⁹	15.835	1.23
B + C	.053	2.809×10 ⁻¹²	5.057×10 ⁻¹¹	1.336×10 ¹⁹	1.458
A +B +C	.053	1.935×10 ⁻⁸	3 . 483×10 ⁻⁷	9.202×10 ²²	3.2
A + B + [A × B] +C	.053	0.148	3.125	7.034×10 ²⁹	3.361
A + C + [A × C]	.053	1.676×10 ⁻³¹	3.018×10 ⁻³⁰	0.797	3.017
A + B + C+ [A × C]	.053	1 . 121×10 ⁻⁹	2.018×10 ⁻⁸	5.330×10 ²¹	2.307
$A + B + [A \times B] + C + [A \times C]$.053	0.009	0.168	4.405×10 ²⁸	3.063
B + C + [B × C]	.053	3 . 118×10 ⁻¹³	5.613×10 ⁻¹²	1.483×10 ¹⁸	3.503
A + B + C+ [B × C]	.053	2 . 484×10 ⁻⁹	4.471×10 ⁻⁸	1.181×10 ²²	2.254
$A + B + [A \times B] + C + [B \times C]$.053	0.024	0.442	1.140×10 ²⁹	4.096
A + B+ C + [A × C] + [B × C]	.053	1.481×10 ⁻¹⁰	2.666×10 ⁻⁹	7.044×10 ²⁰	4.155
$A + B + [A \times B] + C + [A \times C] + [B \times C]$.053	0.002	0.028	7.338×10 ²⁷	6.583
$A + B + [A \times B] + C + [A \times C] + [B \times C]$ $+[A \times B \times C]$.053	4 . 208×10 ⁻⁴	0.008	2.026×10 ²⁷	5.975

Table 5.29: Bayesian mixed ANOVA for comparison of Experiments 2, 3, 4, and Experiment 5 [N=18 in each experiment] with modes of presentation and locations as repeated measures

A.3 TABLES FOR CHAPTER 6

	Hits				False alarms			
	Sequentia Presentat	al tion	Simultaneous Presentation		Sequential Presentation		Simultaneous Presentation	
	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Unchanged Location	.453	.117	·479	.138	.213	.232	.280	.285
Random Location	.407	.142	•444	.174	.275	.248	.326	.279
Average	.430	.129	.461	.156	.244	.240	.303	.282

Table 6.7: Mean and standard deviation of hits and false alarms in each experimental condition for behavioral responses in the fMRI experiment [N=18]

Table 6.8: Mean and standard deviation of d primes and betas in each experimentalcondition for behavioral responses in the fMRI experiment [N=18]

		c	'		Beta			
	Sequentia Presenta	al tion	Simultaneous Presentation		Sequential Presentation		Simultaneous Presentation	
	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Unchanged Location	1.096	1.080	1.058	1.650	107.794	307.149	156.704	357.700
Random Location	•472	.661	.502	1.054	1.756	0.803	54.572	225.278
Average	.784	.871	.780	1.352	54.775	153.976	105.638	291.489

Table 6.9: Repeated measures ANOVA of d primes for modes of presentation and locations for behavioral responses in the fMRI experiment [N=18]

Source	df	MS	F	р	partial η^2
Presentation Mode[A]	1	.000	.000	.986	.000
Error[A]	17	1.097			
Location [B]	1	6.263	7.855	.012	.316
Error [B]	17	.797			
A×B	1	.020	.039	.845	.002
Error [A×B]	17	.519			

Table 6.10: Bayesian repeated measures ANOVA of d primes for modes of presentation and locations for behavioral responses in the fMRI experiment [N=18]

Models	P[M]	P[M data]	BF _M	BF ₁₀	Error %
Null Model [Incl. Participants]	.020	0.099	.438	1	
Presentation Mode[A]	.020	0.026	.105	.261	9.761
Location [B]	.020	0.663	7.886	6.727	1.356
A + B	.020	0.163	.778	1.651	2.356
A + B + [A × B]	.020	0.049	.208	.501	1.796

Table 6.11: Repeated measures ANOVA of betas for modes of presentation and locations for behavioral responses in the fMRI experiment [N=18]

Source	df	MS	F	р	partial η^2
Presentation Mode[A]	1	46566.83	.618	•443	.035
Error[A]	17	75354.64			
Location [B]	1	195004.5	2.91	.106	.146
Error [B]	17	67020.99			
A×B	1	68.68	8.810×10 ⁻⁴	·977	0
Error [A×B]	17	77960.29			

Table 6.12: ANOVA of d primes for locations and selected swaps in sequential presentation for behavioral responses in the fMRI experiment [N=18]

Source	df	MS	F	р	partial η^2
Location[A]	1	1.467	.717	.409	.040
Error[A]	17	2.045			
Swaps [B]	3	1.690	.835	.467	.047
Error [B]	51	2.023			
A×B	3	.509	.220	.861	.013
Error [A×B]	51	2.317			

Table 6.13: Bayesian repeated measures ANOVA of d primes for locations and selected swaps in sequential presentation for behavioral responses in the fMRI experiment [N=18]

Models	P[M]	P[M data]	BF _M	BF ₁₀	Error %
Null Model [Incl. Participants]	.020	.728	10.711	1	
Location [A]	.020	.185	.909	.254	1.155
Swaps [B]	.020	.067	.288	.092	.550
A + B	.020	.018	.073	.025	2.846
A + B + [A × B]	.020	.002	.007	002	2.124

Table 6.14: Mixed ANOVA for comparison of Experiment 3 [N=18] and the fMRI Experiment [N=18] with modes of presentation and locations as repeated measures

Source	df	MS	F	р	partial η^2
Between Participants					
Experiment [A]	1	19.196	9.326	0.004	0.215
Error	34	2.058			
Within Participants					
Presentation Mode[B]	1	0.879	1.313	0.26	0.037
A×B	1	0.927	1.385	0.247	0.039
Error[B]	34	0.669			
Location [C]	1	19.773	38.254	< .001	0.529
A×C	1	0.823	1.593	0.215	0.045
Error [C]	34	0.517			
B×C	1	3.983	8.852	0.005	0.207
A×B×C	1	4.83	10.734	0.002	0.24
Error [A×B]	34	0.45			

Models	P[M]	P[M data]	BF _M	BF ₁₀	Error %
Null Model [Incl. Participants]	.053	1 . 422×10 ⁻⁷	2 . 560×10 ⁻⁶	1	
Presentation Mode [A]	.053	4 . 102×10 ⁻⁸	7.384×10 ⁻⁷	0.288	0.921
Location [B]	.053	0.013	0.246	94626.76	10.76
A + B	.053	0.004	0.072	27860.49	2.905
A + B + [A × B]	.053	0.016	0.292	112430.6	1.851
Experiment [C]	.053	1 . 235×10 ⁻⁶	2 . 222×10 ⁻⁵	8.513	1.725
A + C	.053	3•459×10 ⁻⁷	6 . 226×10 ⁻⁶	2.432	1.284
B + C	.053	0.114	2.327	805022.9	3.928
A +B +C	.053	0.036	0.68	255964.3	1.896
A + B + [A × B] +C	.053	0.169	3.651	1.186×10 ⁺⁶	2.714
A + C + [A × C]	.053	1 . 395×10 ⁻⁷	2 . 511×10 ⁻⁶	0.981	1.757
A + B + C+ [A × C]	.053	0.017	0.314	120446.8	5.793
$A + B + [A \times B] + C + [A \times C]$.053	0.074	1.432	518255.6	3.287
B + C + [B × C]	.053	0.047	0.89	331322.8	2.698
A + B + C+ [B × C]	.053	0.015	0.273	105180.2	2.018
$A + B + [A \times B] + C + [B \times C]$.053	0.072	1.388	503558.4	8.105
A + B+ C + [A × C] + [B × C]	.053	0.008	0.145	56371.64	8.589
$A + B + [A \times B] + C + [A \times C] + [B \times C]$.053	0.032	0.604	220614.3	4.16
$A + B + [A \times B] + C + [A \times C] + [B \times C]$ $+ [A \times B \times C]$.053	0.382	11.129	2.543×10 ⁺⁶	12.023

Table 6.15: Bayesian mixed ANOVA for comparison of Experiment 3 [N=18] and the fMRI Experiment [N=18] with modes of presentation and locations as repeated measures

Table 6.16: Mean and standard deviation of mean parameter estimates in each experimental condition for each region of interest in the fMRI experiment [N=18]

ROIs	Sequential presentation				Simu	ltaneous	present	ation
	Uncha loca	Unchanged Random location location		Uncha loca	anged tion	Ran loca	dom tion	
	Mean	SD	Mean	SD	Mean	SD	Mean	SD
R-Superior Parietal Cortex	.905	1.295	1.351	.810	.529	.918	1.658	1.543
R-Intra Parietal Cortex	1.032	•735	1.015	.401	•797	•793	1.347	.710
R-Superior Parietal Lobule	1.174	•795	1.403	.862	.882	.823	1.854	1.126
L-Superior Parietal Lobule	1.117	.650	1.273	.580	.782	.624	1.596	1.097
L-Intra Parietal Sulcus	.723	.587	1.061	.496	•395	.610	1.261	.710
R- Intra Parietal Sulcus	.940	.863	1.391	.861	.612	.854	1.724	1.170
L-Precentral Gyrus	.558	.406	.520	.384	.302	.261	•594	.496
R-Fusiform Area	1.567	1.173	1.638	1.075	1.114	1.005	2.236	1.674
L-Anterior Hippocampus	007	.227	.113	.228	033	.226	.099	.282
R-Supra marginal Gyrus	.186	.563	058	.546	.193	.654	.014	.803

Table 6.17: Repeated measures ANOVA of mean parameter estimates in the Right Superior Parietal Cortex for modes of presentation and locations in the fMRI experiment [N=18]

Source	df	MS	F	р	partial η^2
Presentation Mode[A]	1	.022	.040	.844	.002
Error[A]	17	.550			
Location [B]	1	11.169	23.989	.001	.585
Error [B]	17	.466			
A×B	1	2.101	3.024	.100	.151
Error [A×B]	17	.695			

Table 6.18: Bayesian repeated measures ANOVA of mean parameter estimates in the Right Superior Parietal Cortex for modes of presentation and locations in the fMRI experiment [N=18]

Models	P[M]	P[M data]	BF _M	BF ₁₀	Error%
Null Model [Incl. Participants]	.020	0.002	0.007	1	
Presentation Mode[A]	.020	4 . 456×10 ⁻⁴	0.002	0.242	1.46
Location[B]	.020	0.652	7.48	353.177	5.303
A + B	.020	0.149	0.698	80.496	3.227
A + B +[A × B]	.020	0.198	0.985	107.121	2.176

Table 6.19: Repeated measures ANOVA of mean parameter estimates in the Right IntraParietal Cortex for modes of presentation and locations in the fMRI experiment [N=18]

Source	df	MS	F	р	partial η^2
Presentation Mode[A]	1	.041	.149	.704	.009
Error[A]	17	.278			
Location [B]	1	1.274	4.979	.039	.227
Error [B]	17	.256			
A×B	1	1.448	5.412	.033	.241
Error [A×B]	17	.268			

Table 6.20: Bayesian repeated measures ANOVA of mean parameter estimates in the Right Intra Parietal Cortex for modes of presentation and locations in the fMRI experiment [N=18]

