Renormalization of symmetric bimodal maps with low smoothness

This chapter deals with the renormalization of symmetric bimodal maps with low smoothness associated with the period tripling combinatorics. Here, the renormalization operator acts as a pair of period tripling renormalization operators corresponding to left and right critical points of symmetric bimodal map. Firstly, for a given pair of proper scaling data, we construct a nested sequence of affine pieces whose end-points lie on the symmetric bimodal map and shrinking down to the critical points of the map. We show that there exists a sequence of affine pieces which are nested and contract to the critical points of the bimodal map corresponding to a pair of proper scaling data. This helps us to prove that the renormalization operator defined on the space of piece-wise affine infinitely renormalizable maps has a fixed point, denoted by $f_{s^{*}}$, corresponding to a pair of proper scaling data s^{*}. In the next section 3.2 , we explain the extension of the renormalization fixed point $f_{s^{*}}$ to a $C^{1+L i p}$ symmetric bimodal map. In section 3.3 , we describe the topological entropy of renormalization defined on the space of $C^{1+L i p}$ symmetric bimodal maps. Furthermore, we prove the existence of another fixed point of renormalization by considering the small perturbation on the scaling data. Consequently, for two different perturbed scaling data we get two Cantor attractors of renormalization fixed points. This leads to the non-rigidity of the Cantor attractors of renormalizable symmetric bimodal maps with low smoothness.

We recall some basic definitions. Let $I=[0,1]$ be a closed interval.
A unimodal map $\mathfrak{u}: I \rightarrow I$, which is a C^{1} map having a unique non-flat critical point c, is called period tripling renormalizable map if there exists a proper subinterval $J \subset I$ with $c \in J$ such that
(1) $J, \mathfrak{u}(J)$ and $\mathfrak{u}^{2}(J)$ are pairwise disjoint,
(2) $\mathfrak{u}^{3}(J) \subset J$.

Then $\mathfrak{u}^{3}: J \rightarrow J$ is called a pre-renormalization of \mathfrak{u}.
Where, u^{n} denotes n fold composition of u with itself.
Let \mathscr{U} be the collection of unimodal maps and $\mathscr{U}_{\infty}(\subset \mathscr{U})$ be the collection of period tripling infinitely renormalizable unimodal maps.

An interval map f is piece-wise monotone if there exists a partition of I into finitely many subintervals on each of which the restriction of f is continuous and strictly monotonic.
A map f is called a bimodal map if three is the minimal number of such subintervals.
Definition 3.0.1. Let $f: I \rightarrow I$ be a C^{1} map with two subsets J_{l} and J_{r} such that $J_{l}{ }^{\circ} \cap J_{r}^{\mathrm{o}}=\emptyset$. If $\left.f\right|_{J_{l}}$ and $\left.f\right|_{J_{r}}$ are unimodal maps which are concave up and concave down respectively, their join, denoted by $\left.\left.f\right|_{J_{l}} \oplus f\right|_{J_{r}}$, is a bimodal map whose graph is obtained by joining $\left(\max \left(J_{l}\right), f\left(\max \left(J_{l}\right)\right)\right)$ and $\left(\min \left(J_{r}\right), f\left(\min \left(J_{r}\right)\right)\right)$ by a $C^{1+L i p}$ curve.
Definition 3.0.2. A bimodal map $b: I \rightarrow I$, is a C^{1} map having two critical points c_{l} and c_{r}, which is said to be renormalizable if there exists two disjoint intervals I_{l} containing c_{l} and I_{r} containing c_{r} such that
(i) $b^{i}\left(I_{l}\right) \cap b^{j}\left(I_{l}\right)=\emptyset$, for each $i \neq j$ and $i, j \in\{0,1,2\}$, $b^{i}\left(I_{r}\right) \cap b^{j}\left(I_{r}\right)=\emptyset$, for each $i \neq j$ and $i, j \in\{0,1,2\}$,
(ii) $b^{3}\left(I_{l}\right) \subset I_{l}$ and $b^{3}\left(I_{r}\right) \subset I_{r}$,
(iii) The unimodal maps $\hat{b}_{l}:[0, b(0)] \rightarrow[0, b(0)]$ and $\hat{b}_{r}:[b(1), 1] \rightarrow[b(1), 1]$ are joined to generate a bimodal map $\hat{b}_{l} \oplus \hat{b}_{r}$. The unimodal maps \hat{b}_{l} and \hat{b}_{r} are defined as

$$
\hat{b}_{l}(x)=h_{1}^{-1} b^{3} h_{1}(x)
$$

and

$$
\hat{b}_{r}(x)=h_{2}^{-1} b^{3} h_{2}(x)
$$

where $h_{1}:[0, b(0)] \rightarrow I_{l}$ and $h_{2}:[b(1), 1] \rightarrow I_{r}$ are the affine orientation reversing homeomorphisms.

The renormalization of a bimodal map is illustrated in Figure 3.1.

Figure 3.1 : Renormalization of a bimodal map

In the next section, we construct the renormalization operator defined on the space of piece-wise affine maps which are infinitely renormalizable maps.

3.1 PIECE-WISE AFFINE RENORMALIZABLE MAPS

A symmetric bimodal map $b:[0,1] \rightarrow[0,1]$ of the form $b(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$, for $a_{3}<0$, is a C^{1} map with the following conditions

- $b(0)=1-b(1)$,
- $b\left(\frac{1}{2}\right)=\frac{1}{2}$,
- let c_{l} and c_{r} be the two critical points of $b(x)$, then $b\left(c_{l}\right)=0$ and $b\left(c_{r}\right)=1$.

Let us consider a one parameter family of symmetric bimodal maps $\mathscr{B}_{c}:[0,1] \rightarrow[0,1]$ which are increasing on the interval between the critical points and decreasing elsewhere. then, we obtained a family of bimodal maps as

$$
\begin{align*}
\mathscr{B}_{c}(x) & = \begin{cases}1-\frac{1-6 c+9 c^{2}-4 c^{3}+6 c x-6 c^{2} x-3 x^{2}+2 x^{3}}{(1-2 c)^{3}}, & \text { if } c \in\left[0, \frac{1}{4}\right] \\
1-\frac{4 c^{3}-3 c^{2}+6 c x-6 c^{2} x-3 x^{2}+2 x^{3}}{(2 c-1)^{3}}, & \text { if } c \in\left[\frac{3}{4}, 1\right]\end{cases} \\
& \equiv \begin{cases}b_{c}(x), & \text { if } c \in\left[0, \frac{1}{4}\right] \\
\tilde{b}_{c}(x), & \text { if } c \in\left[\frac{3}{4}, 1\right]\end{cases} \tag{3.1}
\end{align*}
$$

Note that the bimodal maps b_{c} and \tilde{b}_{c} are identical maps.
Let us define an open set

$$
T_{3}=\left\{\left(s_{0}, s_{1}, s_{2}\right) \in \mathbb{R}^{3}: s_{0}, s_{1}, s_{2}>0, \sum_{i=0}^{2} s_{i}<1\right\} .
$$

Each element $\left(s_{0}, s_{1}, s_{2}\right)$ of T_{3} is called a scaling tri-factor. A pair of scaling tri-factors ($s_{0, l}, s_{1, l}, s_{2, l}$) and $\left(s_{0, r}, s_{1, r}, s_{2, r}\right)$ induces two sets of affine maps ($F_{0, l}, F_{1, l}, F_{2, l}$) and ($F_{0, r}, F_{1, r}, F_{2, r}$) respectively. For each $i=0,1,2$,

$$
F_{i, l}: I_{L}=\left[0, b_{c}(0)\right] \longrightarrow I_{L}
$$

are defined as

$$
\begin{aligned}
& F_{0, l}(t)=b_{c}(0)-s_{0, l} \cdot t, \\
& F_{1, l}(t)=b_{c}^{2}(0)-s_{1, l} \cdot t, \\
& F_{2, l}(t)=s_{2, l} \cdot t
\end{aligned}
$$

and

$$
F_{i, r}: I_{R}=\left[\tilde{b}_{c}(1), 1\right] \longrightarrow I_{R}
$$

are defined as

$$
\begin{aligned}
& F_{0, r}(t)=\tilde{b}_{c}(1)+s_{0, r} \cdot(1-t), \\
& F_{1, r}(t)=\tilde{b}_{c}^{2}(1)+s_{1, r} \cdot(1-t), \\
& F_{2, r}(t)=1-s_{2, r} \cdot(1-t) .
\end{aligned}
$$

Note that $I_{L}{ }^{0} \cap I_{R}{ }^{0}=\phi$, for $c \in\left[0, \frac{3-\sqrt{3}}{6}\right]$.
The functions $s_{l}: \mathbb{N} \rightarrow T_{3}$ and $s_{r}: \mathbb{N} \rightarrow T_{3}$ are said to be a scaling data. We set scaling tri-factors $s_{l}(n)=\left(s_{0, l}(n), s_{1, l}(n), s_{2, l}(n)\right) \in T_{3}$ and $s_{r}(n)=\left(s_{0, r}(n), s_{1, r}(n), s_{2, r}(n)\right) \in T_{3}$,
so that $s_{l}(n)$ and $s_{r}(n)$ induce the triplets of affine maps $\left(F_{0, l}(n)(t), F_{1, l}(n)(t), F_{2, l}(n)(t)\right)$ and $\left(F_{0, r}(n)(t), F_{1, r}(n)(t), F_{2, r}(n)(t)\right)$ as described above.
For $i=0,1,2$, let us define the intervals

$$
I_{i, l}^{n}=F_{1, l}(1) \circ F_{1, l}(2) \circ F_{1, l}(3) \circ \ldots . . \circ F_{1, l}(n-1) \circ F_{i, l}(n)\left(\left[0, b_{c}(0)\right]\right) .
$$

Also,

$$
I_{i, r}^{n}=F_{1, r}(1) \circ F_{1, r}(2) \circ F_{1, r}(3) \circ \ldots . \circ F_{1, r}(n-1) \circ F_{i, r}(n)\left(\left[\tilde{b}_{c}(1), 1\right]\right) .
$$

Definition 3.1.1. A scaling data $s_{j} \equiv\left\{s_{j}(n)\right\}$, for $j=l, r$, is said to be proper if, for each $n \in \mathbb{N}$,

$$
d\left(s_{j}(n), \partial T_{3}\right) \geq \varepsilon, \quad \text { for some } \quad \varepsilon>0 .
$$

Where $d\left(s_{j}(n), \partial T_{3}\right)$ stands for the Euclidean distance between $s_{j}(n)$ and the closest boundary point of T_{3}.

