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Introduction

Dynamical systems is an important branch of Mathematics that studies the long-term
behavior of a system whose states evolve over time. The time-evolutionary process generated
either by linear or nonlinear equations gives the dynamical systems. In the early 1600s, Johannes
Kepler and Galileo Galilei used dynamical systems in astronomy investigations. In the mid
1600s, Isaac Newton invented calculus, differential equations, the laws of motion and universal
gravitation, and combined them to Kepler’s laws of planetary motion. Further, in late 1800s, Henri
Poincaré introduced qualitative rather than quantitative approach, for analyzing the behavior of
a system and investigated the three body problem in celestial mechanics with the help of theory
of dynamical systems. In 1900s, A. M. Lyapunov, G. D. Birkhoff, A. A. Andronov, V. I. Arnold, J.
Moser and others flourished the qualitative approach for analyzing the dynamical evolution of a
system. Later, E. Lorenz studied a simplified three variablemodel of convection in the atmosphere.
This field continues to develop rapidly in many directions, and its implication continue to grow.

One dimensional dynamical systems have an extensive history. The general theory of one
dimensional dynamics is very well developed. One dimensional dynamical system models some
real time phenomena. The central theme of the one dimensional theory is the geometric rigidity
of the attractors. Renormalization is the key technique to study the rigidity of the attractors. The
historical review on renormalization is vast. The aim of this introduction is just to give an idea of
different directions and developments of the theory.

Renormalization is a technique to analyze maps having the property that the first return
map to a small part of the phase space resembles the original map itself. M. Feigenbaum
[Feigenbaum, 1978], [Feigenbaum, 1979] and P. Coullet and C. Tresser [Coullet and Tresser,
1978] introduced period doubling renormalization operator to describe the asymptotic small scale
geometry of the attractor of one parameter family of one dimensional maps near the accumulation
of period doubling. Renormalization is the main tool to investigate the geometrical properties of
the attractors at smaller scales. If the microscopic geometry of an attractor is not changed, this
phenomenon is called rigidity. The geometric rigidity of the attractors is the center of attention in
one dimensional theory. The smoothness of the maps under consideration plays a crucial role for
rigidity. M. Feigenbaum, P. Coullet and C. Tresser disclosed some interesting results on rigidity
in one dimensional dynamics, i.e., the microscopic geometry of the invariant Cantor set of generic
smooth maps at the phase transition from simple to chaotic being independent of the considered
one parameter family of unimodal maps. In particular, M. Feigenbaum considered a family of
quadratic maps such as Logistic family fµ for analyzing the phase transition, where,

fµ(x) = µx(1− x), x ∈ [0,1], µ > 0.

By computer experiments, the parameter values µn where 2n cycle first occurred in this family was
obtained. Then, it was observed that the ratio of distance between two consecutive period doubling
bifurcations approaches to a constant, i.e.,

lim
n→∞

µn −µn−1

µn+1 −µn
= 4.669...= δ .

1



This number δ is a universal constant and known as Feigenbaum constant (or Feigenbaum delta).

To explain this phenomenon, a nonlinear operator, called as period doubling
renormalization operator, defined on the space of unimodal maps was introduced. Initially,
Coullet and Tresser conjectured that the period doubling renormalization operator defined on the
space of smooth enough generic unimodal maps has a unique hyperbolic fixed point with a one
dimensional unstable direction and the universal constant δ is the eigenvalue of the derivative of
the renormalization operator at the fixed point.

O. Lanford [Lanford III, 1982] confirmed this conjecture through a computer assisted
proof. Also, Eckmann and Wittwer [Eckmann and Wittwer, 1987] proved this conjecture using
rigorous computer estimates. Without essential help from the computer, M. Campanino and H.
Epstein [Campanino and Epstein, 1981], Campanino et al. [Campanino et al., 1982] and Epstein
[Epstein, 1986] proved the existence of the renormalization fixed point (but neither uniqueness nor
hyperbolicity). Later on, the initial conjecture was generalized as:

Renormalization conjecture: The limit set of the renormalization operator in the space of maps of bounded
combinatorial type is a hyperbolic Cantor set where the operator acts as the full shift in a finite number of
symbols.