Models	P[M]	P[M data]	BF _M	BF₁₀	Error%
Null Model [Incl. Participants]	.020	0.228	1.18	1	
Presentation Mode[A]	.020	0.057	0.243	0.251	0.914
Location[B]	.020	0.381	2.462	1.672	2.85
A + B	.020	0.092	0.405	0.403	1.374
A + B +[A × B]	.020	0.242	1.278	1.063	1.692

Table 6.21: Repeated measures ANOVA of mean parameter estimates in the Right SuperiorParietal Lobule for modes of presentation and locations in the fMRI experiment [N=18]

Source	df	MS	F	р	partial η^2
Presentation Mode[A]	1	.113	•435	.518	.025
Error[A]	17	.261			
Location [B]	1	6.483	15.637	.001	·479
Error [B]	17	.415			
A×B	1	2.486	7.748	.013	.313
Error [A×B]	17	.321			

Table 6.22: Bayesian repeated measures ANOVA of mean parameter estimates in the Right Superior Parietal Lobule for modes of presentation and locations in the fMRI experiment [N=18]

Models	P[M]	P[M data]	BF _M	BF _M BF ₁₀	
Null Model [Incl. Participants]	.020	0.002	0.007	1	
Presentation Mode[A]	.020	4 . 569×10 ⁻⁴	0.002	0.269	2.045
Location[B]	.020	0.348	2.136	204.75	0.866
A + B	.020	0.095	0.421	56.071	2.413
A + B +[A × B]	.020	0.554	4.977	326.101	6.808

Table 6.23: Repeated measures ANOVA of mean parameter estimates in the Left SuperiorParietal Lobule for modes of presentation and locations in the fMRI experiment [N=18]

Source	df	MS	F	р	partial η^2
Presentation Mode[A]	1	6.481×10 ⁻⁴	.004	.953	0
Error[A]	17	.185			
Location [B]	1	4.238	9.671	.006	.363
Error [B]	17	.438			
A×B	1	1.954	5.876	.027	.257
Error [A×B]	17	.332			

Table 6.24: Bayesian repeated measures ANOVA of mean parameter estimates in the Left Superior Parietal Lobule for modes of presentation and locations in the fMRI experiment [N=18]

Models	P[M]	P[M data]	BF _M	BF ₁₀	Error%
Null Model [Incl. Participants]	.020	0.013	0.054	1	
Presentation Mode[A]	.020	0.004	0.015	0.285	16.065
Location[B]	.020	0.459	3.387	34.226	1.406
A + B	.020	0.111	0.501	8.313	2.23
A + B +[A × B]	.020	0.413	2.813	30.82	5.033

Table 6.25: Repeated measures ANOVA of mean parameter estimates in the Left Intra Parietal Sulcus for modes of presentation and locations in the fMRI experiment [N=18]

Source	Df	MS	F	р	partial η^2
Presentation Mode[A]	1	.074	.359	.557	0.021
Error[A]	17	.205			
Location [B]	1	6.524	17.076	.001	.501
Error [B]	17	.382			
A×B	1	1.251	4.433	.050	.207
Error [A×B]	17	.282			

Table 6.26: Bayesian repeated measures ANOVA of mean parameter estimates in the Left Intra Parietal Sulcus for modes of presentation and locations in the fMRI experiment [N=18]

Models	P[M]	P[M data]	BF _M	BF_{10}	Error%
Null Model [Incl. Participants]	.020	3 . 827×10 ⁻⁴	0.002	1	
Presentation Mode[A]	.020	1.026×10 ⁻⁴	4 . 106×10 ⁻⁴	0.268	3.874
Location[B]	.020	0.574	5.384	1498.968	1.906
A + B	.020	0.154	0.729	402.544	2.423
A + B +[A × B]	.020	0.272	1.492	709.904	1.638

Table 6.27: Repeated measures ANOVA of mean parameter estimates in the Right Intra Parietal Sulcus for modes of presentation and locations in the fMRI experiment [N=18]

Source	df	MS	F	р	partial η^2
Presentation Mode[A]	1	1.378e -4	3 . 511×10 ⁻⁴	.985	0
Error[A]	17	0.393			
Location [B]	1	10.985	18.662	.001	.523
Error [B]	17	0.589			
A×B	1	1.968	5.686	.029	.251
Error [A×B]	17	0.346			

 Table 6.28:
 Bayesian repeated measures ANOVA of mean parameter estimates in the Right

 Intra Parietal Sulcus for modes of presentation and locations in the fMRI experiment [N=18]

Models	P[M]	P[M data]	BF _M	BF ₁₀	Error%
Null Model [Incl. Participants]	.020	3 . 488×10 ⁻⁴	0.001	1	
Presentation Mode[A]	.020	8.502×10 ⁻⁵	3.401×10 ⁻⁴	0.244	1.4
Location[B]	.020	0.601	6.029	1723.461	1.267
A + B	.020	0.146	0.681	417.235	3.724
A + B +[A × B]	.020	0.253	1.354	725.024	2.818

Table 6.29: Repeated measures ANOVA of mean parameter estimates in the Left Precentral Gyrus for modes of presentation and locations in the fMRI experiment [N=18]

Source	df	MS	F	р	partial η^2
Presentation Mode[A]	1	.149	1.715	0.208	0.092
Error[A]	17	.087			
Location [B]	1	.292	2.002	0.175	0.105
Error [B]	17	.146			
A×B	1	.489	7.127	0.016	0.295
Error [A×B]	17	.069			

Table 6.30: Bayesian repeated measures ANOVA of mean parameter estimates in the Left Precentral Gyrus for modes of presentation and locations in the fMRI experiment [N=18]

Models	P[M]	P[M data]	BF _M BF ₁₀		Error%
Null Model [Incl. Participants]	.020	0.306	1.76	1	
Presentation Mode[A]	.020	0.135	0.623	0.441	1.636
Location[B]	.020	0.231	1.204	0.757	0.93
A + B	.020	0.101	0.448	0.33	1.629
A + B +[A × B]	.020	0.228	1.179	0.745	2.144

Table 6.31: Repeated measures ANOVA of mean parameter estimates in the Right Fusiform Area for modes of presentation and locations in the fMRI experiment [N=18]

Source	df	MS	F	р	partial η^2
Presentation Mode[A]	1	.095	.141	.712	.008
Error[A]	17	.675			
Location [B]	1	6.416	5.895	.027	.257
Error [B]	17	1.088			
A×B	1	4.970	9.66	.006	.362
Error [A×B]	17	.515			

Table 6.32: Bayesian repeated measures ANOVA of mean parameter estimates in the Right Fusiform Area for modes of presentation and locations in the fMRI experiment [N=18]

Models	P[M]	P[M data]	BF _M	BF _M BF ₁₀	
Null Model [Incl. Participants]	.020	0.069	0.298	1	
Presentation Mode[A]	.020	0.017	0.071	0.252	1.278
Location[B]	.020	0.402	2.694	5.799	1.168
A + B	.020	0.107	0.48	1.543	3.936
A + B +[A × B]	.020	0.404	2.707	5.815	2.519

Table 6.33: Repeated measures ANOVA of mean parameter estimates in the Left Anterior Hippocampus for modes of presentation and locations in the fMRI experiment [N=18]

Source	df	MS	F	р	partial η^2
Presentation Mode[A]	1	.007	.172	.683	.010
Error[A]	17	.041			
Location [B]	1	.291	3.906	.065	.187
Error [B]	17	.075			
А×В	1	6.239×10 ⁻⁴	.024	.878	.001
Error [A×B]	17	.026			

Table 6.34: Bayesian repeated measures ANOVA of mean parameter estimates in the Left Anterior Hippocampus for modes of presentation and locations in the fMRI experiment [N=18]

Models	P[M]	P[M data]	BF _M	BF ₁₀	Error%
Null Model [Incl. Participants]	.020	0.154	0.727	1	
Presentation Mode[A]	.020	0.039	0.164	0.256	2.12
Location[B]	.020	0.604	6.107	3.93	0.978
A + B	.020	0.155	0.732	1.006	1.617
A + B +[A × B]	.020	0.048	0.202	0.312	1.997

Table 6.35: Repeated measures ANOVA of mean parameter estimates in the Right Supra marginal Gyrus for modes of presentation and locations in the fMRI experiment [N=18]

Source	df	MS	F	р	partial η^2
Presentation Mode[A]	1	1	.028	.105	.75
Error[A]	17	17	.272		
Location [B]	1	1	.808	.847	.192
Error [B]	17	17	.438		
A×B	1	1	.020	.079	.782
Error [A×B]	17	17	.253		

Table 6.36: Bayesian repeated measures ANOVA of mean parameter estimates in the Right Supra marginal Gyrus for modes of presentation and locations in the fMRI experiment [N=18]

Models	P[M]	P[M data]	BF _M	BF ₁₀	Error%
Null Model [Incl. Participants]	.020	0.443	3.182	1	
Presentation Mode[A]	.020	0.109	0.49	0.246	0.787
Location[B]	.020	0.336	2.027	0.759	1.259
A + B	.020	0.083	0.361	0.187	1.959
A + B +[A × B]	.020	0.029	0.119	0.065	6.019

References

- Adam,K.C., and Serences,J.T., (2019), "Working Memory: Flexible but Finite", Neuron, Vol. 103, No. 2, pp. 184-185.
- Ahmad, J., Swan, G., Bowman, H., Wyble, B., Nobre, A.C., Shapiro, K.L., and McNab, F., (2018), "Competitive interactions affect working memory performance for both simultaneous and sequential stimulus presentation", *Scientific Reports*, Vol. 7, No. 1, pp. 1-16.
- Alexandropoulos, S.A.N., Aridas, C.K., Kotsiantis, S.B., and Vrahatis, M.N., (2019), "Multi-objective evolutionary optimization algorithms for machine learning: A recent survey", *Approximation and Optimization, Springer Optimization and its Applications*, Edited by Demetriou I., Pardalos P., Vol. 145, pp. 35-55.
- Allen, R.J., Baddeley, A.D., and Hitch, G.J., (2006), "Is the binding of visual features in working memory resource-demanding?", *Journal of Experimental Psychology: General*, Vol. 135, No. 2, pp. 298-313.
- Allen, R., J., Baddeley, A., D., and Hitch, G., J., (2014), "Evidence for two attentional components in visual working memory", *Journal of Experimental Psychology: Learning, Memory, and Cognition*, Vol. 40, No. 6, pp. 1499-1509.
- Allen, R.J., Hitch, G.J., and Baddeley, A.D., (2009), "Cross-modal binding and working memory", Visual Cognition, Vol. 17, No. 1-2, pp. 83-102.
- Allen, R.J., Hitch, G.J., and Baddeley, A.D., (2018), "Exploring the sentence advantage in working memory: Insights from serial recall and recognition", *Quarterly Journal of Experimental Psychology*, Vol. 71, No. 12, pp. 2571-2585.
- Allen, R.J., Hitch, G.J., Mate, J., and Baddeley, A.D., (2012), "Feature binding and attention in working memory: A resolution of previous contradictory findings", *The Quarterly Journal of Experimental Psychology*, Vol. 65, No. 12, pp. 2369-2383.
- Alvarez,G.A., and Cavanagh,P., (2004), "The capacity of visual short-term memory is set both by visual information load and by number of objects", *Psychological Science*, Vol. 15, No.2, pp. 106-111.
- Alvarez,G.A., and Thompson,T.W., (2009), "Overwriting and rebinding: Why feature-switch detection tasks underestimate the binding capacity of visual working memory", *Visual Cognition*, Vol. 17, No. 1-2, pp. 141-159.
- Angela, J.Y., and Dayan, P., (2005), "Uncertainty, neuromodulation, and attention", *Neuron*, Vol. 46, No. 4, pp. 681-692.
- Arend, I., Rafal, R., and Ward, R., (2011), "Temporal feature integration in the right parietal cortex", *Neuropsychologia*, Vol. 49, No. 7, pp. 1788-1793.
- Ashbridge, E., Walsh, V., and Cowey, A., (1997), "Temporal aspects of visual search studied by transcranial magnetic stimulation", *Neuropsychologia*, Vol. 35, No. 8, pp. 1121-1131.
- Ashburner, J., Barnes, G., Chen, C., Daunizeau, J., Flandin, G., Friston, K., Jafarian, A., Kiebel, S., Kilner, J., Litvak, V., Moran, R., Penny, W., Razi, A., Stephen, K., Tak, S., Ziedman, P., Gitelman, D., Henson, S., Huton, C., Glauche, V., Mattout, J., and Phillips, C., (2020), SPM 12 Manual. Retrieved from https://www.fil.ion.ucl.ac.uk/spm/doc/spm12 on 09 August 2020.
- Ashby,F.G., Prinzmetal,W., Ivry,R., and Maddox,W.T., (1996), "A formal theory of feature binding in object perception", *Psychological Review*, Vol. 103, No. 1, pp. 165-192.
- Atkinson,A.L., Baddeley,A.D., and Allen,R.J., (2018), "Remember some or remember all? Ageing and strategy effects in visual working memory", *Quarterly Journal of Experimental Psychology*, Vol. 71, No. 7, pp. 1561-1573.
- Atkinson, A.L., Waterman, A.H., and Allen, R.J., (2019), "Can children prioritize more valuable information in working memory? An exploration into the effects of motivation and memory load", *Developmental Psychology*, Vol. 55, No. 5, pp. 967-980.
- Baars, B.J., (1988), A Cognitive Theory of Consciousness., Cambridge University Press, Cambridge, U.K..