A pair of proper scaling data $s_{l}: \mathbb{N} \rightarrow T_{3}$ and $s_{r}: \mathbb{N} \rightarrow T_{3}$, which is denoted by $s=\left(s_{l}, s_{r}\right)$, induce the sets $D_{s_{l}}=\bigcup_{n \geq 1}\left(I_{0, l}^{n} \cup I_{2, l}^{n}\right)$ and $D_{s_{r}}=\bigcup_{n \geq 1}\left(I_{0, r}^{n} \cup I_{2, r}^{n}\right)$, respectively. Consider a map

$$
f_{s}: D_{s_{l}} \cup D_{s_{r}} \rightarrow[0,1]
$$

defined as

$$
f_{s}(x)= \begin{cases}f_{s_{l}}(x), & \text { if } x \in D_{s_{l}} \\ f_{s_{r}}(x), & \text { if } x \in D_{s_{r}}\end{cases}
$$

where $f_{s_{l} \mid D_{0, l}^{n}}$ and $f_{s_{l} \mid \sum_{2, l}^{n}}$ are the affine extensions of $b_{c} \mid \partial j_{0, l}^{n}$ and $\left.b_{c}\right|_{\partial \sum_{2, l}^{n}}$ respectively. Similarly, $\left.f_{s_{r} \mid}\right|_{0, r} ^{n}$ and $f_{s_{r}} \mid l_{2, r}^{n}$ are the affine extensions of $\left.b_{c}\right|_{\partial I_{0, r}^{n}}$ and $\left.b_{c}\right|_{\partial I_{2, r}^{n}}$ respectively. These affine extensions are shown in Figure 3.2. The end points of the intervals at each level are labeled by

Figure 3.2 : Piece-wise affine extension

$$
y_{0}=0, z_{0}=b_{c}(0), I_{1, l}^{0}=I_{L}=\left[0, b_{c}(0)\right]
$$

and for $n \geq 1$

$$
\begin{aligned}
x_{n} & =\partial I_{0, l}^{n} \backslash \partial I_{1, l}^{n-1} \\
y_{2 n-1} & =\max \left\{\partial I_{1, l}^{n-1}\right\} \\
y_{2 n} & =\min \left\{\partial I_{1, l}^{n}\right\} \\
z_{2 n-1} & =\min \left\{\partial I_{1, l}^{n-1}\right\} \\
z_{2 n} & =\max \left\{\partial I_{1, l}^{n}\right\} \\
w_{n} & =\partial I_{2, l}^{n} \backslash \partial I_{1, l}^{n-1},
\end{aligned}
$$

Figure 3.3: Formation of interval $I_{1, l}^{n-1}$ into three sub-intervals $I_{2, l}^{n}, I_{1, l}^{n}$ and $I_{0, l}^{n}$.

These points are illustrated in Figure 3.3.
Also, the end points of the intervals at each level are labeled by

$$
z_{0}^{\prime}=\tilde{b}_{c}(1), y_{0}^{\prime}=1, I_{1, r}^{0}=I_{R}=\left[\tilde{b}_{c}(1), 1\right]
$$

and for $n \geq 1$

$$
\begin{gathered}
x_{n}^{\prime}=\partial I_{0, r}^{n} \backslash \partial I_{1, r}^{n-1} \\
y_{2 n-1}^{\prime}=\min \left\{\partial I_{1, r}^{2 n-1}\right\} \\
y_{2 n}^{\prime}=\max \left\{\partial I_{1, r}^{2 n}\right\} \\
z_{2 n-1}^{\prime}=\max \left\{\partial I_{1, r}^{2 n-1}\right\} \\
z_{2 n}^{\prime}=\min \left\{\partial I_{1, r}^{2 n}\right\} \\
w_{n}^{\prime}=\partial I_{2, r}^{n} \backslash \partial I_{1, r}^{n-1} .
\end{gathered}
$$

These points are illustrated in Figure 3.4.

Figure 3.4 : Formation of interval $I_{1, r}^{n-1}$ into three sub-intervals $I_{0, r}^{n}, I_{1, r}^{n}$ and $I_{2, r}^{n}$.

Definition 3.1.2. For a given pair of proper scaling data $s_{l}, s_{r}: \mathbb{N} \rightarrow T_{3}$, a map f_{s} is said to be infinitely renormalizable if for $n \geq 1$,

1(i) $\left[0, f_{s_{l}}\left(y_{n}\right)\right]$ is the maximal domain containing 0 on which $f_{s_{l}}^{3^{n}-1}$ is defined affinely, $\left[f_{s_{l}}^{2}\left(y_{n}\right), f_{s_{l}}(0)\right]$ is the maximal domain containing $f_{s_{l}}(0)$ on which $f_{s_{l}}^{3^{n}-2}$ is defined affinely,
(ii) $\left[f_{s_{r}}\left(y_{n}^{\prime}\right), 1\right]$ is the maximal domain containing 1 on which $f_{S_{r}}^{3^{n}-1}$ is defined affinely and $\left[f_{s_{r}}(1), f_{s_{r}}^{2}\left(y_{n}^{\prime}\right)\right]$ is the maximal domain containing $f_{s_{r}}(1)$ on which $f_{s_{r}}^{3^{n}-2}$ is defined affinely,

2(i) $f_{s_{l}}^{3^{n}-1}\left(\left[0, f_{s_{l}}\left(y_{n}\right)\right]\right) \quad=I_{1, l}^{n}$,
(ii) $f_{s_{l}}^{3^{n}-2}\left(\left[f_{s_{l}}^{2}\left(y_{n}\right), f_{s_{l}}(0)\right]\right)=I_{1, l}^{n}$,
(iii) $f_{s_{r}}^{3^{n}-1}\left(\left[f_{s_{r}}\left(y_{n}^{\prime}\right), 1\right]\right) \quad=I_{1, r}^{n}$,
(iv) $f_{s_{r}}^{3^{n}-2}\left(\left[f_{s_{r}}(1), f_{s_{r}}^{2}\left(y_{n}^{\prime}\right)\right]\right)=I_{1, r}^{n}$.

Define $W=\left\{f_{s}: f_{s}\right.$ is infinitely renormalizable map $\}$.
Further using definition 3.1.2, we write $W_{l}=\left\{f_{s_{l}}: f_{s_{l}}\right.$ satisfies 1(i), 2(i) and 2(ii) $\}$
and $W_{r}=\left\{f_{s_{r}}: f_{s_{r}}\right.$ satisfies 1(ii), 2(iii) and 2(iv) $\}$.
Note that W_{l} and W_{r} be the collection of the piece-wise affine period tripling infinitely renormalizable maps $f_{s_{l}}$ on I_{L} and $f_{s_{r}}$ on I_{R}, respectively.
The combinatorics for renormalization of $f_{s_{l}}$ and $f_{s_{r}}$ are shown in the following Figures 3.5 a and 3.5b.

(a)

(b)

Figure 3.5 : The combinatorics: (a) corresponding to $f_{s l},\left(I_{1, l}^{n} \rightarrow I_{2, l}^{n} \rightarrow I_{0, l}^{n} \rightarrow I_{1, l}^{n}\right)$ and
(b) corresponding to $f_{s_{r}},\left(I_{1, r}^{n} \rightarrow I_{2, r}^{n} \rightarrow I_{0, r}^{n} \rightarrow I_{1, r}^{n}\right)$.
3.1.1 Renormalization on $I_{L}=\left[0, b_{c}(0)\right]$

Let $f_{s_{l}} \in W_{l}$ be given by the proper scaling data $s_{l}: \mathbb{N} \rightarrow T_{3}$ and define

$$
\tilde{I}_{1, l}^{n}=\left[b_{c}^{2}\left(y_{n}\right), b_{c}(0)\right]=\left[f_{s_{l}}^{2}\left(y_{n}\right), f_{s_{l}}(0)\right],
$$

and

$$
\hat{I}_{1, l}^{n}=\left[0, b_{c}\left(y_{n}\right)\right]=\left[0, f_{s_{l}}\left(y_{n}\right)\right] .
$$

Let

$$
h_{s_{l, n}}:\left[0, b_{c}(0)\right] \rightarrow I_{1, l}^{n}
$$

be defined by

$$
h_{s, n}=F_{1, l}(1) \circ F_{1, l}(2) \circ F_{1, l}(3) \circ \ldots \ldots \circ F_{1, l}(n)
$$