From the last four decades, a lot of mathematical theory have been developed for the
renormalization theory in low-dimensional dynamics. Several milestones have been achieved by
a number of mathematicians. Especially, D. Sullivan [Sullivan, 1992] showed the convergence of
renormalizations. Moreover, all limits of renormalization are quadratic-like maps with a definite
modulus. J. Hu [Hu, 1995] proved that the real polynomial map having the periodic points
of all power of 2 is infinitely renormalizable. Further, McMullen [McMullen, 1996] proved the
exponential convergence towards the limit set of renormalization. Also, M. Martens [Martens,
1998] developed an approach to prove the existence of periodic points of the renormalization
operator defined on smooth unimodal maps with arbitrary combinatorial type. M. Lyubich
considered the renormalization with bounded combinatorics in [Lyubich, 1999]. A. Davie [Davie,
1996] showed the hyperbolicity of a unique analytic renormalization fixed point in the space of
C2+α (α < 1) unimodal maps. Moreover, he proved that the renormalization fixed point has
codimension one stable manifold which coincides with infinitely renormalizable maps, and a one
dimensional unstable manifold which consists of analytic maps.

Using the results of Lyubich [1999]; E. de Faria, W. de Melo and A. Pinto [de Faria et al.,
2006] extended to more general types of renormalization in the spaceCr, provided r ≥ 2+α with α
close to one. Later, Chandramouli, Martens, de Melo, Tresser [Chandramouli et al., 2009], proved
that the period doubling renormalization converges to the analytic generic fixed point proving
it to be globally unique in a class C2+|·| which is bigger than C2+α (for any positive α ≤ 1). It
was observed that the fixed point of renormalization operator is not hyperbolic in the space of C2

unimodal maps. Furthermore, they showed that the uniqueness is lost below C2 space and other
asymptotic behavior encountered. A. Avila andM. Lyubich [Avila and Lyubich, 2011] developed a
new approach to convergence of renormalization for unimodal maps. Recently, O. Kozlovski and
S. van Strien [Kozlovski and van Strien, 2020] proved the existence of a period doubling infinitely
renormalizable asymmetric unimodal map with non universal scaling laws.

Importance of Low-Smooth Maps: Many of real time applications can be modeled by one
dimensional system which are not enough smooth. In dissipative systems, the states are bundled
in stable manifolds, and different states in a stable manifold have the same future. In general,
the stable manifolds are not bundled smoothly. Like, the Lorenz flow is a three dimensional flow
associated with a two dimensional stable manifold and one dimensional unstable manifold. These
stable manifolds are bundled in a foliation which is non-smooth. The Lorenz flow can be studied
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by an interval map with below C2 smoothness.
Therefore, the thesis work focuses on renormalization with specified combinatorics, of unimodal
maps and bimodal maps whose smoothness is belowC2.

Before proceeding further, we recall some basic definitions and concepts.
Let I = [a,b] be a closed interval.
A point c ∈ I is called critical point of a map f : I → I if D f (c) = 0. The critical point c is said to be
non-flat critical point of order κ ,where κ is a positive integer, if f isCκ+1 in a neighborhood of c and
D f (c) = D2 f (c) = · · ·= Dκ−1 f (c) = 0 and Dκ f (c) ̸= 0.
Amap f : I → I, is a C1 map with a unique critical point c ∈ I, is called unimodalmap.
A function f : I → R is said to be a Lipschitz function on I if there exists a constant λ f > 0 such that

| f (x)− f (y)| ≤ λ f |x− y| ∀ x, y ∈ I.

A unimodal map f : I → I is a C1+Lip mapping with the following properties:

• f ∈C1,

• D f is a Lipschitz function.