Baddeley, A.D., (1986), Working Memory, Clarendon Press, Oxford, U.K..

Baddeley, A.D., (2000), "The episodic buffer: a new component of working memory?", *Trends in Cognitive Sciences*, Vol. 4, No.11, pp. 417-423.

Baddeley, A.D., (2007), Working Memory, Thought, and Action, Oxford University Press, Oxford, U.K..

- Baddeley, A.D., Allen, R., J., and Hitch, G., J., (2011), "Binding in visual working memory: The role of the episodic buffer", *Neuropsychologia*, Vol. 49, No. 6, pp. 1393-1400.
- Baddeley, A.D., and Hitch, G.J., (1974), "Working memory", *The psychology of learning and motivation: Advances in research and theory*, Edited by G. H. Bower, Academic Press: San Diego, CA, Vol. 7, pp. 47-89.
- Bansal,R., and Peterson,B.S., (2018), "Cluster-level statistical inference in fMRI datasets: the unexpected behavior of random fields in high dimensions", *Magnetic Resonance Imaging*, Vol. 49, pp. 101-115.
- Barlow, H.B., (1995), "The neuron doctrine in perception," in *The Cognitive Neurosciences*, Edited by M. S. Gazzaniga, MIT Press, Cambridge, MA, 415–434.
- Barlow,H.B., (2009), "Grandmother cells, symmetry, and invariance: how the term arose and what the facts suggest," The Cognitive Neurosciences, 4th Edition, Edited by M. Gazzaniga,: MIT Press, Cambridge, MA, pp 309–320.
- Barrouillet,P., and Camos,V., (2007), "The time-based resource-sharing model of working memory", *The Cognitive Neuroscience of Working Memory*", Vol. 455, pp. 59-80.
- Barrouillet,P., Bernardin,S., and Camos,V., (2004), "Time constraints and resource sharing in adults' working memory spans", *Journal of Experimental Psychology: General*, Vol. 133. No.1, pp. 83-100.
- Baumgartner, F., Hanke, M., Geringswald, F., Zinke, W., Speck, O., and Pollmann, S., (2013), "Evidence for feature binding in the superior parietal lobule", *Neuroimage*, Vol. 68, pp. 173-180.
- Bays, P.M., and Husain, M., (2008), "Dynamic shifts of limited working memory resources in human vision", *Science*, Vol. 321, No. 5890, pp. 851-854.
- Bays, P.M., Gorgoraptis, N., Wee, N., Marshall, L., and Husain, M., (2011), "Temporal dynamics of encoding, storage, and reallocation of visual working memory", *Journal of Vision*, Vol.10, No.6, pp. 1-15.
- Beauchamp,M.S., Petit,L., Ellmore,T.M., Ingeholm,J., and Haxby,J.V., (2001), "A parametric fMRI study of overt and covert shifts of visuospatial attention", *Neuroimage*, Vol. 14, No. 2, pp. 310-321.
- Beck, A.T., Steer, R.A., and Brown, G.K., (1996), "Beck depression inventory-II", San Antonio, Vol. 78, No. 2, pp. 490-498.
- Becker, M.W., and Rasmussen, I.P., (2008), "Guidance of attention to objects and location by long term memory of natural scenes", *Journal of Experimental Psychology: Learning, Memory, and Cognition*, Vol. 34, No. 6, pp. 1325-1338.
- Becker, M.W., Pashler, H., and Anstis, S.M., (2000), "The role of iconic memory in change-detection tasks", *Perception*, Vol. 29, No. 3, pp. 273-286.
- Bernstein, L.J., and Robertson, L.C., (1998), "Illusory conjunctions of color and motion with shape following bilateral parietal lesions", *Psychological Science*, Vol. 9, No. 3, pp. 167-175.
- Berry, E.D., Waterman, A.H., Baddeley, A.D., Hitch, G.J., and Allen, R.J., (2018), "The limits of visual working memory in children: Exploring prioritization and recency effects with sequential presentation", *Developmental Psychology*, Vol. 54, No. 2, pp. 240-252.
- Bettencourt,K.C., and Xu,Y., (2016), "Understanding location-and feature-based processing along the human intraparietal sulcus", *Journal of Neurophysiology*, Vol. 116, No. 3, pp. 1488-1497.
- Blalock,L.D., and Clegg,B.A., (2010), "Encoding and representation of simultaneous and sequential arrays in visuospatial working memory", *The Quarterly Journal of Experimental Psychology*, Vol. 63, No. 5, pp. 856-862.
- Botly,L.C., and De Rosa,E., (2008), "A cross-species investigation of acetylcholine, attention, and feature binding", *Psychological Science*, Vol. 19, No. 11, pp. 1185-1193.
- Botly,L.C., and De Rosa,E., (2012), "Impaired visual search in rats reveals cholinergic contributions to feature binding in visuospatial attention", *Cerebral Cortex*, Vol. 22, No. 10, pp. 2441-2453.
- Bouchacourt, F., and Buschman, T.J., (2019), "A flexible model of working memory", *Neuron*, Vol. 103, No. 1, pp. 147-160.
- Bowler, D.M., Gaigg, S.B., and Gardiner, J.M., (2014), "Binding of multiple features in memory by highfunctioning adults with autism spectrum disorder", *Journal of Autism and Developmental Disorders*, Vol. 44, No. 9, pp. 2355-2362.
- Braet,W., and Humphreys,G.W., (2009), "The role of reentrant processes in feature binding: Evidence from neuropsychology and TMS on late onset illusory conjunctions", *Visual Cognition*, Vol. 17. No. 1-2, pp. 25-47.
- Bressler, D.W., and Silver, M.A., (2010), "Spatial attention improves reliability of fMRI retinotopic mapping signals in occipital and parietal cortex", *Neuroimage*, Vol. 53, No. 2, pp. 526-533.

- Brett, M., Anton, J.L., Valabregue, R., and Poline, J.B., (2002), "Region of interest analysis using the MarsBar toolbox for SPM 99", *Neuroimage*, Vol. 16, No. 2, S497.
- Brockmole, J.R., Wang, R.F., and Irwin, D.E., (2002), "Temporal integration between visual images and visual percepts", *Journal of Experimental Psychology: Human Perception and Performance*, Vol. 28, No. 2, pp. 315–334.
- Brown,E.N., and Behrmann,M., (2017), "Controversy in statistical analysis of functional magnetic resonance imaging data", *Proceedings of the National Academy of Sciences*, Vol. 114, No. 17, pp. 3368-3369.
- Brown,L.A., and Brockmole,J.R., (2010), "The role of attention in binding visual features in working memory: Evidence from cognitive ageing" *The Quarterly Journal of Experimental Psychology*, Vol. 63, No. 10, pp. 2067-2079.
- Brown,L.A., Niven,E.H., Logie,R.H., Rhodes,S., and Allen,R.J., (2017), "Visual feature binding in younger and older adults: encoding and suffix interference effects", *Memory*, Vol. 25, No. 2, pp. 261-275.
- Bullier, J., (2001), "Feedback connections and conscious vision", *Trends in Cognitive Sciences*, Vol. 5, No. 9, pp. 369-370.
- Busey,T.A., and Loftus,G.R., (1994), "Sensory and cognitive components of visual information acquisition", *Psychological Review*, Vol. 101, No. 3, pp. 446-469.
- Bushara,K..O., Hanakawa,T., Immisch,I., Toma,K., Kansaku,K., and Hallett,M., (2003), "Neural correlates of cross-modal binding", *Nature Neuroscience*, Vol. 6, No. 2, pp. 190-195.
- Cermak,L.,S., (1976), "The encoding capacity of a patient with amnesia due to encephalitis", *Neuropsychologia*, Vol. 14, No. 3, pp. 311-326.
- Chelazzi,L., Miller,E.K., Duncan,J., and Desimone,R., (1993), "A neural basis for visual search in inferior temporal cortex", *Nature*, Vol. 363, No. 6427, pp. 345-347.
- Chun, M.M., and Marois, R., (2002), "The dark side of visual attention", *Current Opinion in Neurobiology*, Vol. 12, No. 2, pp. 184-189.
- Chun, M.M., and Phelps, E.A., (1999), ".Memory deficits for implicit contextual information in amnesic participants with hippocampal damage", *Nature Neuroscience*, Vol. 2, No. 9, pp. 844-847.
- Chun, M.M., Golomb, J.D., and Turk-Browne, N.B., (2011), "A taxonomy of external and internal attention", *Annual Review of Psychology*, Vol. 62, pp. 73-101.
- Cinel,C., and Humphreys,G.W., (2006), "On the relations between implicit and explicit spatial binding: Evidence from Balint's syndrome", *Cognitive Affective and Behavioral Neuroscience*, Vol. 6, No. 2, pp. 127-140.
- Cohen, A., and Ivry, R.B., (1991), "Density effects in conjunction search: Evidence for a coarse location mechanism of feature integration", *Journal of Experimental Psychology: Human Perception and Performance*, Vol. 17, No. 4, pp. 891-901.
- Cohen, A., and Rafal, R.D., (1991), "Attention and feature integration: Illusory conjunctions in a patient with a parietal lobe lesion", *Psychological Science*, Vol. 2, No. 2, pp. 106-110.
- Cohen, J., (1973), "Eta-squared and partial eta-squared in fixed factor ANOVA designs", *Educational and Psychological Measurement*, Vol. 33, No. 1, pp. 107-112.
- Cohen, J., Perlstein, W.M., Braver, T.S., Nystrom, L.E., Noll, D.C., Jonides, J., and Smith, E.E., (1997), "Temporal dynamics of brain activation during a working memory task", *Nature*, Vol. 386, No. 6625, pp. 604-608.
- Colby,C.L., and Goldberg,M.E., (1999), "Space and attention in parietal cortex", Annual Review of Neuroscience, Vol. 22, No.1, pp. 319-349.
- Coltheart, M., (1980), "The persistencies of vision", *Philosophical Transactions of the Royal Society of London Series B - Biological Sciences*, Vol. 290, No. 1038, pp. 57-69.
- Colzato,L.S., Raffone,A., and Hommel,B., (2006), "What do we learn from binding features? Evidence for multilevel feature integration", *Journal of Experimental Psychology: Human Perception and Performance*, Vol. 32, No. 3, pp. 705-716.
- Conway, C.M., and Christiansen, M.H., (2009), "Seeing and hearing in space and time: Effects of modality and presentation rate on implicit statistical learning", *European Journal of Cognitive Psychology*, Vol. 21, No. 4, pp. 561-580.
- Corbetta,M., (1998), "Functional anatomy of visual attention in the human brain: Studies with positron emission tomography" In *The attentive brain* Edited by R. Parasuraman, The MIT Press, Cambridge, MA, pp. 95-122.