Furthermore, let

$$
\tilde{h}_{s l, n}:\left[0, b_{c}(0)\right] \rightarrow \tilde{I}_{1, l}^{n} \text { and } \hat{h}_{s_{l, n}}:\left[0, b_{c}(0)\right] \rightarrow \hat{I}_{1, l}^{n}
$$

be the affine orientation preserving homeomorphisms. Then define

$$
R_{n}^{l} f_{s_{l}}: h_{s_{l}, n}^{-1}\left(D_{s_{l}} \cap I_{1, l}^{n}\right) \rightarrow\left[0, b_{c}(0)\right]
$$

by

$$
R_{n}^{l} f_{s_{l}}(x)= \begin{cases}R_{n}^{l-} f_{s_{l}}(x), & \text { if } x \in h_{s_{l, n}}^{-1}\left(\underset{m \geq n+1}{\cup} I_{0, l}^{m}\right) \\ R_{n}^{l+} f_{s_{l}}(x), & \text { if } x \in h_{s_{l, n}}^{-1}\left(\underset{m \geq n+1}{\cup} I_{2, l}^{m}\right)\end{cases}
$$

where,

$$
R_{n}^{l-} f_{s_{l}}: h_{s_{l, n}}^{-1}\left(\underset{m \geq n+1}{\cup} I_{0, l}^{m}\right) \rightarrow\left[0, b_{c}(0)\right]
$$

and

$$
R_{n}^{l+} f_{s_{l}}: h_{s_{l}, n}^{-1}\left(\underset{m \geq n+1}{\cup} I_{2, l}^{m}\right) \rightarrow\left[0, b_{c}(0)\right]
$$

are defined by

$$
\begin{aligned}
& R_{n}^{l-} f_{s_{l}}(x)=\tilde{h}_{s_{l}, n}^{-1} \circ f_{s_{l}}^{2} \circ h_{s_{l}, n}(x) \\
& R_{n}^{l+} f_{s_{l}}(x)=\hat{h}_{s_{l, n}}^{-1} \circ f_{s_{l}} \circ h_{s_{l, n}}(x),
\end{aligned}
$$

which are illustrated in Figure 3.6. Let $\sigma: T_{3}^{\mathbb{N}} \rightarrow T_{3}^{\mathbb{N}}$ be the shift map defined as

Figure 3.6: Illustration of operators R_{n}^{l-} and R_{n}^{l+}

$$
\sigma\left(s_{l}(1) s_{l}(2) s_{l}(3) s_{l}(4) \ldots .\right)=\left(s_{l}(2) s_{l}(3) s_{l}(4) \ldots .\right),
$$

where $s_{l}(i) \in T_{3}$ for all $i \in \mathbb{N}$.
Note that the operator R_{n}^{l} normalize the affine pieces $f_{s_{l}}^{2}\left(\underset{m \geq n+1}{\cup} I_{0, l}^{m}\right)$ and $f_{s_{l}}\left(\underset{m \geq n+1}{\cup} I_{2, l}^{m}\right)$ to I_{L} with the help of affine homeomorphism $\tilde{h}_{s_{l}, n}^{-1}$ and $\hat{h}_{s_{l}, n}^{-1}$, respectively.
This implies, $R_{n}^{l} f_{s_{l}}$ is a piecewise affine map associated with the scaling data $\left(s_{l}(n+1) s_{l}(n+2) s_{l}(n+3) \ldots\right)$. Thus,

$$
R_{n}^{l} f_{s_{l}}=f_{s_{l}(n+1) s_{l}(n+2) s_{l}(n+3) \ldots .} .
$$

The above explanation leads the following lemma.
Lemma 3.1.1. Let $s_{l}: \mathbb{N} \rightarrow T_{3}$ be proper scaling data such that $f_{s_{l}}$ is infinitely renormalizable. Then

$$
R_{n}^{l} f_{s_{l}}=f_{\sigma^{n}\left(s_{l}\right)} .
$$

Let $f_{s_{l}}$ be infinitely renormalization, then for $n \geq 0$, we have

$$
f_{s_{l}}^{3^{n}}: D_{s_{l}} \cap I_{1, l}^{n} \rightarrow I_{1, l}^{n}
$$

is well defined.
Define the renormalization $R^{l}: W_{l} \rightarrow W_{l}$ by

$$
R^{l} f_{s_{l}}=h_{s_{l}, 1}^{-1} \circ f_{s_{l}}^{3} \circ h_{s_{l}, 1} .
$$

The maps $f_{s_{l}}^{3^{n}-2}: \tilde{I}_{1, l}^{n} \rightarrow I_{1, l}^{n}$ and $f_{s_{l}}^{3^{n}-1}: \hat{I}_{1, l}^{n} \rightarrow I_{1, l}^{n}$ are the affine homeomorphisms whenever $f_{s_{l}} \in W_{l}$.
One can observe that, for each $n \in \mathbb{N}$,

$$
\underset{m \geq n+1}{\cup} I_{0, l}^{m} \subset I_{1, l}^{n} \quad \text { and } \quad \underset{m \geq n+1}{\cup} I_{2, l}^{m} \subset I_{1, l}^{n} .
$$

By the definition of R_{n}^{l}, the operator R_{n}^{l} is just normalizing the affine pieces, which are contained in $I_{1, l}^{n}$, to I_{L}. Also, $I_{1, l}^{n}$ are the renormalization intervals corresponding to $n^{t h}$ renormalization operator $\left(R^{l}\right)^{n}$. Then, we have the following lemma,

Lemma 3.1.2. We have $\left(R^{l}\right)^{n} f_{s_{l}}: D_{\sigma^{n}\left(s_{l}\right)} \rightarrow\left[0, b_{c}(0)\right]$ and $\left(R^{l}\right)^{n} f_{s_{l}}=R_{n}^{l} f_{s_{l}}$.

Using Lemma 3.1.1 and Lemma 3.1.2, now we are in a position to state the following proposition:
Proposition 3.1.3. There exists a map $f_{s_{l}^{*}} \in W_{l}$, where s_{l}^{*} is characterized by

$$
R^{l} f_{s_{l}^{*}}=f_{s_{l}^{*}} .
$$

Proof. Consider $s_{l}: \mathbb{N} \rightarrow T_{3}$ be proper scaling data such that $f_{s_{l}}$ is an infinitely renormalizable. Let c_{n} be the critical point of $f_{\sigma^{n}\left(s_{l}\right)}$. Then

Figure 3.7 : Length of intervals
we have the following scaling ratios which are illustrated in Figure 3.7

$$
\begin{align*}
s_{0, l}(n) & =\frac{b_{c_{n}}(0)-b_{c_{n}}^{4}(0)}{b_{c_{n}}(0)} \tag{3.2}\\
s_{1, l}(n) & =\frac{b_{c_{n}}^{2}(0)-b_{c_{n}}^{5}(0)}{b_{c_{n}}(0)} \tag{3.3}\\
s_{2, l}(n) & =\frac{b_{c_{n}}^{3}(0)}{b_{c_{n}}(0)} \tag{3.4}\\
c_{n+1} & =\frac{b_{c_{n}}^{2}(0)-c_{n}}{s_{1, l}(n)} \equiv \mathscr{R}\left(c_{n}\right) \tag{3.5}
\end{align*}
$$

Since $\left(s_{0, l}(n), s_{1, l}(n), s_{2, l}(n)\right) \in T_{3}$, this implies the following conditions

$$
\begin{align*}
s_{0, l}(n), s_{1, l}(n), s_{2, l}(n) & >0 \tag{3.6}\\
s_{0, l}(n)+s_{1, l}(n)+s_{2, l}(n) & <1 \tag{3.7}
\end{align*}
$$

As the intervals $I_{i, l}^{n}$, for $i=0,1,2$, are mutually disjoint, we denote the gap ratios as $g_{0, l}^{n}$ and $g_{1, l}^{n}$ which are in between $I_{0, l}^{n} \& I_{1, l}^{n}$ and $I_{1, l}^{n} \& I_{2, l}^{n}$ respectively. The gap ratios are defined as, for $n \in \mathbb{N}$,

$$
\begin{align*}
g_{0, l}^{n} & =\frac{b_{c_{n}}^{4}(0)-b_{c_{n}}^{2}(0)}{b_{c_{n}}(0)} \equiv G_{0, l}\left(c_{n}\right)>0 \tag{3.8}\\
g_{1, l}^{n} & =\frac{b_{c_{n}}^{5}(0)-b_{c_{n}}^{3}(0)}{b_{c_{n}}(0)} \equiv G_{1, l}\left(c_{n}\right)>0 \tag{3.9}\\
0 & <c_{n}<\frac{3-\sqrt{3}}{6} \tag{3.10}
\end{align*}
$$

We use Mathematica for solving the equations (3.2), (3.3) and (3.4), then we get the expressions for $s_{0, l}(n), s_{1, l}(n)$ and $s_{2, l}(n)$.
Let $s_{i, l}(n) \equiv S_{i, l}\left(c_{n}\right)$ for $i=0,1,2$. The graphs of $S_{i, l}(c)$ are shown in Figures 3.8a, 3.8b and 3.9a.
Note that the conditions (3.6), (3.8) and (3.9) give the condition (3.7)

$$
0<\sum_{i=0}^{2} s_{i, l}(n)<1
$$

Figure 3.8 : (a) and (b) shows the graph of $S_{0, l}(c)$, and $S_{1, l}(c)$ respectively.

Figure 3.9: (a) and (b) shows the graph of $S_{2, l}(c)$, and $\left(S_{0, l}+S_{1, l}+S_{2, l}\right)(c)$ respectively.