Let c be a critical point of a unimodal map f has a quadratic tip if there exists a sequence {yn}
approaches to c and a constant l > 0 such that

lim
n→∞

f (yn)− f (c)
(yn − c)2 =−l.

A interval J ⊂ I is called a periodic interval of period n if f n(J) = J for some positive integer n ∈ N.
A unimodal map f is called period n-renormalizable if there exists a proper subinterval J of I and a
positive integer n ≥ 2 such that
(i) f i(J), i = 0,1, .....,n−1, have no pairwise interior intersection,
(ii) f n(J)⊂ J.
Then f n : J → J is called a pre-renormalization of f .
Amap f : I → I is infinitely renormalizablemap if there exists an infinite sequence {Im}∞

m=0 of nested
intervals and an infinite sequence {k(m)}∞

m=0 of positive integers such that f k(m)|Im : Im → Im are
pre-renormalizations of f and the length of Im tends to zero as n → ∞.

Note that, for n = 2,3,4,5, period n−renormalization is said to be period doubling, tripling,
quadrupling or quintupling renormalization respectively.

Let U be the set of unimodal maps and U0 ⊂ U contains the set of period tripling
renormalizable unimodal maps.
Let f ∈U0. Then, the period tripling renormalization operator

R : U0 →U

is defined by
R f (x) = h−1 ◦ f 3 ◦h(x),

where h : I → J is the orientation reversing affine homeomorphism. ThemapR f is again a unimodal
map. This is illustrated in Figure 1.1. The set of period tripling infinitely renormalizable maps is
denoted by

W0 =
∩

m≥1

R−m(U0).
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Figure 1.1 : Period tripling renormalization of a unimodal map f

The first part of the thesis deals with the renormalizations of unimodal maps whose smoothness
are below C2.

In chapter 2, we primarily consider the renormalization operator as a period tripling and
quintupling renormalizations (i.e., odd period renormalizations) belowC2 class of unimodalmaps.

In the case of period n−renormalization, where n ∈ {3,5}, for a proper scaling data s∗

we construct a nested sequence of affine pieces whose end-points lie on the unimodal map
and shrinking down to the critical point of the unimodal map. This allows us to prove the
existence of the fixed point of renormalization operators acting on the space of piece-wise affine
infinitely renormalizable maps. The classU∞ consists of piece-wise affine period tripling infinitely
renormalizable maps. This will lead to the following proposition,

Proposition 1.0.1. There exists a map fs∗ ∈U∞, where s∗ is characterized by

R fs∗ = fs∗ .

In particular, U∞ = { fs∗}.

Further, the renormalization fixed point fs∗ is extended toC1+Lip unimodal mapFs∗ with a
quadratic tip. We have the following theorem,

Theorem 1.0.2. There exists a period tripling infinitely renormalizable C1+Lip unimodal map Fs∗ with a
quadratic tip such that

RFs∗ = Fs∗ .

The topological entropy of a system defined on a non-compact space is defined to be the Supremum
of topological entropies contained in compact invariant subsets.
Using this statement, we investigate the topological entropy of renormalization operators defined
on the space ofC1+Lip unimodal maps. Then, we have,

Theorem 1.0.3. The period tripling renormalization operator R defined on the space of C1+Lip unimodal
maps has infinite topological entropy.
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Further, we consider ε−variation on the scaling data. This helps us show the existence of
another fixed point of the renormalization operator. Then, we obtain the following theorem,

Theorem 1.0.4. There exists a continuum of fixed points of the renormalization operator acting on C1+Lip

unimodal maps.

Moreover, we prove the following result,

Theorem 1.0.5. There exists a period tripling infinitely renormalizable C1+Lip unimodal map k with
quadratic tip such that {cn}n≥0, where cn is the critical point of Rnk, is dense in a Cantor set.

Furthermore, there are two other possible period 5 combinatorics for period quintupling
renormalization, which are (In

3 → In
5 → In

1 → In
2 → In

4 → In
3 ) and (In

4 → In
5 → In

1 → In
2 → In

3 → In
4 ).