- Corbetta,M., and Shulman,G.L., (1998), "Human cortical mechanisms of visual attention during orienting and search", *Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences*, Vol. 353, No. 1373, pp. 1353-1362.
- Coull,J.T., Walsh,V., Frith,C.D., and Nobre,A.C., (2003), "Distinct neural substrates for visual search amongst spatial versus temporal distracters", *Cognitive Brain Research*, Vol. 17, No. 2, pp. 368-379.

Cowan, N., (2005), Working memory capacity, Psychology Press, New York, USA.

Cowan, N., (2010), "The magical mystery four: How is working memory capacity limited, and why?", *Current Directions in Psychological Science*, Vol. 19, No. 1, pp. 51-57.

Craig,A., (2009), "How do you feel now? The anterior insula and human awareness", *Nature Reviews Neuroscience*, Vol. 10, No. 1, pp. 59-70.

Crick, F., and Koch, C., (1990), "Some reflections on visual awareness", Brain, Vol. 55, pp. 953-962.

- Damasio, A.R., (1989), "Time-locked multiregional retroactivation A systems-level proposal for the neural substrates of recall and recognition", *Cognition*, Vol. 33, No. 1, pp. 25-62.
- Darling, S., Sala, S.D., and Logie, R.H., (2009), "Dissociation between appearance and location within visuospatial working memory", *The Quarterly Journal of Experimental Psychology*, Vol. 62, No. 3, pp. 417-425.
- Dehaene,S., and Changeux,J.P., (2004), "Neural mechanisms for access to consciousness", *The Cognitive Neurosciences*, 3rd Edition, Edited by M. Gazzaniga, MIT Press, Cambridge, MA, pp. 1145-58.
- Delogu, F., Postma, A., and Nijboer, T.C., (2012), "Binding "when" and "where" impairs temporal, but not spatial recall in auditory and visual working memory", *Frontiers in Psychology*, Vol. 3, No. 62, pp. 1-6.
- Delvenne, J.F., Cleeremans, A., and Laloyaux, C., (2009), "Feature bindings are maintained in visual shortterm memory without sustained focused attention", *Experimental Psychology*, Vol. 10, No. 57, pp. 108-116.
- Dent,K., and Smyth,M.M., (2006), "Capacity limitations and representational shifts in spatial short-term memory", *Visual Cognition*, Vol. 13, No. 5, pp. 529-572.
- Desimone, R., and Duncan, J., (1995), "Neural mechanisms of selective visual attention", Annual Review of Neuroscience, Vol. 18, No. 1, pp. 193-222.
- Di Lollo,V., (1980), "Temporal integration in visual memory", Journal of Experimental Psychology: General, Vol. 109, No.1, pp. 75-97.
- Di Lollo,V., Enns,J.T., and Rensink,R.A., (2000), "Competition for consciousness among visual events: The psychophysics of reentrant visual processes", *Journal of Experimental Psychology: General*, Vol. 129, No. 4, pp. 481-507.
- Di Pellegrino, G., Basso, G., and Frassinetti, F., (1998), "Visual extinction as a spatio-temporal disorder of selective attention", *Neuroreport*, Vol. 9, No. 5, pp. 835-839.
- Dick, A., (1969), "Relations between the sensory register and short-term storage in tachistoscopic recognition", *Journal of Experimental Psychology*, Vol. 82, No. 2, pp. 279-284.
- Ding,S., Meng,L., Han,Y., and Xue,Y., (2017), "A review on feature binding theory and its functions observed in perceptual process", *Cognitive Computation*, Vol. 9, No. 2, pp. 194-206.
- Donner, T.H., Kettermann, A., Diesch, E., Ostendorf, F., Villringer, A., and Brandt, S.A., (2002), "Visual feature and conjunction searches of equal difficulty engage only partially overlapping frontoparietal networks", *Neuroimage*, Vol. 15, No. 1, pp. 16-25.
- Dowd, E., and Golomb, J., (2018), "Object-feature binding survives dynamic shifts of spatial attention", *Journal of Vision*, Vol. 18, No. 10, 1-19.
- Dresp-Langley, B., (2012), "Why the brain knows more than we do: Non-conscious representations and their role in the construction of conscious experience", *Brain Sciences*, Vol. 2, No. 1, pp. 1-21.
- Duncan, J., (1980), "The locus of interference in the perception of simultaneous stimuli", *Psychological Review*, Vol. 87, No.3, pp. 272-300.
- Duncan, J., (1996), "Competitive brain systems in selective attention", *International Journal of Psychology*, *Vol. 31*, No. 3-4, pp. 3343-3343.
- Duncan, J., (1998), "Converging levels of analysis in the cognitive neuroscience of visual attention", *Philosophical Transactions of the Royal Society of London Series B-Biological Sciences*, Vol. 353, No. 1373, pp. 1307-1317.
- Duncan, J., (2006), "EPS Mid-Career Award 2004: brain mechanisms of attention", *The Quarterly Journal of Experimental Psychology*, Vol. 59, No. 1, pp. 2-27.
- Eckstein, M.P., (1998), "The lower visual search efficiency for conjunctions is due to noise and not serial attentional processing", *Psychological Science*, Vol. 9, No. 2, pp. 111-118.

- Edelman,G.M., (1978), "Group selection and phasic re-entrant signaling: A theory of higher brain functions", in *The mindful Brain*, Edited by G. M. Edelman and M. V.B, MIT Press, Cambridge, MA, pp. 51-100.
- Eickhoff,S.B., Stephan,K.E., Mohlberg,H., Grefkes,C., Fink,G.R., Amunts,K., and Zilles,K., (2005), "A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data", *Neuroimage*, Vol. 25, No. 4, pp. 1325-1335.
- Eklund, A., Nichols, T.E., and Knutsson, H., (2016), "Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates", *Proceedings of the National Academy of Sciences*, Vol. 113, No. 28, pp. 7900-7905.
- Eklund, A., Nichols, T.E., and Knutsson, H., (2017), "Reply to Brown and Behrmann, Cox, et al., and Kessler et al.: Data and code sharing is the way forward for fMRI", *Proceedings of the National Academy of Sciences*, Vol. 114, No. 17, pp. 3374-3375.
- Emrich,S.M., and Ferber,S., (2012), "Competition increases binding errors in visual working memory", *Journal of Vision*, Vol. 12, No. 4, pp. 1-16.
- Eriksen, C.W., and Collins, J.F., (1967), "Some temporal characteristics of visual pattern perception", *Journal* of Experimental Psychology, Vol.74, No. 4, pp.476–484
- Eriksen, C.W., and Spencer, T., (1969), "Rate of information processing in visual perception: Some results and methodological considerations", *Journal of Experimental Psychology*, Vol. 79, No. 2, pp. 1–16
- Erwin, D.E., (1976), "The extraction of information from visual persistence", The American Journal of Psychology, Vol. 89, No. 4, pp. 659-667.
- Fan,J., McCandliss,B.D., Fossella,J., Flombaum,J.I., and Posner,M.I., (2005), "The activation of attentional networks", *Neuroimage*, Vol. 26, No. 2, pp. 471-479.
- Fang, M.W., Ravizza, S.M., and Liu, T., (2019), "Attention induces surround suppression in visual working memory", *Psychonomic Bulletin and Review*, Vol. 26, No. 6, pp. 1925-1932.
- Fodor, J.A., and Pylyshyn, Z.W., (1988), "Connectionism and cognitive architecture: A critical analysis", *Cognition*, Vol 28, No. 1, pp. 3-71.
- Fougnie, D., and Marois, R., (2009), "Attentive tracking disrupts feature binding in visual working memory", *Visual Cognition*, Vol. 17, No. 1, pp. 48-66.
- Fougnie, D., Cormiea, S.M., and Alvarez, G.A., (2013), "Object-based benefits without object-based representations", *Journal of Experimental Psychology: General*, Vol. 142, No. 3, pp. 621-626.
- Frick, R.W., (1985), "Testing visual short-term memory: Simultaneous versus sequential presentations", *Memory and Cognition*, Vol. 13, No. 4, pp. 346-356.
- Friedman-Hill,S.R., Robertson,L.C., and Treisman,A., (1995), "Parietal contributions to visual feature binding: evidence from a patient with bilateral lesions", *Science*, Vol. 269, No. 5225, pp. 853-855.
- Friston,K..J., Ashburner,J., Frith,C.D., Poline,J.B., Heather,J.D., and Frackowiak,R.S., (1995), "Spatial registration and normalization of images", *Human Brain Mapping*, Vol. 3, No. 3, pp. 165-189.
- Friston,K..J., Holmes,A.P., Price,C.J., Büchel,C., and Worsley,K.J., (1999)., "Multisubject fMRI studies and conjunction analyses", *Neuroimage*, Vol. 10, No. 4, pp. 385-396.
- Friston,K..J., Holmes,A.P., Worsley,K..J., Poline,J.P., Frith,C.D., and Frackowiak,R.S., (1994), "Statistical parametric maps in functional imaging: a general linear approach", *Human Brain Mapping*, Vol. 2, No. 4, pp. 189-210.
- Friston,K..J., Penny,W.D., and Glaser,D.E., (2005), "Conjunction revisited", Neuroimage, Vol. 25, No. 3, pp. 661-667.
- Friston,K..J., Williams,S., Howard,R., Frackowiak,R.S., and Turner,R., (1996), "Movement-related effects in fMRI time-series", *Magnetic Resonance in Medicine*, Vol. 35, No. 3, pp. 346-355.
- Gajewski, D.A., and Brockmole, J., R., (2006), "Feature bindings endure without attention: Evidence from an explicit recall task", *Psychonomic Bulletin and Review*, Vol. 1, No. 4, pp. 581-587.
- Giovanello,K..S., Verfaellie,M., and Keane,M.M., (2003), "Disproportionate deficit in associative recognition relative to item recognition in global amnesia", *Cognitive, Affective, and Behavioral Neuroscience*, Vol 3, No. 3, pp. 186-194.
- Gold, J.M., Wilk, C.M., McMahon, R.P., Buchanan, R.W., and Luck, S.J., (2003), "Working memory for visual features and conjunctions in schizophrenia", *Journal of Abnormal Psychology*, Vol. 112, No. 1, pp. 61-71.
- Goldman-Rakic, P.S., (1998), "Topography of cognition: parallel distributed networks in primate association cortex", Annual Review of Neuroscience, Vol. 11, pp. 137-156.
- Gorgoraptis, N., Catalao, R.F., Bays, P.M., and Husain, M., (2011), "Dynamic updating of working memory resources for visual objects", *The Journal of Neuroscience*, Vol. 31, No. 23, pp. 8502-8511.