The conditions (3.6) together with (3.8) to (3.10) define the feasible domain F_{d}^{l} is to be:

$$
\begin{equation*}
F_{d}^{l}=\left\{c \in\left(0, \frac{3-\sqrt{3}}{6}\right): S_{i, l}(c)>0 \text { for } i=0,1,2, G_{0, l}(c)>0, G_{1, l}(c)>0\right\} . \tag{3.11}
\end{equation*}
$$

To compute the feasible domain F_{d}^{l}, we need to find subinterval(s) of $\left(0, \frac{3-\sqrt{3}}{6}\right)$ which satisfies the conditions of (3.11). By using Mathematica software, we employ the following command to obtain the feasible domain

$$
\mathrm{N}\left[\operatorname{Reduce}\left[\left\{S_{0, l}(c)>0, S_{1, l}(c)>0, S_{2, l}(c)>0, G_{0, l}(c)>0, G_{1, l}(c)>0,0<c<\frac{3-\sqrt{3}}{6}\right\}, c\right]\right] .
$$

This yields:

$$
F_{d}^{l}=(0.188816 \ldots, 0.194271 \ldots) \cup(0.194271 \ldots, 0.199413 \ldots) \equiv F_{d_{1}}^{l} \cup F_{d_{2}}^{l} .
$$

From the Eqn.(3.5), the graphs of $\mathscr{R}(c)$ are plotted in the sub-domains $F_{d_{1}}^{l}$ and $F_{d_{2}}^{l}$ of F_{d}^{l} which are shown in Figure 3.10. The map $\mathscr{R}: F_{d}^{l} \rightarrow \mathbb{R}$ is expanding in the neighborhood of fixed point c_{l}^{*} which is illustrated in Figure 3.10b. By Mathematica computations, we get an unstable fixed points $c_{l}^{*}=0.196693 \ldots$ in F_{d}^{l} such that

$$
\mathscr{R}\left(c_{l}^{*}\right)=c_{l}^{*}
$$

corresponds to an infinitely renormalizable maps $f_{s_{l}^{*}}$. We observe that the map $f_{s_{l^{*}}}$ corresponding to c_{l}^{*} has the following property

$$
\left\{c_{l}^{*}\right\}=\bigcap_{n \geq 1} I_{1, l}^{n} .
$$

(a) \mathscr{R} has no fixed point in $F_{d_{1}}^{l}$.

(b) \mathscr{R} has only one fixed point in $F_{d_{2}}^{l}$.

Figure 3.10 : The graph of $\mathscr{R}: F_{d}^{l} \rightarrow \mathbb{R}$ and the diagonal $\mathscr{R}(c)=c$.

In other words, consider the scaling data $s_{l}{ }^{*}: \mathbb{N} \rightarrow T_{3}$ with

$$
\begin{aligned}
s_{l}{ }^{*}(n) & =\left(s_{0, l}^{*}(n), s_{1, l}^{*}(n), s_{2, l}^{*}(n)\right) \\
& =\left(\frac{b_{c_{l}^{*}}(0)-b_{c_{l}^{*}}^{4}(0)}{b_{c_{l}^{*}}(0)}, \frac{b_{c_{l}^{*}}^{2}(0)-b_{c_{l}^{*}}^{5}(0)}{b_{c_{l}^{*}}(0)}, \frac{b_{c_{l}^{*}}^{3}(0)}{b_{c_{l}^{*}}^{*}(0)}\right) .
\end{aligned}
$$

Then $\sigma\left(s_{l}^{*}\right)=s_{l}^{*}$ and using Lemma 3.1.1 we have

$$
R^{l} f_{s_{l}^{*}}=f_{s_{l}^{*}}
$$

3.1.2 Renormalization on $I_{R}=\left[\tilde{b}_{c}(1), 1\right]$

In subsection 3.1.1, the bimodal map $b_{c}(x)$ has two critical points $c \in I_{L}$ and $1-c \in I_{R}$ and we define the piece-wise renormalization on I_{L}. In similar fashion, to define the renormalization on I_{R} with $c \in I_{R}$, from Equation 3.1, we consider

$$
\tilde{b}_{c}(x)=1-\frac{4 c^{3}-3 c^{2}+6 c x-6 c^{2} x-3 x^{2}+2 x^{3}}{(2 c-1)^{3}}
$$

where $x \in[0,1]$ and $c \in\left[\frac{3}{4}, 1\right]$.
Note that $I_{L}{ }^{\mathrm{o}} \cap I_{R}{ }^{\mathrm{o}}=\phi$, for $c \in\left[\frac{3+\sqrt{3}}{6}, 1\right]$.
Let $f_{s_{r}} \in W_{r}$ be given by the proper scaling data $s_{r}: \mathbb{N} \rightarrow T_{3}$ and define

$$
\tilde{I}_{1, r}^{n}=\left[\tilde{b}_{c}(1), \tilde{b}_{c}^{2}\left(y_{n}^{\prime}\right)\right]=\left[f_{s_{r}}(1), f_{s_{r}}^{2}\left(y_{n}^{\prime}\right)\right]
$$

and

$$
\hat{I}_{1, r}^{n}=\left[\tilde{b}_{c}\left(y_{n}^{\prime}\right), 1\right]=\left[f_{s_{r}}\left(y_{n}^{\prime}\right), 1\right] .
$$

Let

$$
h_{s_{r}, n}:\left[\tilde{b}_{c}(1), 1\right] \rightarrow I_{1, r}^{n}
$$

be defined by

$$
h_{s_{r}, n}=F_{1, r}(1) \circ F_{1, r}(2) \circ F_{1, r}(3) \circ \ldots . \circ F_{1, r}(n)
$$

Furthermore, let

$$
\tilde{h}_{s_{r}, n}:\left[\tilde{b}_{c}(1), 1\right] \rightarrow \tilde{I}_{1, r}^{n} \text { and } \hat{h}_{s_{r}, n}:\left[\tilde{b}_{c}(1), 1\right] \rightarrow \hat{I}_{1, r}^{n}
$$

be the affine orientation preserving homeomorphisms. Then define

$$
R_{n}^{r} f_{s_{r}}: h_{s_{r}, n}^{-1}\left(D_{s_{r}} \cap I_{1, r}^{n}\right) \rightarrow\left[\tilde{b}_{c}(1), 1\right]
$$

by

$$
R_{n}^{r} f_{s_{r}}(x)= \begin{cases}R_{n}^{r-} f_{s_{r}}(x), & \text { if } x \in h_{s_{r}, n}^{-1}\left(\underset{m \geq n+1}{\cup} I_{0, r}^{m}\right) \\ R_{n}^{r+} f_{s_{r}}(x), & \text { if } x \in h_{s_{r}, n}^{-1}\left(\underset{m \geq n+1}{\cup} I_{2, r}^{m}\right)\end{cases}
$$

where,

$$
R_{n}^{r-} f_{s_{r}}: h_{s_{r}, n}^{-1}\left(\underset{m \geq n+1}{\cup} I_{0, r}^{m}\right) \rightarrow\left[\tilde{b}_{c}(1), 1\right]
$$

and

$$
R_{n}^{r+} f_{s_{r}}: h_{s_{r}, n}^{-1}\left(\underset{m \geq n+1}{\cup} I_{2, r}^{n}\right) \rightarrow\left[\tilde{b}_{c}(1), 1\right]
$$

are defined by

$$
\begin{aligned}
& R_{n}^{r-} f_{s_{r}}(x)=\tilde{h}_{s_{r}, n}^{-1} \circ f_{s_{r}}^{2} \circ h_{s_{r}, n}(x) \\
& R_{n}^{r+} f_{s_{r}}(x)=\hat{h}_{s_{r}, n}^{-1} \circ f_{s_{r}} \circ h_{s_{r}, n}(x),
\end{aligned}
$$

which are illustrated in Figure 3.11.

Figure 3.11 : Illustration of operators R_{n}^{r-} and R_{n}^{r+}

Let $\sigma: T_{3}^{\mathbb{N}} \rightarrow T_{3}^{\mathbb{N}}$ be the shift map which is defined as

$$
\sigma\left(s_{r}(1) s_{r}(2) s_{r}(3) s_{r}(4) \ldots .\right)=\left(s_{r}(2) s_{r}(3) s_{r}(4) \ldots .\right),
$$

where $s_{r}(i) \in T_{3}$ for all $i \in \mathbb{N}$.
Lemma 3.1.4. Let $s_{r}: \mathbb{N} \rightarrow T_{3}$ be proper scaling data such that $f_{s_{r}}$ is infinitely renormalizable. Then

$$
R_{n}^{r} f_{s_{r}}=f_{\sigma^{n}\left(s_{r}\right)} .
$$

Let $f_{s_{r}}$ be infinitely renormalization, then for $n \geq 0$, we have

$$
f_{s_{r}}^{3^{n}}: D_{s_{r}} \cap I_{1, r}^{n} \rightarrow I_{1, r}^{n}
$$

is well defined.
Define the renormalization $R^{r}: W_{r} \rightarrow W_{r}$ by

$$
R^{r} f_{s_{r}}=h_{s_{r}, 1}^{-1} \circ f_{s_{r}}^{3} \circ h_{s_{r}, 1} .
$$

The maps $f_{s_{r}}^{3^{n}-2}: \tilde{I}_{1, r}^{n} \rightarrow I_{1, r}^{n}$ and $f_{s_{r}}^{3^{n}-1}: \hat{I}_{1, r}^{n} \rightarrow I_{1, r}^{n}$ are the affine homeomorphisms whenever $f_{s_{r}} \in W_{r}$. Then we have:

Lemma 3.1.5. We have $\left(R^{r}\right)^{n} f_{s_{r}}: D_{\sigma^{n}\left(s_{r}\right)} \rightarrow\left[\tilde{b}_{c}(1), 1\right]$ and $\left(R^{r}\right)^{n} f_{s_{r}}=R_{n}^{r} f_{s_{r}}$.