Consequently, one can construct a renormalization fixed point and obtain the above results
corresponding to each combinatorics.

These results described in chapter 2 of the thesis work are based on the following article.
Rohit Kumar, V.V.M.S. Chandramouli, Period Tripling and Quintupling Renormalizations Below C2

Space, Discrete and Continuous Dynamical Systems, doi:10.3934/dcds.2021091.

Additionally, in subsection 2.3, we also describe the period quadrupling renormalization
by considering period quadruple combinatorics. Consequently, we observe that there are twomain
differences among period tripling, quadrupling and quintupling renormalizations as follows:
As n increases for period n−renormalization, the number of the possible combinatorics will
increase and each of them will lead to such construction of renormalization fixed point.
Moreover, the geometry of respective invariant Cantor set become more complex.

In the context of circle diffeomorphisms, M. Herman [Herman, 1979] proved the rigidity
result, using real variable techniques. J. C. Yoccoz [Yoccoz, 1984] proved the other fundamental
rigidity results by using conformal surgery, where Herman’s theorem holds in the real-analytic
category. Further, K. M. Khanin and Y. G. Sinai [Khanin and Sinai, 1987] gave a proof of
M. Herman’s theorem which is based on the thermodynamic formalism and ergodic properties
for the corresponding random variables. Later, M. Yampolsky [Yampolsky, 2001] proved the
rigidity of circle map with a critical point. Furthermore, the rigidity theory for circle maps
with break type singularities have been developed by K. M. Khanin, S. Kocić, A. Teplinsky, E.
Mazzeo [Khanin and Kocić, 2013] [Khanin and Teplinsky, 2013] [Khanin, k. et al., 2017] [Khanin
and Kocić, 2018], K. Cunha and D. Smania [Cunha and Smania, 2014], H. Akhadkulov et al.
[Akhadkulov et al., 2017]. In the context of interval maps, the rigidity phenomena is understood
forC2+α (α > 0) smooth maps. Further, W. deMelo and A. Pinto [deMelo and Pinto, 1999] proved
the rigidity ofC2 infinitely renormalizable unimodal maps with bounded combinatorial type. The
measure-theoretical properties of real family of unimodal maps are studied by M. Lyubich, A.
Avila, W. de Melo, H. Bruin, W. Shen, S. van Strien, C. S. Moreira, D. Smania and M. Todd. Later,
M. Lyubich [Lyubich, 2002] proved that almost any real quadratic map has either an attracting
cycle or an absolutely continuous invariantmeasure. Further, A.Avila,M. Lyubich andW. deMelo
[Avila et al., 2003] extended these result for any non-trivial real analytic family of quasiquadratic
maps. H. Bruin, W. Shen and S. van Strien [Bruin et al., 2006] showed that almost every unicritical
polynomial with even critical order greater than or equal to 2, admits a physical measure, which
is either supported on an attracting periodic orbit, or is absolutely continuous, or is supported on
the postcritical set. Further, C. S. Moreira and D. Smania [Moreira and Smania, 2014] showed
the rigidity of infinitely renormalizable Fibonacci unimodal maps with even critical order and
having negative Schwarzian derivative. H. Bruin and M. Todd [Bruin and Todd, 2015] proved
the existence of wild attractor for a countably piece-wise linear infinitely renormalizable Fibonacci
unimodal map with infinite critical order.
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In the context of two dimensional maps, A. de Carvalho, M. Lyubich and M. Martens
[Carvalho et al., 2005] showed the non-rigidity of Cantor attractors of Hénon-like maps. Further,
P. Hazard, M. Lyubich andM.Martens [Hazard et al., 2012] discussed the unbounded geometry of
Cantor attractor of strongly dissipative infinitely renormalizable Hénon-like map with stationary
combinatorics. In case of Lorenz maps, M. Martens and B. Winckler [Martens andWinckler, 2014],
[Martens andWinckler, 2018] studied the hyperbolicity of Lorenz renormalization and also proved
the non-existence of physical measures for Lorenz maps which are infinitely renormalizable.