- Gray, C.M., (1999) "The temporal correlation hypothesis of visual feature integration: still alive and well", *Neuron*, Vol. 24, No. 1, pp. 31-47.
- Gray, C.M., Engel, A.K., Konig, P., and Singer, W., (1992), "Synchronization of oscillatory neuronal responses in cat striate cortex Temporal properties", *Visual Neuroscience*, Vol. 8, No. 4, pp. 337-347
- Grill-Spector, K., Kourtzi, Z., and Kanwisher, N., (2001), "The lateral occipital complex and its role in object recognition", *Vision Research*, Vol. 41, No. 10-11, pp. 1409-1422.
- Grosbras, M.H., Laird, A.R., and Paus, T., (2005), "Cortical regions involved in eye movements, shifts of attention, and gaze perception", *Human Brain Mapping*, Vol. 25, No. 1, pp. 140-154.
- Gross, C.G., (2002), "Genealogy of the "grandmother cell", The Neuroscientist, Vol. 8, No. 5, pp. 512-518.
- Hahn,B., Ross,T.J., and Stein,E.A., (2006), "Neuroanatomical dissociation between bottom-up and topdown processes of visuospatial selective attention", *Neuroimage*, Vol. 32, No. 2, pp. 842-853.
- Haladjian,H.H., and Mathy,F., (2015), "A snapshot is all it takes to encode object locations into spatial memory", *Vision Research*, Vol. 107, pp. 133-145.
- Halford,G.S., Cowan,N., and Andrews,G., (2007), "Separating cognitive capacity from knowledge: A new hypothesis", *Trends in Cognitive Sciences*, Vol. 11, No. 6, pp. 236-242.
- Hamker, F.H., (2003), "The reentry hypothesis: Linking eye movements to visual perception", *Journal of Vision*, Vol. 3, No. 11, pp. 808-816.
- Harris, I.M., Harris, J.A., and Corballis, M.C., (2019), "Binding identity and orientation in object recognition", *Attention, Perception, and Psychophysics*, Vol. 82, No. 1, pp. 153-167.
- Harrison, W.J., and Bays, P.M., (2018), "Visual working memory is independent of the cortical spacing between memoranda", *Journal of Neuroscience*, Vol. 38, No. 12, pp. 3116-3123.
- Hartley, T., Bird, C.M., Chan, D., Cipolotti, L., Husain, M., Vargha Khadem, F., and Burgess, N., (2007), "The hippocampus is required for short-term topographical memory in humans", *Hippocampus*, Vol. 17, No. 1, pp. 34-48.
- Haxby,J.V., Grady,C.L., Horwitz,B., Ungerleider,L.G., Mishkin,M., Carson,R.E., Herscovitch,P., Schapiro,M.B., and Rapoport,S.I., (1991), "Dissociation of object and spatial visual processing pathways in human extrastriate cortex", *Proceedings of the National Academy of Sciences*, Vol. 88, No. 5, pp. 1621-1625.
- He,K., Li,J., Wu,F., Wan,X., Gao,Z., and Shen,M., (2020), "Object-based attention in retaining binding in working memory: Influence of activation states of working memory", *Memory and cognition*. https://doi.org/10.3758/s13421-020-01038-0
- Henson, R., Shallice, T., and Dolan, R., (2000), "Neuroimaging evidence for dissociable forms of repetition priming", *Science*, Vol. 287, No. 5456, pp. 1269-1272.
- Herath,P., Klingberg,T., Young,J., Amunts,K., and Roland,P., (2001), "Neural correlates of dual task interference can be dissociated from those of divided attention: an fMRI study", *Cerebral Cortex*, Vol. 11, No. 9, pp. 796-805.
- Hitch,G.J., Allen,R.J., and Baddeley,A.D., (2020), "Attention and binding in visual working memory: Two forms of attention and two kinds of buffer storage", *Attention, Perception, and Psychophysics*, Vol. 82, No. 1, pp. 280-293.
- Hitch,G.J., Hu,Y., Allen,R.J., and Baddeley,A.D, (2018), "Competition for the focus of attention in visual working memory: perceptual recency versus executive control", *Annals of the New York Academy of Sciences*, Vol. 1424, No. 1, pp. 64-75.
- Hochstein, S., and Ahissar, M., (2002), "View from the top: Hierarchies and reverse hierarchies in the visual system", *Neuron*, Vol. 36, No. 5, pp. 791-804.
- Hoffman, J.E., (1978), "Search through a sequentially presented visual display", *Perception and Psychophysics*, Vol. 23, No. 1, pp. 1-11.
- Hoffman,J.E., (1979), "A two-stage model of visual search", *Perception and Psychophysics*, Vol. 25, No. 4, pp. 319-327.
- Hollingworth, A., (2007), "Object-position binding in visual memory for natural scenes and object arrays", *Journal of Experimental Psychology: Human Perception and Performance*, Vol. 33, No. 1, pp. 31-47.
- Hommel,B., and Colzato,L.S., (2009), "When an object is more than a binding of its features: Evidence for two mechanisms of visual feature integration", *Visual Cognition, Vol.* 17, No. 1, pp. 120-140.
- Hopfinger, J.B., Buonocore, M.H., and Mangun, G.R., (2000), "The neural mechanisms of top-down attentional control", *Nature Neuroscience*, Vol. 3, No. 3, pp. 284-291.
- Hu,Y., Allen,R.J., Baddeley,A.D., and Hitch,G.J., (2016), "Executive control of stimulus-driven and goaldirected attention in visual working memory", *Attention, Perception, and Psychophysics*, Vol. 78, No. 7, pp. 2164-2175.

- Hu,Y., Hitch,G.J., Baddeley,A.D., Zhang,M., and Allen,R.J., (2014), "Executive and perceptual attention play different roles in visual working memory: Evidence from suffix and strategy effects", *Journal of Experimental Psychology: Human Perception and Performance*, Vol. 40, No. 4, pp. 1665-1678.
- Hubel,D.H., and Wiesel,T.N., (1959)."Receptive fields of single neurones in the cat's striate cortex", The *Journal of Physiology*, Vol. 148, No. 3, pp. 574–591.
- Hubel,D.H., and Wiesel,T.N., (1962), "Receptive fields, binocular interaction and functional architecture in the cat's visual cortex", *The Journal of Physiology*, Vol. 160, No. 1, pp. 106–154.
- Hubel,D.H., and Wiesel,T.N., (1968), "Receptive fields and functional architecture of monkey striate cortex", *The Journal of Physiology*, Vol. 195, No. 1, pp. 215-243.
- Humphreys, G.W., (2001), "A multi-stage account of binding in vision: Neuropsychological evidence", *Visual Cognition*, Vol. 8, No. 3-5, pp. 381-410.
- Humphreys,G.W., Cinel,C., Wolfe,J., Olson,A., and Klempen,N., (2000), "Fractionating the binding process: Neuropsychological evidence distinguishing binding of form from binding of surface features", Vision Research, Vol. 40, No. 10-12, pp. 1569-1596.
- Igel,A., and Harvey,L.O., (1991), "Spatial distortions in visual perception", *Gestalt Theory*, Vol. 13, No. 4, pp. 210–231.
- Ihssen, N., Linden, D.E., and Shapiro, K..L., (2010), "Improving visual short-term memory by sequencing the stimulus array", *Psychonomic Bulletin and Review*, Vol. 17, No. 5, pp. 680-686.
- Ihssen,N., Linden,D.E., Miller,C.E., and Shapiro,K..L., (2014), "Neural mechanisms underlying visual short-term memory gain for temporally distinct objects", *Cerebral Cortex*, Vol. 25, No. 8, pp. 2149-2159.
- Irwin,D.E., (1991), "Information integration across saccadic eye movements", *Cognitive Psychology*, Vol. 23, No. 3, pp. 420-456.
- Irwin,D.E., and Yeomans,J.M., (1986), "Sensory registration and informational persistence", Journal of Experimental Psychology: Human Perception and Performance, Vol. 12, No. 3, pp 343-360.
- Jacobs, J., Weidemann, C.T., Miller, J.F., Solway, A., Burke, J.F., Wei, X.X., Suthana, N., Sperling, M.R., Sharan, A.D., Fried, I., and Kahana, M.J., (2013), "Direct recordings of grid-like neuronal activity in human spatial navigation", *Nature Neuroscience*, Vol. 16, No. 9, pp. 1188-1190.
- JASP Team, (2018), JASP Version 0.9.2.0 [Computer software]. Retrieved from https://jasp-stats.org/
- Jaswal,S., (2010), "Binding of visual features in human perception and memory", Unpublished PhD Thesis, University of Edinburgh, Scotland.
- Jaswal, S., (2012), "The importance of being relevant". Frontiers in Psychology, Vol. 3, pp. 1-15.
- Jaswal,S., and Logie,R.,H., (2011), "Configural encoding in visual feature binding", Journal of Cognitive Psychology, Vol. 23, No. 5, pp. 586-603.
- Jaswal,S., and Logie,R.,H., (2013), "The contextual interference effect in visual feature binding: What does it say about the role of attention in binding?", *The Quarterly Journal of Experimental Psychology*, Vol. 66, No. 4, pp. 687-704.
- Jehee, J.F.M., Lamme, V.A.F., and Roelfsema, P.R., (2007), "Boundary assignment in a recurrent network architecture", *Vision Research, Vol.* 47, No. 9, pp. 1153-1165.
- Jensen,O., and Lisman,J.E., (2005), "Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer", *Trends in Neurosciences*, Vol. 28, No. 2, pp. 67-72.
- Jiang,Y., and Kumar,A., (2004), "Visual short-term memory for two sequential arrays: One integrated representation or two separate representations?" *Psychonomic Bulletin and Review*, Vol. 11, No. 3, pp. 495-500.
- Jiang,Y., Haxby,J.V., Martin,A., Ungerleider,L.G., and Parasuraman,R., (2000), "Complementary neural mechanisms for tracking items in human working memory", *Science*, Vol. 287, No. 5453, pp. 643-646.
- Jiang,Y., Kumar,A., and Vickery,T.J., (2005), "Integrating sequential arrays in visual short-term memory", *Experimental Psychology*, Vol. 52, No.1, pp. 39-46.
- Jiang,Y., Olson,I.R., and Chun,M.M., (2000), "Organization of visual short-term memory", Journal of Experimental Psychology - Learning Memory and Cognition, Vol. 26. No. 3, pp. 683-702.
- Jing,W., Xiao-Li,L., Guo-Gang,X., and You,W., (2011), "The gamma frequency band neural oscillation: generation mechanisms and functions", *Progress in Biochemistry and Biophysics*, Vol. 38, No. 8, pp. 688-693.
- Johnston,J.C., and Pashler,H., (1990), "Close binding of identity and location in visual feature perception", *Journal of Experimental Psychology: Human Perception and Performance*, Vol. 16, No. 4, pp. 843-856.