From the above Lemma 3.1.4 and Lemma 3.1.5, consequently we get
Proposition 3.1.6. There exists a map $f_{s_{r}^{*}} \in W_{r}$, where s_{r}^{*} is characterized by

$$
R^{r} f_{s_{r}^{*}}=f_{s_{r}^{*}} .
$$

Proof. Consider $s_{r}: \mathbb{N} \rightarrow T_{3}$ be proper scaling data such that $f_{s_{r}}$ is an infinitely renormalizable. Let c_{n} be the critical point of $f_{\sigma^{n}\left(s_{r}\right)}$. Then from Figure 3.12, we have the following scaling ratios

Figure 3.12 : Length of intervals

$$
\begin{align*}
s_{0, r}(n) & =\frac{\tilde{b}_{c_{n}}^{4}(1)-\tilde{b}_{c_{n}}(1)}{1-\tilde{b}_{n_{n}}(1)} \tag{3.12}\\
s_{1, r}(n) & =\frac{\tilde{b}_{c_{n}}^{5}(1)-\tilde{b}_{c_{n}}^{2}(1)}{1-\tilde{b}_{c_{n}}(1)} \tag{3.13}\\
s_{2, r}(n) & =\frac{1-\tilde{b}_{c_{n}}^{3}(1)}{1-\tilde{b}_{c_{n}}(1)} \tag{3.14}\\
c_{n+1} & =1-\frac{c_{n}-\tilde{b}_{c_{n}}^{2}(1)}{s_{1, r}(n)} \equiv \mathscr{R}\left(c_{n}\right) . \tag{3.15}
\end{align*}
$$

Use the same argument as given in subsection 3.1.1, one can compute feasible domain F_{d}^{r}. Finally, we get

$$
F_{d}^{r}=(0.800587 \ldots, 0.805729 \ldots) \cup(0.805729 \ldots, 0.811184 \ldots) \equiv F_{d_{1}}^{r} \cup F_{d_{2}}^{r} .
$$

From the Eqn.(3.15), the graphs of $\mathscr{R}(c)$ are plotted in the sub-domains $F_{d_{1}}^{r}$ and $F_{d_{2}}^{r}$ of F_{d}^{r} which are shown in Figure 3.13.

(a) \mathscr{R} has only one fixed point in $F_{d_{1}}^{r}$.

(b) \mathscr{R} has no fixed point in $F_{d_{2}}^{r}$.

Figure 3.13: The graph of $\mathscr{R}: F_{d}^{r} \rightarrow \mathbb{R}$ and the diagonal $\mathscr{R}(c)=c$.

The map $\mathscr{R}: F_{d}^{r} \rightarrow \mathbb{R}$ is expanding in the neighborhood of fixed point c_{r}^{*} which is illustrated in Figure 3.13a. By Mathematica computations, we get an unstable fixed points $c_{r}^{*}=0.803307 \ldots$ in F_{d}^{r} such that

$$
\mathscr{R}\left(c_{r}^{*}\right)=c_{r}^{*}
$$

corresponds to an infinitely renormalizable maps $f_{s_{r}^{*}}$. We observe that the map $f_{s_{r} *}$ corresponding to c_{r}^{*} has the following property

$$
\left\{c_{r}^{*}\right\}=\bigcap_{n \geq 1} I_{1, r}^{n}
$$

In other words, consider the scaling data $s_{r}{ }^{*}: \mathbb{N} \rightarrow T_{3}$ with

$$
\begin{aligned}
s_{r}^{*}(n) & =\left(s_{0, r}^{*}(n), s_{1, r}^{*}(n), s_{2, r}^{*}(n)\right) \\
& =\left(\frac{\tilde{b}_{c_{r}^{*}}^{4}(1)-\tilde{b}_{c_{r}^{*}}(1)}{1-\tilde{b}_{c_{r}^{*}}(1)}, \frac{\tilde{b}_{c_{r}^{*}}^{5}(1)-\tilde{b}_{c_{r}^{*}}^{2}(1)}{1-\tilde{b}_{c_{r}^{*}}(1)}, \frac{1-\tilde{b}_{c_{r}^{*}}^{3}(1)}{1-\tilde{b}_{c_{r}^{*}}(1)}\right) .
\end{aligned}
$$

Then $\sigma\left(s_{r}^{*}\right)=s_{r}^{*}$ and using Lemma 3.1.4 we have

$$
R^{r} f_{s_{r}^{*}}=f_{s_{r}^{*}}
$$

For a given pair of proper scaling data $s=\left(s_{l}, s_{r}\right)$, we defined a map

$$
f_{s}: D_{s_{l}} \cup D_{s_{r}} \rightarrow[0,1]
$$

as

$$
f_{s}(x)= \begin{cases}f_{s_{l}}(x), & \text { if } x \in D_{s_{l}} \\ f_{s_{r}}(x), & \text { if } x \in D_{s_{r}}\end{cases}
$$

Then, the renormalization of f_{s} is defined as

$$
R f_{s}(x)= \begin{cases}R^{l} f_{s_{l}}(x), & \text { if } x \in D_{s_{l}} \\ R^{r} f_{s_{r}}(x), & \text { if } x \in D_{s_{r}}\end{cases}
$$

From proposition 3.1.3 and 3.1.6, we conclude that the period tripling infinitely renormalizable maps $f_{s_{l}^{*}}$ and $f_{s_{r}^{*}}$ are fixed points of R^{l} and R^{r} corresponding to the proper scaling data s_{l}^{*} and s_{r}^{*}, respectively. Then, for a given pair of scaling data $s^{*}=\left(s_{l}^{*}, s_{r}^{*}\right)$, we have

$$
\begin{aligned}
R f_{s^{*}}(x) & = \begin{cases}R^{l} f_{s_{l}^{*}}(x), & \text { if } x \in D_{s_{l}^{*}} \\
R^{r} f_{s_{r}^{*}}(x), & \text { if } x \in D_{s_{r}^{*}}\end{cases} \\
& = \begin{cases}f_{s_{l}^{*}}(x), & \text { if } x \in D_{s_{l}^{*}} \\
f_{s_{r}^{*}}(x), & \text { if } x \in D_{s_{r}^{*}}\end{cases} \\
& =f_{s^{*}}(x)
\end{aligned}
$$

This will give us the following theorem,
Theorem 3.1.7. There exists a map $f_{s^{*}} \in W$, where $s^{*}=\left(s_{l}^{*}, s_{r}^{*}\right)$ is characterized by

$$
R f_{s^{*}}=f_{s^{*}}
$$

In particular, $W=\left\{f_{s^{*}}\right\}$.

Remark 3.1.1. The constructed map $f_{s^{*}}$ with a pair of proper scaling data $s^{*}=\left(s_{l}^{*}, s_{r}^{*}\right)$ holds the following conditions,
(i) $s_{2, l}^{*} \leq\left(s_{1, l}^{*}\right)^{2}$
(ii) $s_{2, r}^{*} \leq\left(s_{1, r}^{*}\right)^{2}$

Note that for $i \in\{0,1,2\}$, the scaling ratios $s_{i, l}(n)$ are the expressions in the terms of c_{n} which are described in equations (3.2)-(3.4). Therefore, one can easily compute $s_{0, l}^{*}, s_{1, l}^{*}$ and $s_{2, l}^{*}$ by substituting $c_{n}=c_{l}^{*}$ in the respective expressions. Then,

$$
s_{2, l}^{*}=\left.s_{2, l}(n)\right|_{c_{n}=c_{l}^{*}} \leq\left(\left.s_{1, l}(n)\right|_{c_{n}=c_{l}^{*}}\right)^{2}=\left(s_{1, l}^{*}\right)^{2} .
$$

Similarly,

$$
s_{2, r}^{*}=\left.s_{2, r}(n)\right|_{c_{n}=c_{r}^{*}} \leq\left(\left.s_{1, r}(n)\right|_{c_{n}=c_{r}^{*}}\right)^{2}=\left(s_{1, r}^{*}\right)^{2}
$$

Remark 3.1.2. The invariant Cantor set of the map $f_{s^{*}}$, namely $\Lambda_{s^{*}}$, is next in complexity to the invariant doubling Cantor set, namely $\Lambda_{\sigma^{*}}$, of piece-wise affine period doubling infinitely renormalizable map $f_{\sigma^{*}}$ [Chandramouli et al., 2009] in the following sense,
(i) like the both Cantor sets $\Lambda_{s^{*}}$ and $\Lambda_{\sigma^{*}}$, on each scale and everywhere the same scaling ratio s^{*} and σ^{*} are used respectively,
(ii) but unlike the doubling Cantor set $\Lambda_{\sigma^{*}}$, there are now a pair of three different ratios at each scale corresponding to s^{*}.

Furthermore, the geometry of the invariant Cantor set of $f_{s^{*}}$ is different from the geometry of the invariant Cantor set of piece-wise affine period tripling renormalizable map because the Cantor set of $f_{s^{*}}$ has 2 -copy of Cantor set of Kumar and Chandramouli [2021].