With a relatively complete understanding of the period doubling renormalization of
unimodal maps, recent research in dynamical systems has either focused on more complicated
maps of the real line or other low dimensional maps. L. Jonker and D. Rand [Jonker and Rand,
1980], and S. van Strien [Strien, 1988] used renormalization as a natural vehicle to decompose
the non-wandering set in a hierarchical manner, for unimodal maps. The multimodal maps are
interesting as generalizations of unimodal maps, as well as for their applications. For example,
in the case of bimodal maps, they are essential to understand the non-invertible circle maps
which have been used extensively to model the transitions to chaos in two frequency systems
[Mackay and Tresser, 1986]. R. S. Mackay and J. van Zeijts [MacKay and Zeijts, 1988] explained
the period doubling renormalization of two parameter families of bimodal maps in the term of
a horseshoe with a Cantor set of two dimensional unstable manifold. Also, they calculated the
periodic points of renormalization up to period five. D. Veitch [Veitch, 1994] presented somework
on topological renormalization of C0 bimodal maps with zero and positive entropy. Further, D.
Smania developed a combinatorial theory for certain kind of multimodal maps and proved that for
the same combinatorial type the renormalizations of infinitely renormalizable smooth multimodal
maps are exponentially close [Smania, 2001], [Smania, 2005]. Later, D. Smania [Smania, 2020]
proved the hyperbolicity of renormalization for real analytic multimodal maps with bounded
combinatorics.

As the first part of the thesis discusses the period tripling renormalization of unimodal maps. This
motivates us to describe the period tripling renormalization in the context of symmetric bimodal
maps of the interval with low smoothness. The second part of this thesis also contains interesting
results on the non-rigidity of infinitely renormalizable symmetric bimodal maps.

An interval map f is piece-wise monotone if there exists a partition of I into finitely many
subintervals on each of which the restriction of f is continuous and strictly monotonic.
A map f is called a bimodalmap if three is the minimal number of such subintervals.

Definition 1.0.1. Let f : I → I be a C1 map with two subsets Jl and Jr such that Jl
o ∩ J

o
r = /0. If

f |Jl and f |Jr are unimodal maps which are concave up and concave down respectively, their join,
denoted by f |Jl ⊕ f |Jr , is a bimodal map whose graph is obtained by joining

(
max(Jl), f (max(Jl))

)
and

(
min(Jr), f (min(Jr))

)
by a C1+Lip curve.

We define the renormalization of bimodal maps associated with period tripling
combinatorics. Let I = [0,1] be a closed interval.

Definition 1.0.2. A bimodal map b : I → I, is a C1 map having two critical points cl and cr, which
is said to be renormalizable if there exists two disjoint intervals Il containing cl and Ir containing cr

such that

(i) bi(Il)∩b j(Il) = /0, for each i ̸= j and i, j ∈ {0,1,2},
bi(Ir)∩b j(Ir) = /0, for each i ̸= j and i, j ∈ {0,1,2},

(ii) b3(Il)⊂ Il and b3(Ir)⊂ Ir,
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(iii) The unimodal maps b̂l : [0, b(0)]→ [0, b(0)] and b̂r : [b(1),1]→ [b(1),1] are joined to generate
a bimodal map b̂l ⊕ b̂r. The unimodal maps b̂l and b̂r are defined as

b̂l(x) = h−1
1 b3h1(x)

and
b̂r(x) = h−1

2 b3h2(x),

where h1 : [0, b(0)] → Il and h2 : [b(1),1] → Ir are the affine orientation reversing
homeomorphisms.

The renormalization of a symmetric bimodal map is illustrated in Figure 1.2.

Figure 1.2 : Pairwise period tripling Renormalization of a bimodal map b

Furthermore, by reducing the periodicity of combinatorics, we define the pairwise period
doubling renormalization of bimodal maps.