- Karlsen, P.J., Allen, R.J., Baddeley, A.D., and Hitch, G.J., (2010), "Binding across space and time in visual working memory", *Memory and Cognition*, Vol. 38, No. 3, pp. 292-303.
- Kastner,S., and Ungerleider,L.G., (2000), "Mechanisms of visual attention in the human cortex", *Annual Review of Neuroscience*, Vol. 23, pp. 315-341.
- Kastner,S., and Ungerleider,L.G., (2001), "The neural basis of biased competition in human visual cortex", *Neuropsychologia*, Vol. 39, No. 12, pp. 1263-1276.
- Kastner,S., DeWeerd,P., Desimone,R., and Ungerleider,L.G., (1998), "Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI", *Science*, Vol. 282, No. 5386, pp. 108-111.
- Kawasaki,M., Watanabe,M., Okuda,J., Sakagami,M., and Aihara,K., (2008), "Human posterior parietal cortex maintains color, shape and motion in visual short-term memory" *Brain Research*, Vol. 1213, pp. 91-97.
- Keele,S.W., Cohen,A., Ivry,R., Liotti,M., and Yee,P., (1988), "Tests of a temporal theory of attentional binding", *Journal of Experimental Psychology: Human Perception and Performance*, Vol. 14, No.3, pp. 444-452
- Koen,J.D., Borders,A.A., Petzold,M.T., and Yonelinas,A.P., (2017), "Visual short-term memory for high resolution associations is impaired in patients with medial temporal lobe damage", *Hippocampus*, Vol. 27, No. 2, pp. 184-193.
- Konorski, J., (1967), Integrative Activity of the Brain: An Interdisciplinary Approach, University of Chicago, Chicago:.
- Kozlova, I., Parra, M.A., Titova, N., Gantman, M., and Sala, S.D., (2020), "Alzheimer's Disease and Parkinson Dementia Distinguished by Cognitive Marker", Archives of Clinical Neuropsychology. <u>https://doi.org/10.1093/arclin/acz082</u>
- Krumhansl,C.L., (1977), "Naming and locating simultaneously and sequentially presented letters", *Perception and Psychophysics*, Vol. 22, No. 3, pp. 293-302.
- Kubovy, M., (1988), "Should we resist the seductiveness of the space:time::vision:audition analogy?", Journal of Experimental Psychology: Human Perception and Performance, Vol. 14, No. 2, pp. 318–320
- Kumar, A., and Jiang, Y., (2005), "Visual short-term memory for sequential arrays", *Memory and Cognition*, Vol. 33, No. 3, pp. 488-498.
- Lamme, V.A.F., and Roelfsema, P.R., (2000), "The distinct modes of vision offered by feedforward and recurrent processing", *Trends in Neurosciences*, Vol. 23, No. 11, pp. 571-579.
- Levine, T.R., and Hullett, C.R., (2002), "Eta squared, partial eta squared, and misreporting of effect size in communication research", *Human Communication Research*, Vol. 28, No. 4, pp. 612-625.
- Li,S., Cai,Y., Liu,J., Li,D., Feng,Z., Chen,C., and Xue,G., (2017), "Dissociated roles of the parietal and frontal cortices in the scope and control of attention during visual working memory", *Neuroimage*, Vol. 149, pp. 210-219.
- Li,Z., Zhang,J., Liang,T., Ye,C., and Liu,Q., (2020), "Interval between two sequential arrays determines their storage state in visual working memory", *Scientific Reports*, Vol. 10, No. 1, pp. 1-9.
- Linden, D.E., Bittner, R.A., Muckli, L., Waltz, J.A., Kriegeskorte, N., Goebel, R., Singer, W., and Munk, M.H. (2003), "Cortical capacity constraints for visual working memory: dissociation of fMRI load effects in a fronto-parietal network", *Neuroimage*, Vol. 20, No. 3, pp. 1518-1530.
- Liu,K., and Jiang,Y., (2005), "Visual working memory for briefly presented scenes", *Journal of Vision*, Vol. 5, No. 7, pp. 650-658.
- Loftus,G.R., and McLean,J.E., (1999), "A front end to a theory of picture recognition", Psychonomic Bulletin and Review, Vol. 6, No. 3, pp. 394-411.
- Loftus,G.R., Duncan,J., and Gehrig,P., (1992), "On the time course of perceptual information that results from a brief visual presentation", *Journal of Experimental Psychology: Human Perception and Performance*, Vol.18, No. 2, 530-549.
- Loftus,G.R., Johnson,C.A., and Shimamura,A.P., (1985), "How much is an icon worth?", Journal of Experimental Psychology: Human Perception and Performance, Vol. 11, No. 1, pp. 1-13.
- Logie,R.H., Brockmole,J.R., and Jaswal,S., (2011), "Feature binding in visual short-term memory is unaffected by task-irrelevant changes of location, shape, and color", *Memory and Cognition*, Vol. 39, No. 1, pp.24-36.
- Logie,R.H., Brockmole,J.R., and Vandenbroucke,A.R., (2009), "Bound feature combinations in visual short-term memory are fragile but influence long-term learning", *Visual Cognition*, Vol. 17, No. 1, pp. 160-179.

- Logothetis,N.K., (2008), "What we can do and what we cannot do with fMRI", *Nature*, Vol. 453, No. 7197, pp. 869-878.
- Luck,S.J., and Vogel,E.K., (1997), "The capacity of visual working memory for features and conjunctions", *Nature*, Vol. 390, No. 6657, pp. 279-281.
- Ma,W.J., Husain,M., and Bays,P.M., (2014). Changing concepts of working memory. *Nature Neuroscience*, *17*(3), 347-356.
- Mackey,W.E., and Curtis,C.E., (2017), "Distinct contributions by frontal and parietal cortices support working memory", *Scientific Reports*, Vol. 7, No. 1, pp. 1-7.
- MacLeod,K., Backer,A., and Laurent,G., (1998), "Who reads temporal information contained across synchronized and oscillatory spike trains?", *Nature*, Vol. 395, No. 6703, pp. 693-698.
- Marois, R., Chun, M.M., and Gore, J.C., (2000), "Neural correlates of the attentional blink", *Neuron*, Vol. 28, No. 1, pp. 299-308.
- Mather, M., Mitchell, K.J., Raye, C.L., Novak, D.L., Greene, E.J., and Johnson, M.K., (2006), "Emotional arousal can impair feature binding in working memory", *Journal of Cognitive Neuroscience*, Vol. 18, No. 4, pp. 614-625.
- MathWorks Inc., (2014), MATLAB Version 2014a [Computer Software], Natick, Massachusetts, United States.
- Maxcey-Richard, A.M., and Hollingworth, A., (2013), "The strategic retention of task-relevant objects in visual working memory", *Journal of Experimental Psychology: Learning, Memory, and Cognition*, Vol. 39, No. 3, pp. 760-772.
- Memel,M., and Ryan,L., (2017), "Visual integration enhances associative memory equally for young and older adults without reducing hippocampal encoding activation", *Neuropsychologia*, Vol. 100, pp. 195-206.
- Metzinger, T., (1995). Conscious experience .: Imprint Academic, Thorverton, U.K..
- Milner, A.D., and Goodale, M.A., (1995), The visual brain in action, Oxford University Press, Oxford, U.K..
- Milner, A.D., and Goodale, M.A., (2008), "Two visual systems re-viewed", *Neuropsychologia*, Vol. 4, *No.*3, pp. 774-785.
- Mitchell,K.J., Johnson,M.K., Raye,C.L., and D'Esposito,M., (2000), "fMRI evidence of age-related hippocampal dysfunction in feature binding in working memory", *Cognitive Brain Research*, Vol. 10, No. 1, pp. 197-206.
- Mordkoff, J.T., and Halterman, R., (2008), "Feature integration without visual attention: Evidence from the correlated flankers task", *Psychonomic Bulletin and Review*, Vol. 15, No. 2, pp. 385-389.
- Murre,J.M.J., Wolters,G., and Raffone,A., (2006), "Binding in working memory and long term memory: Towards an integrated model", *Handbook of Binding and Memory: Perspectives from Cognitive Neuroscience*, Edited by H. D. Zimmer, A. Mecklinger and U. Lindenberger, Oxford University Press, Oxford, U.K., .pp. 221-250.
- Neisser, U., (1967), Cognitive psychology. Appleton-Century-Crofts, New York, USA.
- Nichols, T., Brett, M., Andersson, J., Wager, T., and Poline, J.B., (2005), "Valid conjunction inference with the minimum statistic", *Neuroimage*, Vol. 25, No. 3, pp. 653-660.
- O' Craven,K.M., Downing,P., and Kanwisher,N., (1999a), "fMRI evidence for object-based attention: Enhancement of both attended and unattended attributes of attended objects", *Investigative Ophthalmology and Visual Science*, Vol. 40, No. 4, 4193.
- O' Craven,K.M., Downing,P., and Kanwisher,N., (1999b), "fMRI evidence for objects as the units of attentional selection", *Nature*, Vol. 401, No. 6753, pp. 584-587.
- O' Keefe, J., and Nadel, L., (1978), The hippocampus as a cognitive map. Clarendon Press, Oxford, U.K..
- Oberauer K., (2019), "Working Memory Capacity Limits Memory for Bindings", *Journal of Cognition*, Vol. 2, No. 1, pp. 40.
- Olson,I.R., Page,K., Moore,K.S., Chatterjee,A., and Verfaellie,M., (2006), "Working memory for conjunctions relies on the medial temporal lobe", *The Journal of Neuroscience*, Vol 26, No. 17, pp. 4596-4601.
- Painter,D.R., Dux,P.E., and Mattingley,J.B., (2015), "Distinct roles of the intraparietal sulcus and temporoparietal junction in attentional capture from distractor features: An individual differences approach", *Neuropsychologia*, Vol. 74, pp. 50-62.
- Palva, J.M., Monto, S., Kulashekhar, S., and Palva, S., (2010), "Neuronal synchrony reveals working memory networks and predicts individual memory capacity", *Proceedings of the National Academy of Sciences*, Vol. 107, No. 16, pp. 7580-7585.