3.2 $C^{1+L i p}$ EXTENSION OF $f_{s^{*}}$

In Section 3.1, we have constructed a piece-wise affine infinitely renormalizable map $f_{s^{*}}$ corresponding to the pair of scaling data $s^{*}=\left(s_{l}^{*}, s_{r}^{*}\right)$. Let us define a pair of scaling functions

$$
\begin{aligned}
& S_{l}:\left[0, b_{c_{l}^{*}}(0)\right]^{2} \rightarrow\left[0, b_{c_{l}^{*}}(0)\right]^{2} \\
& S_{r}:\left[\tilde{b}_{c_{r}^{*}}(1), 1\right]^{2} \rightarrow\left[\tilde{b}_{c_{r}^{*}}(1), 1\right]^{2}
\end{aligned}
$$

as

$$
S_{l}\binom{x}{y}=\binom{b_{c_{v}^{*}}^{2}(0)-s_{1, l}^{*} \cdot x}{s_{2, l}^{*} \cdot y} ; \quad S_{r}\binom{x}{y}=\binom{\tilde{b}_{c_{r}^{*}}^{2}(1)+s_{1, r}^{*} \cdot(1-x)}{1-s_{2, r}^{*} \cdot(1-y)}
$$

Let G be the graph of $g_{s^{*}}$ which is an extension of $f_{s^{*}}$ where $f_{s^{*}}: D_{s_{l}^{*}} \cup D_{s_{r}^{*}} \rightarrow[0,1]$. Let G_{l}^{1} and G_{l}^{2}
are the graphs of $\left.g_{s^{*}}\right|_{\left[y_{1}, z_{0}\right]}$ which is a $C^{1+L i p}$ extension of $f_{s^{*}}$ on $D_{s_{l}^{*}} \cap\left[y_{1}, z_{0}\right]$ and $\left.g_{s^{*}}\right|_{\left[y_{0}, z_{1}\right]}$ which is a $C^{1+\text { Lip }}$ extension of $f_{s^{*}}$ on $D_{s_{l}^{*}} \cap\left[y_{0}, z_{1}\right]$ respectively. Also, G_{r}^{1} and G_{r}^{2} are the graphs of $\left.g_{s^{*}}\right|_{\left[z_{0}^{\prime}, y_{1}^{\prime}\right]}$ which is an $C^{1+L i p}$ extension of $f_{s^{*}}$ on $D_{s_{r}^{*}} \cap\left[z_{0}^{\prime}, y_{1}^{\prime}\right]$ and $g_{s^{*}} \mid\left[z_{1}^{\prime}, y_{0}^{\prime}\right]$ which is an $C^{1+L i p}$ extension of $f_{s^{*}}$ on $D_{s_{r}^{*}} \cap\left[z_{1}^{\prime}, y_{0}^{\prime}\right]$ respectively which are shown in Figure 3.14. Also, note that G_{r}^{1} and G_{r}^{2} are the reflections of G_{l}^{1} and G_{l}^{2} across the point $\left(\frac{1}{2}, \frac{1}{2}\right)$ respectively. Define

$$
G_{l}=\cup_{n \geq 0} S_{l}^{n}\left(G_{l}^{1} \cup G_{l}^{2}\right) \text { and } G_{r}=\cup_{n \geq 0} S_{r}^{n}\left(G_{r}^{1} \cup G_{r}^{2}\right)
$$

Then, G_{l} is the graph of a unimodal map $g_{s_{l}^{*}}$ which extends $f_{s_{l}^{*}}$ and G_{r} is the graph of a unimodal map $g_{s_{r}^{*}}$ which extends $f_{s_{r}^{*}}$. Consequently, G is the graph of $g_{s^{*}}=g_{s_{l}^{*}} \oplus g_{s_{r}^{*}}$. We claim that $g_{s^{*}}$ is a $C^{1+L i p}$ symmetric bimodal map. Let $B_{l}^{0}=\left[0, b_{c_{l}^{*}}(0)\right] \times\left[0, b_{c_{l}^{*}}(0)\right]$ and $B_{r}^{0}=\left[\tilde{b}_{c_{r}^{*}}(1), 1\right] \times\left[\tilde{b}_{c_{r}^{*}}(1), 1\right]$.
For $n \in \mathbb{N}$, define

$$
B_{l}^{n}=S_{l}^{n}\left(B_{l}^{0}\right) \quad \text { and } \quad B_{r}^{n}=S_{r}^{n}\left(B_{r}^{0}\right)
$$

as
$B_{l}^{n}= \begin{cases}{\left[z_{n}, y_{n}\right] \times\left[0, \hat{y}_{n}\right],} & \text { if } n \text { is odd } \\ {\left[y_{n}, z_{n}\right] \times\left[0, \hat{y}_{n}\right],} & \text { if } n \text { is even }\end{cases}$
and
$B_{r}^{n}= \begin{cases}{\left[y_{n}^{\prime}, z_{n}^{\prime}\right] \times\left[\hat{y}^{\prime}, 1\right],} & \text { if } n \text { is odd } \\ {\left[z_{n}^{\prime}, y_{n}^{\prime}\right] \times\left[\hat{y}_{n}^{\prime}, 1\right],} & \text { if } n \text { is even. }\end{cases}$
Let p_{l}^{n} and p_{r}^{n} be the points on the graph of the bimodal map $b_{c_{l}^{*}}(x)$ and $b_{c_{r}^{*}}(x)$ respectively. For all $n \in \mathbb{N}, p_{l}^{n}$ and p_{r}^{n} are defined as
$p_{l}^{n}= \begin{cases}\binom{y_{\frac{n+1}{2}}}{\hat{y}_{\frac{n+1}{2}}}, & \text { if } n \text { is odd } \\ \binom{z_{\frac{n}{2}}}{\hat{z}_{\frac{n}{2}}}, & \text { if } n \text { is even }\end{cases}$
$p_{r}^{n}= \begin{cases}\left(\begin{array}{c}y^{\prime \frac{n+1}{2}} \\ \hat{y}^{\prime} \\ \frac{n_{n+1}^{2}}{2}\end{array}\right), & \text { if } n \text { is odd } \\ \left(\begin{array}{c}z_{n}^{2} \\ \hat{z}^{\prime} \\ \prime_{\frac{n}{2}}\end{array}\right), & \text { if } n \text { is even }\end{cases}$
where $\hat{y}_{n}=b_{c_{l}^{*}}\left(y_{n}\right), \hat{z}_{n}=b_{c_{l}^{*}}\left(z_{n}\right),{\hat{y^{\prime}}}_{n}=\tilde{b}_{c_{r}^{*}}\left(y_{n}^{\prime}\right)$ and $\hat{z}^{\prime}{ }_{n}=\tilde{b}_{c_{r}^{*}}\left(z_{n}^{\prime}\right)$.

Figure 3.14 : Extension of $f_{s^{*}}$

Then the above construction will lead to following proposition,
Proposition 3.2.1. G is the graph of $g_{s^{*}}$ which is a C^{1} extension of $f_{s^{*}}$.
Proof. Since G_{l}^{1} and G_{l}^{2} are the graph of $\left.f_{s_{l}^{*}}\right|_{\left[y_{1}, z_{0}\right]}$ and $\left.f_{s_{l}^{*}}\right|_{\left[y_{0}, z_{1}\right]}$, respectively, and G_{r}^{1} and G_{r}^{2} are the graph of $\left.f_{s_{r}^{*}}\right|_{\left[z_{0}^{\prime}, y_{1}^{\prime}\right]}$ and $\left.f_{s_{r}^{*}}\right|_{\left[z_{1}^{\prime}, y_{0}^{\prime}\right]}$, respectively, we obtain $G_{l}^{2 n+1}=S_{l}^{n}\left(G_{l}^{1}\right)$ and $G_{l}^{2 n+2}=S_{l}^{n}\left(G_{l}^{2}\right)$ for each
$n \in \mathbb{N}$. Note that G_{l}^{n} is the graph of a C^{1} function defined

$$
\begin{aligned}
& \quad \text { on }\left[z_{\frac{n-1}{2}}, y_{\frac{n+1}{2}}\right] \text { if } n \in 4 \mathbb{N}-1, \\
& \text { on }\left[z_{\frac{n}{2}}, y_{\frac{n}{2}-1}\right] \\
& \text { if } n \in 4 \mathbb{N}, \\
& \text { on }\left[y_{\frac{n+1}{2}}, z_{\frac{n-1}{2}}\right] \\
& \text { if } n \in 4 \mathbb{N}+1, \\
& \text { and on }\left[y_{\frac{n}{2}-1}, z_{\frac{n}{2}}\right]
\end{aligned} \text { if } n \in 4 \mathbb{N}+2 .
$$

Also, we have $G_{r}^{2 n+1}=S_{r}^{n}\left(G_{r}^{1}\right)$ and $G_{r}^{2 n+2}=S_{r}^{n}\left(G_{r}^{2}\right)$ for each $n \in \mathbb{N}$. Note that G_{r}^{n} is the graph of a C^{1} function defined

$$
\begin{aligned}
& \text { on }\left[y_{\frac{n+1}{2}}^{\prime}, z_{\frac{n-1}{2}}^{\prime}\right] \text { if } n \in 4 \mathbb{N}-1 \text {, } \\
& \text { on }\left[y_{\frac{n}{2}-1}^{\prime}, z_{\frac{n}{2}}^{\prime}\right] \quad \text { if } n \in 4 \mathbb{N} \text {, } \\
& \text { on }\left[z_{\frac{n-1}{2}}^{\prime}, y_{\frac{n+1}{2}}^{\prime}\right] \text { if } n \in 4 \mathbb{N}+1 \text {, } \\
& \text { and on }\left[z_{\frac{n}{2}}^{\prime}, y_{\frac{n}{2}-1}^{\prime}\right] \text { if } n \in 4 \mathbb{N}+2 \text {. }
\end{aligned}
$$