Definition 1.0.3. A bimodal map b : I → I, is a C1 map with two critical points cl and cr, is said to
be pairwise period doubling renormalizable if there exists a pair of disjoint intervals (Il, Ir),with Il ∋ cl
and Ir ∋ cr, such that
(i) Il ∩b(Il) = /0, Ir ∩b(Ir) = /0,
(ii) Il and Ir are b2-invariant,
(iii) The unimodal maps b̂l : [0, b(0)]→ [0, b(0)] and b̂r : [b(1),1]→ [b(1),1] are joined to generate a
bimodal map b̂l ⊕ b̂r. The unimodal maps b̂l and b̂r are defined as

b̂l(x) = h−1
l b2hl(x)

and
b̂r(x) = h−1

r b2hr(x),

where hl : [0, b(0)]→ Il and hr : [b(1),1]→ Ir are the affine orientation reversing homeomorphisms.
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The pairwise period doubling renormalization of a symmetric bimodal map is illustrated in Figure
1.3.

Figure 1.3 : Pairwise period doubling renormalization of a bimodal map b

The results based on renormalizations of symmetric bimodal maps by considering period
doubling and tripling combinatorics are discussed in the second part of the thesis.
In Chapter 3, the renormalization operator R is a pair of period tripling renormalization operators
Rl and Rr which are defined on piece-wise affine period tripling infinitely renormalizable maps
corresponding to a proper scaling data sl and sr, respectively.
In Chapter 4, the renormalization operator R is a pairwise period doubling renormalization
operators Rl and Rr which are defined on piece-wise affine period doubling infinitely
renormalizable maps corresponding to a proper scaling data sl and sr, respectively.1 Firstly, we
show that there exists a sequence of affine pieces which are nested and shrinking down to the
critical points of the bimodal map corresponding to a pair of proper scaling data s∗ = (s∗l ,s

∗
r ). This

helps us to show the existence of a fixed point fs∗ of the renormalization operator defined on the
space of piece-wise affine infinitely renormalizable maps, which is denoted by W, corresponding
to a pair of proper scaling data s∗. This gives us the following result.

Theorem 1.0.6. There exists a map fs∗ ∈W, where s∗ = (s∗l ,s
∗
r ) is characterized by

R fs∗ = fs∗ .

In particular, W = { fs∗}.

Afterwards, we explain the extension of the renormalization fixed point fs∗ to a C1+Lip

symmetric bimodal map gs∗ . Then, we have the following theorem,

Theorem 1.0.7. There exists an infinitely renormalizable C1+Lip symmetric bimodal map gs∗ such that

Rgs∗ = gs∗ .

1In both chapters 3 and 4, we use the same notations R, Rl and Rr but the contextual meaning is different.
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Also, we describe the topological entropy of renormalization defined on the space ofC1+Lip

symmetric bimodal maps. Then we obtain the following theorem,

Theorem 1.0.8. The renormalization operator R acting on the space ofC1+Lip symmetric bimodal maps has
unbounded topological entropy.

Furthermore, we discuss the existence of another fixed point of renormalization by
considering the small perturbation on the scaling data. Then, we get the following result,

Theorem 1.0.9. There exists a continuum of fixed points of the renormalization operator acting on C1+Lip

symmetric bimodal maps.

Consequently, this result leads to the non-rigidity of the Cantor attractors of infinitely
renormalizable symmetric bimodal maps, whose smoothness is belowC2.

The results described in chapter 3 of the thesis work are published in the following
article. Rohit Kumar, V.V.M.S. Chandramouli, Renormalization of Symmetric Bimodal Maps with
Low Smoothness, Journal of Statistical Physics, 183, 29 (2021). doi:10.1007/s10955-021-02764-8

Finally, in chapter 5, we present comprehensive conclusions concerning all the key findings
of the constitutive chapters 2-4 of the thesis. Also, we highlight a grand overview of the thesis along
with the future research scope.

…
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