- Papale, P., Leo, A., Handjaras, G., Cecchetti, L., Pietrini, P., and Ricciardi, E., (2019), "Shape coding in occipito-temporal cortex relies on object silhouette, curvature and medial-axis", *bioRxiv*, 814251.
- Parra, M.A., Abrahams, S., Logie, R.H., Mendez, L.G., Lopera, F., and Della Sala, S., (2010), "Visual short-term memory binding deficits in familial Alzheimer's disease", *Brain*, Vol. 133, No. 9, pp. 2702-2713.
- Parra, M.A., Della Sala, S., Logie, R.H., and Morcom, A. M. (2014), "Neural correlates of shape-color binding in visual working memory", *Neuropsychologia*, Vol. 52, pp. 27-36.
- Pashler, H., (1988), "Familiarity and visual change detection", *Perception and Psychophysics*, Vol. 44, No. 4, pp. 369-378.
- Peich,M.C., Husain,M., and Bays,P.M., (2013), "Age-related decline of precision and binding in visual working memory", *Psychology and Aging*, Vol. 28, No. 3, pp. 729.
- Penney, C.G., (1975), "Modality effects in short-term verbal memory", *Psychological Bulletin*, Vol. 82, No. 1, pp. 68–84
- Pertzov,Y., and Husain,M., (2014), "The privileged role of location in visual working memory", *Attention*, *Perception, and Psychophysics*, Vol. 76, No. 7, pp. 1914-1924.
- Pertzov,Y., Miller,T.D., Gorgoraptis,N., Caine,D., Schott,J.M., Butler,C., and Husain,M., (2013), "Binding deficits in memory following medial temporal lobe damage in patients with voltage-gated potassium channel complex antibody-associated limbic encephalitis", *Brain*, Vol. 136, No. 8, pp. 2474-2485.
- Phillips,W.A., (1974), "On the distinction between sensory storage and short-term visual memory", *Perception and Psychophysics*, Vol. 16, No. 2, pp. 283-290.
- Phillips,W.A., and Christie,D.F.M., (1977), "Components of visual memory", The Quarterly Journal of Experimental Psychology, Vol. 29, No. 1, pp. 117-133.
- Pilling, M., Barrett, D.J., and Gellatly, A., (2020), "The basis of report-difference superiority in delayed perceptual comparison tasks", *Memory and Cognition*, 1-14.
- Pisella,L., Berberovic,N., and Mattingley,J.B., (2004), "Impaired working memory for location but not for color or shape in visual neglect: a comparison of parietal and non-parietal lesions" Cortex, Vol. 40, No. 2, pp.379-390.
- Pollmann,S., Zinke,W., Baumgartner,F., Geringswald,F., and Hanke,M., (2014), "The right temporoparietal junction contributes to visual feature binding", *Neuroimage*, Vol. 101, pp. 289-297.
- Poppel,E., (1997), "A hierarchical model of temporal perception", *Trends in Cognitive Science*, Vol. 1, pp. 56-61.
- Posner, M.I., and Petersen, S.E., (1990), "The attention system of the human brain", Annual Review of Neuroscience, Vol. 13, No. 1, pp. 25-42.
- Potter, M.C., (1976), "Short-term conceptual memory for pictures", Journal of Experimental Psychology: Human Learning and Memory, Vol. 2, No. 5, pp. 509-522.
- Potter, M.C., and Levy, E.I., (1969), "Recognition memory for a rapid sequence of pictures", *Journal of Experimental Psychology*, Vol. 81, No. 1, pp. 10-15.
- Prabhakaran, V., Narayanan, K., Zhao, Z., and Gabrieli, J.D.E., (2000), "Integration of diverse information in working memory within the frontal lobe", *Nature Neuroscience*, Vol. 3, No. 1, pp. 85-90.
- Price, C.J., and Friston, K.J., (1997), "Cognitive conjunction: a new approach to brain activation experiments", *Neuroimage*, Vol. 5, No. 4, pp. 261-270.
- Psychology Software Tools., (2008), *E-prime 2.0* [Computer software]. Pittsburgh, Pennsylvania, United States.
- Quiroga,R.Q., Kreiman,G., Koch,C., and Fried,I., (2008), "Sparse but not "Grandmother-cell" coding in the medial temporal lobe", *Trends in Cognitive Science*, Vol. 12, pp. 87–91.
- Quiroga,R.Q., (2012), "Concept cells: the building blocks of declarative memory functions", *Nature Reviews Neuroscience*. Vol. 13, pp. 587–597.
- Quiroga,R.Q., Reddy,L., Kreiman,G., Koch,C., and Fried,I., (2005), "Invariant visual representation by single neurons in the human brain", *Nature*, Vol. 435, No. 7045, pp. 1102-1107
- Raabe, M., Fischer, V., Bernhardt, D., and Greenlee, M.W., (2013), "Neural correlates of spatial working memory load in a delayed match-to-sample saccade task", *Neuroimage*, Vol. 71, pp. 84-91.
- Reber,P.J., Gitelman,D.R., Parrish,T.B., and Mesulam,M.M., (2005), "Priming effects in the fusiform gyrus: changes in neural activity beyond the second presentation", *Cerebral Cortex*, Vol. 15, No. 6, pp. 787-795.
- Reddy,L., and Thorpe,S.J., (2014), "Concept cells through associative learning of high-level representations", *Neuron*, Vol. 84, pp. 248–251.
- Rescorla,R.A., (1967), "Pavlovian conditioning and its proper control procedures", *Psychological Review*, Vol. 74, No. 1, pp. 71-80.

- Rhodes, S., Parra, M.A., and Logie, R.H., (2016), "Ageing and feature binding in visual working memory: The role of presentation time", *The Quarterly Journal of Experimental Psychology*, Vol. 69, No. 4, pp. 654-668.
- Richard, A.M., Luck, S.J., and Hollingworth, A., (2008), "Establishing object correspondence across eye movements: Flexible use of spatiotemporal and surface feature information", *Cognition*, Vol. 109, No. 1, pp. 66-88.
- Ricker, T.J., and Cowan, N., (2014), "Differences between presentation methods in working memory procedures: A matter of working memory consolidation", *Journal of Experimental Psychology: Learning, Memory, and Cognition,* Vol. 40, No. 2, pp. 417-428.
- Riesenhuber, M., and Poggio, T., (1999), "Hierarchical models of object recognition in cortex", *Nature Neuroscience*, Vol. 2, No. 11, pp. 1019–1025.
- Robertson, L., C., (2003), "Binding, spatial attention and perceptual awareness", *Nature Reviews Neuroscience*, Vol. 4, No. 2, pp. 93-102.
- Robertson,L.C., Treisman,A., Friedman-Hill,S., and Grabowecky,M., (1997), "The interaction of spatial and object pathways: Evidence from Balint's syndrome", *Journal of Cognitive Neuroscience*, Vol. 9, No. 3, pp. 295-317.
- Roelfsema, P.R., (2006), "Cortical algorithms for perceptual grouping", *Annual Review of Neuroscience*, Vol. 29, pp. 203-227.
- Roelfsema, P.R., Lamme, V.A., and Spekreijse, H., (2004), "Synchrony and covariation of firing rates in the primary visual cortex during contour grouping", *Nature Neuroscience*, Vol. 7, No. 9, pp. 982-991.
- Rowe,J.B., Toni,I., Josephs,O., Frackowiak,R.S., and Passingham,R.E., (2000), "The prefrontal cortex: response selection or maintenance within working memory?", *Science*, Vol. 288, No. 5471, pp. 1656-1660.
- Roy, A., (2013), "An extension of the localist representation theory: grandmother cells are also widely used in the brain", *Frontiers in Psychology*, Vol. 4, No. 300, pp. 1-3.
- Roy, A., (2017), "The theory of localist representation and of a purely abstract cognitive system: the evidence from cortical columns, category cells, and multisensory neurons", *Frontiers in Psychology*, Vol. 8, No. 186, pp. 1-14.
- Roy, A., (2020), "Commentary: The Value of Failure in Science: The Story of Grandmother Cells in Neuroscience", Frontiers in Neuroscience, Vol. 14, No. 59, pp. 1-2.
- Rudkin,S.J., Pearson,D.G., and Logie,R.H., (2007), "Executive processes in visual and spatial working memory tasks", *The Quarterly Journal of Experimental Psychology*, Vol. 60, No. 1, pp. 79-100.
- Saalmann,Y.B., Pigarev,I.N., and Vidyasagar,T.R., (2007), "Neural mechanisms of visual attention: How top-down feedback highlights relevant locations" *Science*, Vol. 316, No. 5831, pp. 1612-1615.
- Sagi, D., and Julesz, B., (1985),"" Where" and" what" in vision", Science, Vol. 228, pp. 1217-1220.
- Salazar, R.F., Dotson, N.M., Bressler, S.L., and Gray, C.M., (2012), "Content-specific fronto-parietal synchronization during visual working memory", *Science*, Vol. 338, No. 6110, pp. 1097-1100.
- Saults, J.S., and Cowan, N., (2007), "A central capacity limit to the simultaneous storage of visual and auditory arrays in working memory", *Journal of Experimental Psychology: General*, Vol. 136, No. 4, pp. 663–684.
- Schneegans, S., and Bays, P.M., (2017), "Neural architecture for feature binding in visual working memory", *Journal of Neuroscience*, Vol. 37, No.14, pp. 3913-3925.
- Schoenfeld,M.A., Tempelmann,C., Martinez,A., Hopf,J.M., Sattler,C., Heinze,H.J., and Hillyard,S.A., (2003), "Dynamics of feature binding during object-selective attention", *Proceedings of the National Academy of Sciences*, Vol. 100, No. 20, pp. 11806-11811.
- Schubert,T., and Szameitat,A.J., (2003), "Functional neuroanatomy of interference in overlapping dual tasks: an fMRI study", *Cognitive Brain Research*, Vol. 17, No. 3, pp. 733-746.
- Seth,A.K., McKinstry,J.L., Edelman,G.M., and Krichmar,J.L., (2004), "Visual binding through reentrant connectivity and dynamic synchronization in a brain-based device.", *Cerebral Cortex*, Vol. 14, No. 11, pp. 1185-1199.
- Shadlen, M.N., and Movshon, J.A., (1999), "Synchrony unbound: a critical evaluation of the temporal binding hypothesis", *Neuron*, Vol. 24, pp. 67–77.
- Shafritz,K.M., Gore,J.C., and Marois,R., (2002), "The role of the parietal cortex in visual feature binding", *Proceedings of the National Academy of Sciences*, Vol. 99, No. 16, pp. 10917-10922.
- Shiffrin,R.M., (1973), "Information persistence in short-term memory", *Journal of Experimental Psychology*, Vol. 100, No. 1, pp. 39-49.