To prove the proposition, we have to check continuous differentiability at the points p_{l}^{n} and p_{r}^{n}. Consider the neighborhoods ($y_{1}-\varepsilon, y_{1}+\boldsymbol{\varepsilon}$) around y_{1} and $\left(z_{1}-\boldsymbol{\varepsilon}, z_{1}+\boldsymbol{\varepsilon}\right)$ around z_{1}, the slopes are given by an affine pieces of $f_{s_{i}^{*}}$ on the subintervals $\left(y_{1}-\varepsilon, y_{1}\right)$ and $\left(z_{1}, z_{1}+\varepsilon\right)$ and the slopes are given by the chosen C^{1} extension on $\left(y_{1}, y_{1}+\varepsilon\right)$ and $\left(z_{1}-\varepsilon, z_{1}\right)$. This implies, G_{l}^{1} and G_{l}^{2} are C^{1} at p_{l}^{1} and p_{l}^{2}, respectively.
Let $\gamma_{1} \subset G_{l}$ be the graph over the interval $\left(y_{1}-\varepsilon, y_{1}+\varepsilon\right)$ and $\gamma_{2} \subset G_{l}$ be the graph over the interval $\left(z_{1}-\varepsilon, z_{1}+\varepsilon\right)$,
then the graph G_{l} locally around p_{l}^{n} is equal to $\left\{\begin{array}{ll}S_{l}^{\frac{n-1}{2}}\left(\gamma_{1}\right) & \text { if } n \text { is odd } \\ S_{l}^{\frac{n-2}{2}}\left(\gamma_{2}\right) & \text { if } n \text { is even }\end{array}\right.$. This implies, for $n \in \mathbb{N}$, $G_{l}^{2 n-1}$ is C^{1} at $p_{l}^{2 n-1}$ and $G_{l}^{2 n}$ is C^{1} at $p_{l}^{2 n}$.
Hence G_{l} is a graph of a C^{1} function on $\left[0, b_{c_{l}^{*}}(0)\right] \backslash\left\{c_{l}^{*}\right\}$.
We note that the horizontal contraction of S_{l} is smaller than the vertical contraction. This implies that the slope of G_{l}^{n} tends to zero when n is large. Therefore, G_{l} is the graph of a C^{1} function $g_{s_{l}^{*}}$ on $\left[0, b_{c_{1}^{*}}\right]$. In similar way, one can prove that G_{r} is the graph of a C^{1} function $g_{s_{r}^{*}}$ on $\left[\tilde{b}_{c_{r}^{*}}, 1\right]$. Therefore, $G=G_{l} \oplus G_{r}$ is the graph of a C^{1} bimodal map $g_{s^{*}}=g_{s_{l}^{*}} \oplus g_{s_{r}^{*}}$ which is a C^{1} extension of $f_{s^{*}}$.
Proposition 3.2.2. Let $g_{s^{*}}$ be the function whose graph is G then $g_{s^{*}}$ is a $C^{1+L i p}$ symmetric bimodal map. Proof. As the function $g_{s^{*}}$ is a C^{1} extension of $f_{s^{*}}$. We have to show that, for $i \in\{l, r\}, G_{i}^{n}$ is the graph of a $C^{1+L i p}$ function

$$
g_{s_{i}^{*}}^{n}: \operatorname{Dom}\left(G_{i}^{n}\right) \rightarrow[0,1]
$$

with an uniform Lipschitz bound.
That is, for $n \geq 1$,

$$
\operatorname{Lip}\left(\left(g_{s_{i}^{*}}^{n+1}\right)^{\prime}\right) \leq \operatorname{Lip}\left(\left(g_{s_{i}^{*}}^{n}\right)^{\prime}\right)
$$

let us assume that $g_{s_{i}^{*}}^{n}$ is $C^{1+L i p}$ with Lipschitz constant λ_{n} for its derivatives. We show that $\lambda_{n+1} \leq \lambda_{n}$. For given $\binom{u}{v}$ on the graph of $g_{s_{i}^{n}}^{n}$, there is $\binom{\tilde{u}}{\tilde{v}}=S_{l}\binom{u}{v}$ on the graph of $g_{s_{i}^{t}}^{n+1}$, this implies

$$
g_{s_{l}^{s}}^{n+1}(\tilde{u})=s_{2, l}^{*} \cdot g_{s_{l}^{*}}^{n}(u)
$$

Since $u=\frac{b_{c_{i}^{*}}^{2}(0)-\tilde{u}}{s_{1, l}^{*}}$, we have

$$
g_{s_{l}^{*}}^{n+1}(\tilde{u})=s_{2, l}^{*} \cdot g_{s_{l}^{*}}^{n}\left(\frac{b_{c_{l}^{*}}^{2}(0)-\tilde{u}}{s_{1, l}^{*}}\right)
$$

Differentiate both sides with respect to \tilde{u}, we get

$$
\left(g_{s_{l}^{*}}^{n+1}\right)^{\prime}(\tilde{u})=-\frac{s_{2, l}^{*}}{s_{1, l}^{*}} \cdot\left(g_{s_{l}^{*}}^{n}\right)^{\prime}\left(\frac{b_{c_{l}^{*}}^{2}(0)-\tilde{u}}{s_{1, l}^{*}}\right)
$$

Therefore,

$$
\begin{aligned}
\left|\left(g_{s_{l}^{+}}^{n+1}\right)^{\prime}\left(\tilde{u}_{1}\right)-\left(g_{s_{l}^{+}}^{n+1}\right)^{\prime}\left(\tilde{u}_{2}\right)\right| & \left.=\left|\frac{s_{2, l}^{*}}{s_{s_{, l}^{*}}^{*} \mid} \cdot\right|\left(g_{s_{l}^{*}}^{n}\right)^{\prime}\left(\frac{b_{c_{l}^{*}}^{2}(0)-\tilde{u}_{1}}{s_{1, l}^{*}}\right)-\left(g_{s_{l}^{*}}^{n}\right)^{\prime}\left(\frac{b_{c_{l}^{*}}^{2}(0)-\tilde{u}_{2}}{s_{1, l}^{*}}\right) \right\rvert\, \\
& \leq \frac{s_{2, l}^{*}}{\left(s_{1, l}^{*}\right)^{2}} \cdot \lambda\left(g_{s_{l}^{n}}^{n}\right)^{\prime}\left|\tilde{u}_{1}-\tilde{u}_{2}\right|
\end{aligned}
$$

From remark 3.1.1, we have $\left(s_{1, l}^{*}\right)^{2} \geq s_{2, l}^{*}$. Then,

$$
\lambda\left(g_{s_{l}^{*}}^{n+1}\right)^{\prime} \leq \lambda\left(g_{s_{l}^{*}}^{n}\right)^{\prime} \leq \lambda\left(g_{s_{l}^{*}}^{1}\right)^{\prime}
$$

Similarly, one can show that

$$
\lambda\left(g_{s_{r}^{*}}^{n+1}\right)^{\prime} \leq \lambda\left(g_{s_{r}^{*}}^{n}\right)^{\prime} \leq \lambda\left(g_{s_{r}^{*}}^{1}\right)^{\prime} .
$$

Therefore, choose $\lambda=\max \left\{\lambda\left(g_{s_{l}^{*}}^{1}\right)^{\prime}, \lambda\left(g_{s_{r}^{*}}^{1}\right)^{\prime}\right\}$ is the uniform Lipschitz bound. This completes the proof.

Note that for a given pair of proper scaling data $s^{*}=\left(s_{l}^{*}, s_{r}^{*}\right)$, the piece-wise affine map $f_{s^{*}}$ is infinitely renormalizable and $g_{s^{*}}$ is a $C^{1+L i p}$ extension of $f_{s^{*}}$. This implies $g_{s^{*}}$ is also renormalizable map. Further, we observe that $R g_{s^{*}}$ is an extension of $R f_{s^{*}}$. Therefore $R g_{s^{*}}$ is renormalizable. Hence, $g_{s^{*}}$ is infinitely renormalizable map which is not a C^{2} map. Then we have the following theorem,
Theorem 3.2.3. There exists an infinitely renormalizable $C^{1+L i p}$ symmetric bimodal map $g_{s^{*}}$ such that

$$
R g_{s^{*}}=g_{s^{*}}
$$

3.3 TOPOLOGICAL ENTROPY OF RENORMALIZATION

In this section, we calculate the topological entropy of the renormalization operator defined on the space of $C^{1+L i p}$ bimodal maps.
Let us consider three pairs of $C^{1+L i p}$ maps $\phi_{i}:\left[0, z_{1}\right] \cup\left[y_{1}, b_{c_{i}^{*}}(0)\right] \rightarrow\left[0, b_{c_{i}^{*}}(0)\right]$ and $\psi_{i}:\left[\tilde{b}_{c_{r}^{*}}(1), y_{1}^{\prime}\right] \cup$ $\left[z_{1}^{\prime}, 1\right] \rightarrow\left[\tilde{b}_{c_{r}^{*}}(1), 1\right]$, for $i=0,1,2$, which extend $f_{s^{*}}$. Because of symmetricity, $\psi_{i}(x)=1-\phi_{i}(1-x)$. For a sequence $\alpha=\left\{\alpha_{n}\right\}_{n \geq 1} \in \Sigma_{3}$, where $\Sigma_{3}=\left\{\left\{x_{n}\right\}_{n \geq 1}: x_{n} \in\{0,1,2\}\right\}$ is called full 3-Shift.
Now define

$$
G_{l}^{n}(\alpha)=S_{l}^{n}\left(\operatorname{graph} \phi_{\alpha_{n}}\right) \quad \text { and } \quad G_{r}^{n}(\alpha)=S_{r}^{n}\left(\operatorname{graph} \psi_{\alpha_{n}}\right),
$$

we have

$$
G_{l}(\alpha)=\bigcup_{n \geq 1} G_{l}^{n}(\alpha) \text { and } \quad G_{r}(\alpha)=\bigcup_{n \geq 1} G_{r}^{n}(\alpha) .
$$

Therefore, we conclude that $G(\alpha)=G_{l}(\alpha) \oplus G_{r}(\alpha)$ is the graph of a $C^{1+L i p}$ bimodal map b_{α} by using the same facts of Section 3.2.
The shift map $\sigma: \Sigma_{3} \rightarrow \Sigma_{3}$ is defined as

$$
\sigma\left(\alpha_{1} \alpha_{2} \alpha_{3} \ldots\right)=\left(\alpha_{2} \alpha_{3} \alpha_{4} \ldots\right)
$$

Proposition 3.3.1. The restricted maps $b_{\alpha}^{3}:\left[y_{1}, z_{1}\right] \rightarrow\left[y_{1}, z_{1}\right]$ and $b_{\alpha}^{3}:\left[y_{1}^{\prime}, z_{1}^{\prime}\right] \rightarrow\left[y_{1}^{\prime}, z_{1}^{\prime}\right]$ are the unimodal maps for all $\alpha \in \Sigma_{3}$. In particular, b_{α} is a renormalizable map and $R b_{\alpha}=b_{\sigma(\alpha)}$.