- Shimi, A., and Logie, R.H., (2019), "Feature binding in short-term memory and long-term learning", *Quarterly Journal of Experimental Psychology*, Vol. 72, No. 6, pp. 1387-1400.
- Shulman, H. G., (1971), "Similarity effects in short-term memory", *Psychological Bulletin*, Vol. 75, No. 6, 399.
- Silk,T.J., Bellgrove,M.A., Wrafter,P., Mattingley,J.B., and Cunnington,R., (2010), "Spatial working memory and spatial attention rely on common neural processes in the intraparietal sulcus", *Neuroimage*, Vol. 53, No. 2, pp.718-724.
- Silvanto, J., Muggleton, N., Lavie, N., and Walsh, V., (2009), "The perceptual and functional consequences of parietal top-down modulation on the visual cortex", *Cerebral Cortex*, Vol. 19, No. 2, pp. 327-330.
- Singer,W., (1999), "Neuronal synchrony: a versatile code for the definition of relations?", *Neuron*, Vol. 24, No. 1, pp. 49-65.
- Singer, W., and Gray, C.M., (1995), "Visual feature integration and the temporal correlation hypothesis", *Annual Review of Neuroscience*, Vol. 18, No. 1, pp. 555-586.
- Sireteanu, R., and Rettenbach, R., (2000), "Perceptual learning in visual search generalizes over tasks, locations, and eyes", *Vision Research*, Vol. 40, No. 21, pp. 2925-2949.
- Sligte,I.G., Scholte,H.S., and Lamme,V.A., (2008), "Are there multiple visual short-term memory stores?", *PLOS one*, Vol. 3, No. 2, e1699.
- Smith,E.E., and Jonides,J., (1997), "Working memory: A view from neuroimaging", *Cognitive Psychology*, Vol. 33, No. 1, pp. 5-42.
- Smithson,H., and Mollon,J., (2006), "Do masks terminate the icon?", *The Quarterly Journal of Experimental Psychology*, Vol. 59, No. 1, pp. 150-160.
- Song,J.H., and Jiang,Y., (2006), "Visual working memory for simple and complex features: An fMRI study", *Neuroimage*, Vol. 30, No. 3, pp. 963-972.
- Souza,A.S., and Oberauer,K., (2017), "Time to process information in working memory improves episodic memory", *Journal of Memory and Language*, Vol. 96, pp. 155-167.
- Sperling, G., (1960), "The information available in brief visual presentations", *Psychological Monographs: General and Applied*, Vol. 74, No. 11, pp. 1-29.
- Standing,L., (1973), "Learning 10000 pictures", The Quarterly Journal of Experimental Psychology, Vol. 25, No. 2, pp. 207-222.
- Stark,C.E., and Squire,L.R., (2001), "Simple and associative recognition memory in the hippocampal region", *Learning and Memory*, Vol. 8, No. 4, pp. 190-197.
- Sterzer, P., and Kleinschmidt, A., (2010), "Anterior insula activations in perceptual paradigms: often observed but barely understood", *Brain Structure and Function*, Vol. 214, No. 5, pp. 611-622.
- Tallon-Baudry,C., Bertrand,O., Peronnet,F., and Pernier,J., (1998), "Induced γ-band activity during the delay of a visual short-term memory task in humans", *Journal of Neuroscience*, Vol. 18, No. 11, pp. 4244-4254.
- Thomas,L.E., and Irwin,D.E., (2006), "Voluntary eyeblinks disrupt iconic memory", *Perception and Psychophysics*, Vol. 68, No. 3, pp. 475-488.
- Thome, A., Erickson, C.A., Lipa, P., and Barnes, C.A., (2012), "Differential effects of experience on tuning properties of macaque MTL neurons in a passive viewing task", *Hippocampus*, Vol. 22, No. 10, pp. 2000-2011.
- Thorpe,S., Fize,D., and Marlot,C., (1996), "Speed of processing in the human visual system", *Nature*, Vol. 381, No. 6582, pp. 520-522.
- Todd,J.J., and Marois,R., (2004), "Capacity limit of visual short-term memory in human posterior parietal cortex", *Nature*, Vol. 428, No. 6984, pp. 751-754.
- Townsend, V.M., (1973), "Loss of spatial and identity information following a tachistoscopic exposure", *Journal of Experimental Psychology*, Vol. 98, No. 1, pp. 113-118.
- Treisman, A., (1996), "The binding problem", Current Opinion in Neurobiology, Vol 6, No. 2, pp. 171-178.
- Treisman, A., (1998), "Feature binding, attention, and object perception", *Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences*, Vol. 353, No. 1373, pp. 1295-1306.
- Treisman, A., (2006), "How the deployment of attention determines what we see", *Visual Cognition, Vol.* 14, No. 4-8, pp. 411-443.
- Treisman, A., and Gelade, G., (1980), "A feature-integration theory of attention", *Cognitive Psychology*, Vol. 12, No. 1, pp. 97-136.
- Treisman, A., and Sato, S., (1990), "Conjunction search revisited", *Journal of Experimental Psychology: Human Perception and Performance*, Vol. 16, No. 3, pp. 459-478.

- Treisman, A., and Schmidt, H., (1982), "Illusory conjunctions in the perception of objects", *Cognitive psychology*, Vol. 14, No. 1, pp. 107-141.
- Treisman, A., and Zhang, W.W., (2006), "Location and binding in visual working memory", *Memory and Cognition*, Vol. 34, No. 8, pp. 1704-1719.
- Tulving, E., and Lindsay, P.H., (1967), "Identification of simultaneously presented simple visual and auditory stimuli", *Acta Psychologica*, Vol. 27, pp. 101–109
- Turvey, M.T., (1973), "On peripheral and central processes in vision: Inferences from an informationprocessing analysis of masking with patterned stimuli", *Psychological Review*, Vol. 80, No. 1, pp.1-52.
- Udale, R., Farrell, S., and Kent, C., (2017), "No evidence for binding of items to task-irrelevant backgrounds in visual working memory", *Memory and Cognition*, Vol. 45, No. 7, pp. 1144-1159.
- Udale, R., Farrell, S., and Kent, C., (2018a), "No evidence of binding items to spatial configuration representations in visual working memory", *Memory and Cognition*, Vol. 46, No. 6, pp. 955-968.
- Udale,R., Farrell,S., and Kent,C., (2018b), "Task demands determine comparison strategy in whole probe change detection", *Journal of Experimental Psychology: Human Perception and Performance*, Vol. 44, No. 5, pp. 778–796.
- Ueno,T., Mate,J., Allen,R.J., Hitch,G.J., and Baddeley,A.D., (2011), "What goes through the gate? Exploring interference with visual feature binding", *Neuropsychologia*, Vol. 49, No. 6, pp. 1597-1604.
- Van der Togt,C., Kalitzin,S., Spekreijse,H., Lamme,V.A.F., and Super,H., (2006), "Synchrony dynamics in monkey V1 predict success in visual detection", *Cerebral Cortex*, Vol. 16, No. 1, pp. 136-148.
- Van Essen,D.C., (1985), "Functional organization of primate visual cortex", *The cerebral cortex*, Edited by J.E. Peters, Cerebral Cortex, Vol. 3, Plenum, New York, 1985, pp. 259–329.
- VanRullen, R., (2009), "Binding hardwired versus on-demand feature conjunctions", Visual Cognition, Vol. 17, No. 1, pp. 103-119.
- Vidyasagar, T.R., (1999), "A neuronal model of attentional spotlight: parietal guiding the temporal", *Brain Research Reviews*, Vol. 30, No.1, pp. 66-76.
- Vogel,E.K., Woodman,G.F., and Luck,S.J., (2006), "The time course of consolidation in visual working memory", Journal of Experimental Psychology: Human Perception and Performance, Vol. 32, No. 6, pp. 1436–1451.
- Von der Malsburg, C., (1999), "The what and why of binding: the modeler's perspective", *Neuron*, Vol. 24, No. 1, pp. 95-104.
- Von der Malsburg, C., (1981). "The correlation theory of brain function", *Models of neural networks II, Edited by* E. Domany, J. L. Hemmen, and K. Schulten, Springer, Berkin:, pp. 95–119.
- Wei,P., Müller,H.J., Pollmann,S., and Zhou,X., (2011), "Neural correlates of binding features within-or cross-dimensions in visual conjunction search: An fMRI study", *Neuroimage*, Vol. 57, No. 1, pp. 235-241.
- Wheeler, M.E., and Treisman, A., (2002), "Binding in short-term visual memory", Journal of Experimental *Psychology: General*, Vol. 13, No. 1, pp. 48-64.
- Winkler, I., Czigler, I., Sussman, E., Horváth, J., and Balázs, L., (2005), "Preattentive binding of auditory and visual stimulus features", *Journal of Cognitive Neuroscience*, Vol. 17, No. 2, pp. 320-339.
- Winocur,G., and Weiskrantz,L., (1976), "An investigation of paired-associate learning in amnesic patients", *Neuropsychologia*, Vol. 14, No. 1, pp. 97-110.
- Wojciulik, E., and Kanwisher, N., (1999), "The generality of parietal involvement in visual attention", *Neuron*, Vol. 23, No. 4, pp. 747-764
- Wolfe, J.M., (1994), "Guided search 2.0 a revised model of visual search", *Psychonomic Bulletin and Review*, Vol. 1, No. 2, pp. 202-238.
- Wolfe,J.M., Cave,K.R., and Franzel,S.L., (1989), "Guided search: An alternative to the feature integration model for visual search", *Journal of Experimental Psychology: Human Perception and Performance*, Vol. 15, No. 3, 419–433.
- Xie,W., and Zhang,W., (2017). "Familiarity speeds up visual short-term memory consolidation", Journal of Experimental Psychology: Human Perception and Performance, Vol. 43, No. 6, pp. 1207–1221
- Xie,X.Y., and Yu,C., (2020), "A new format of perceptual learning based on evidence abstraction from multiple stimuli", *Journal of Vision*, Vol. 20, No. 2, pp. 1-5.
- Xu,Y., (2007), "The role of the superior intraparietal sulcus in supporting visual short-term memory for multifeature objects", *Journal of Neuroscience*, Vol. 27, No. 43, pp. 11676-11686.
- Xu,Y., (2017), "Reevaluating the sensory account of visual working memory storage", *Trends in Cognitive Sciences*, Vol. 21, No. 10, pp. 794-815.

- Xu,Y., and Chun,M.M., (2006), "Dissociable neural mechanisms supporting visual short-term memory for objects", *Nature*, Vol. 440. No. 7080, pp. 91-95.
- Xu,Y., and Chun,M.M., (2009), "Selecting and perceiving multiple visual objects", *Trends in cognitive sciences*, Vol. 13, No. 4, pp. 167-174.
- Yamamoto,N., and Shelton,A.L., (2009), "Sequential versus simultaneous viewing of an environment: Effects of focal attention to individual object locations on visual spatial learning", *Visual Cognition*, Vol. 17, No. 4, pp. 457-483.
- Yang, P., Fan, C., Wang, M., Fogelson, N., and Li, L., (2017), "The effects of changes in object location on object identity detection: A simultaneous EEG-fMRI study", *Neuroimage*, Vol. 157, pp. 351-363.
- Zamboni, E., Kemper, V.G., Goncalves, N.R., Jia, K., Bell, S.J., Karlaftis, V.M., Giorgio, J.J., Rideaux, R., Goebel R., Kourtzi, Z., "Suppressive recurrent and feedback computations for adaptive processing in the human brain", *bioRxiv*, preprint doi: https://doi.org/10.1101/2020.02.14.947895.
- Zeki,S.M., (1978), "Functional specialisation in the visual cortex of the rhesus monkey", *Nature*, Vol. 274, No. 5670, pp. 423.
- Zhang, E., and Li, W., (2020), "Improved fidelity of orientation perception: a learning effect dissociable from enhanced discriminability", *Scientific Reports*, Vol. 10, No. 1, pp. 1-11.
 Zhang, W., and Luck, S.J., (2008), "Discrete fixed-resolution representations in visual working
- Zhang,W., and Luck,S.J., (2008), "Discrete fixed-resolution representations in visual working memory", *Nature*, Vol. 453, No. 7192, pp. 233-235.
- Zimmer,H.D., Mecklinger,A., and Lindenberger,U., (2006), "Levels of binding: Types, mechanisms, and functions of binding", *Handbook of Binding and Memory: Perspectives from Cognitive Neuroscience*, Edited by D. Zimmer, A. Mecklinger and U. Lindenberger, Oxford University Press, Oxfprd, U.K., pp. 3-22.
- Zokaei, N., McNeill, A., Proukakis, C., Beavan, M., Jarman, P., Korlipara, P., Houghs, D., Mehta, A., Hu, M.T.M., Schapira, A.H.V., and Husain, M., (2014), "Visual short-term memory deficits associated with GBA mutation and Parkinson's disease", *Brain*, Vol. 137, No. 8, pp. 2303-2311.