Proof. We know that $b_{\alpha}:\left[y_{1}, z_{1}\right] \rightarrow I_{2, l}^{1}$ is a unimodal and onto, $b_{\alpha}: I_{2, l}^{1} \rightarrow I_{0, l}^{1}$ is onto and affine and also $b_{\alpha}: I_{0, l}^{1} \rightarrow\left[y_{1}, z_{1}\right]$ is onto and affine. Therefore b_{α}^{3} is a unimodal map on $\left[y_{1}, z_{1}\right]$. Analogously, b_{α}^{3} is a unimodal map on $\left[y_{1}^{\prime}, z_{1}^{\prime}\right]$. The above construction implies

$$
R b_{\alpha}=b_{\sigma(\alpha)}
$$

This gives us the following theorem.
Theorem 3.3.2. The renormalization operator R acting on the space of $C^{1+L i p}$ symmetric bimodal maps has unbounded topological entropy.
Proof. From the above construction, we conclude that $\alpha \longmapsto b_{\alpha} \in C^{1+L i p}$ is injective. The domain of R contains two copies, namely Λ_{1} and Λ_{2}, of the full 3-shift. As topological entropy $h_{t o p}$ is an invariant of topological conjugacy. Hence $h_{\text {top }}\left(\left.R\right|_{\Lambda_{1} \cup \Lambda_{2}}\right)>\ln 3$. In fact, if we choose n different pairs of $C^{1+L i p}$ maps, say, $\phi_{0}, \phi_{1}, \phi_{2}, \ldots \phi_{n-1}$ and $\psi_{0}, \psi_{1}, \psi_{2}, \ldots \psi_{n-1}$, which extends $f_{s^{*}}$, then it will be embedded two copies of the full n-shift in the domain of R. Hence, the topological entropy of R on $C^{1+L i p}$ symmetric bimodal maps is unbounded.

3.4 NON-RIGIDITY OF RENORMALIZATION

In this section, we use an ε perturbation on the construction of the scaling data as presented in Section 3.1, to obtain the following theorem
Theorem 3.4.1. There exists a continuum of fixed points of the renormalization operator acting on $C^{1+L i p}$ symmetric bimodal maps.
Proof. Consider an ε variation on scaling data and we modify the construction which is described in section 3.1.

Let us define the neighborhoods N_{ε}^{l} and N_{ε}^{r} about the respective points $\left(b_{c}^{3}(0), b_{c}^{4}(0)\right)$ and $\left(b_{c}^{3}(1), b_{c}^{4}(1)\right)$ as

$$
\begin{aligned}
& N_{\varepsilon}^{l}\left(b_{c}^{3}(0), b_{c}^{4}(0)\right)=\left\{\left(b_{c}^{3}(0), \varepsilon \cdot b_{c}^{4}(0)\right): \varepsilon>0 \text { and } \varepsilon \text { close to } 1\right\} \\
& N_{\varepsilon}^{r}\left(b_{c}^{3}(1), b_{c}^{4}(1)\right)=\left\{\left(b_{c}^{3}(1), \varepsilon \cdot b_{c}^{4}(1)\right): \varepsilon>0 \text { and } \varepsilon \text { close to } 1\right\}
\end{aligned}
$$

(i). The perturbed scaling data on I_{0}^{l}, then the scaling ratios are defined as

$$
\begin{aligned}
s_{2, l}(c, \varepsilon) & =\frac{b_{c}^{3}(0)}{b_{c}(0)} \\
s_{0, l}(c, \varepsilon) & =\frac{b_{c}(0)-\varepsilon b_{c}^{4}(0)}{b_{c}(0)} \\
s_{1, l}(c, \varepsilon) & =\frac{b_{c}^{2}(0)-b_{c}\left(\varepsilon b_{c}^{4}(0)\right)}{b_{c}(0)}
\end{aligned}
$$

where $c \in\left(0, \frac{3-\sqrt{3}}{6}\right)$. Also, we define

$$
\mathscr{R}(c, \varepsilon)=\frac{b_{c}^{2}(0)-c}{s_{1, l}(c, \varepsilon)}
$$

From subsection 3.1.1, we know that the map \mathscr{R} which is defined in Eqn. 3.5, has unique fixed point c^{*}. Consequently, for a given ε close to $1, \mathscr{R}(c, \varepsilon)$ has only one unstable fixed point, namely c_{ε}^{*}. Therefore, we consider the perturbed scaling data $s_{l, \varepsilon}^{*}: \mathbb{N} \rightarrow T_{3}$ with

$$
s_{l, \varepsilon}^{*}=\left(\frac{b_{c_{\varepsilon}^{*}}(0)-\varepsilon b_{c_{\varepsilon}^{*}}^{4}(0)}{b_{c_{\varepsilon}^{*}}(0)}, \frac{b_{c_{\varepsilon}^{*}}^{2}(0)-b_{c_{\varepsilon}^{*}}\left(\varepsilon b_{c_{\varepsilon}^{*}}^{4}(0)\right)}{b_{c_{\varepsilon}^{*}}(0)}, \frac{b_{c_{\varepsilon}^{*}}^{3}(0)}{b_{c_{\varepsilon}^{*}}(0)}\right) .
$$

Then $\sigma\left(s_{l, \varepsilon}^{*}\right)=s_{l, \varepsilon}^{*}$ and using Lemma 3.1.1, we have

$$
R^{l} f_{s_{l, \varepsilon}^{*}}=f_{s_{l, e}^{*}} .
$$

(ii). Considering the perturbed scaling data on I_{0}^{r}, one has the scaling data $s_{r, \varepsilon}^{*}: \mathbb{N} \rightarrow T_{3}$ with

$$
s_{r, \varepsilon}^{*}=\left(\frac{\varepsilon b_{c_{\varepsilon}^{*}}^{4}(1)-b_{c_{\varepsilon}^{*}}(1)}{1-b_{c_{\varepsilon}^{*}}(1)}, \frac{b_{c_{\varepsilon}^{*}}\left(\varepsilon b_{c_{\varepsilon}^{*}}^{4}(1)\right)-b_{c_{\varepsilon}^{*}}^{2}(1)}{1-b_{c_{\varepsilon}^{*}}^{*}(1)}, \frac{1-b_{c_{\varepsilon}^{*}}^{3}(1)}{1-b_{c_{\varepsilon}^{*}}^{*}(1)}\right) .
$$

Then $\sigma\left(s_{r, \varepsilon}^{*}\right)=s_{r, \varepsilon}^{*}$ and using Lemma 3.1.4, we have

$$
R^{r} f_{s_{t, \varepsilon}^{*}}=f_{s_{r, \varepsilon}^{*}} .
$$

Moreover, $f_{s_{l, \varepsilon}^{*}}$ and $f_{s_{t, \varepsilon}^{*}}$ are the piece-wise affine maps which are infinitely renormalizable. For a given pair of proper scaling data $s_{\varepsilon}^{*}=\left(s_{l, \varepsilon}^{*}, s_{r, \varepsilon}^{*}\right)$, we have

$$
R f_{s_{\varepsilon}^{*}}=f_{s_{\varepsilon}^{*}} .
$$

Now we use similar extension described in section 3.2, then we get $g_{s_{\varepsilon}^{*}}$ is the $C^{1+L i p}$ extension of $f_{s_{\varepsilon}^{*}}$. This implies that $g_{s_{\varepsilon}^{*}}$ is a renormalizable map. As $R g_{s_{\varepsilon}^{*}}$ is an extension of $R f_{s_{\varepsilon}^{*}}$. Therefore $R g_{s_{\varepsilon}^{*}}$ is renormalizable. Hence, for each ε close to $1, g_{s_{\varepsilon}^{*}}$ is a fixed point of the renormalization. This proves the existence of a continuum of fixed points of the renormalization.

Remark 3.4.1. In particular, for two different perturbed scaling data $s_{\varepsilon_{1}^{*}}$ and $s_{\varepsilon_{2}^{*}}$, one can construct two infinitely renormalizable maps $g_{s_{\varepsilon_{1}^{*}}}$ and $g_{\varepsilon_{\varepsilon_{2}^{*}}}$. Therefore, the respective Cantor attractors will have different scaling ratios. Consequently, it shows the non-rigidity for symmetric bimodal maps, whose smoothness is $C^{1+L i p}$.

