
3
Renormalization of symmetric bimodal maps with low

smoothness

This chapter deals with the renormalization of symmetric bimodal maps with low
smoothness associated with the period tripling combinatorics. Here, the renormalization operator
acts as a pair of period tripling renormalization operators corresponding to left and right critical
points of symmetric bimodal map. Firstly, for a given pair of proper scaling data, we construct
a nested sequence of affine pieces whose end-points lie on the symmetric bimodal map and
shrinking down to the critical points of the map. We show that there exists a sequence of affine
pieces which are nested and contract to the critical points of the bimodal map corresponding to
a pair of proper scaling data. This helps us to prove that the renormalization operator defined
on the space of piece-wise affine infinitely renormalizable maps has a fixed point, denoted by fs∗ ,
corresponding to a pair of proper scaling data s∗. In the next section 3.2, we explain the extension of
the renormalization fixed point fs∗ to aC1+Lip symmetric bimodal map. In section 3.3, we describe
the topological entropy of renormalization defined on the space ofC1+Lip symmetric bimodalmaps.
Furthermore, we prove the existence of another fixed point of renormalization by considering the
small perturbation on the scaling data. Consequently, for two different perturbed scaling data
we get two Cantor attractors of renormalization fixed points. This leads to the non-rigidity of the
Cantor attractors of renormalizable symmetric bimodal maps with low smoothness.

We recall some basic definitions. Let I = [0,1] be a closed interval.
A unimodal map u : I → I, which is a C1 map having a unique non-flat critical point c, is called
period tripling renormalizable map if there exists a proper subinterval J ⊂ I with c ∈ J such that
(1) J, u(J) and u2(J) are pairwise disjoint,
(2) u3(J)⊂ J.
Then u3 : J → J is called a pre-renormalization of u.
Where, un denotes n fold composition of u with itself.

Let U be the collection of unimodal maps and U∞(⊂ U ) be the collection of period tripling
infinitely renormalizable unimodal maps.

An interval map f is piece-wise monotone if there exists a partition of I into finitely many
subintervals on each of which the restriction of f is continuous and strictly monotonic.
A map f is called a bimodalmap if three is the minimal number of such subintervals.

Definition 3.0.1. Let f : I → I be a C1 map with two subsets Jl and Jr such that Jl
o ∩ J

o
r = /0. If

f |Jl and f |Jr are unimodal maps which are concave up and concave down respectively, their join,
denoted by f |Jl ⊕ f |Jr , is a bimodal map whose graph is obtained by joining

(
max(Jl), f (max(Jl))

)
and

(
min(Jr), f (min(Jr))

)
by a C1+Lip curve.

Definition 3.0.2. A bimodal map b : I → I, is a C1 map having two critical points cl and cr, which
is said to be renormalizable if there exists two disjoint intervals Il containing cl and Ir containing cr

such that
(i) bi(Il)∩b j(Il) = /0, for each i ̸= j and i, j ∈ {0,1,2},

bi(Ir)∩b j(Ir) = /0, for each i ̸= j and i, j ∈ {0,1,2},
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(ii) b3(Il)⊂ Il and b3(Ir)⊂ Ir,

(iii) The unimodal maps b̂l : [0, b(0)]→ [0, b(0)] and b̂r : [b(1),1]→ [b(1),1] are joined to generate
a bimodal map b̂l ⊕ b̂r. The unimodal maps b̂l and b̂r are defined as

b̂l(x) = h−1
1 b3h1(x)

and
b̂r(x) = h−1

2 b3h2(x)

where h1 : [0, b(0)] → Il and h2 : [b(1),1] → Ir are the affine orientation reversing
homeomorphisms.

The renormalization of a bimodal map is illustrated in Figure 3.1.

Figure 3.1 : Renormalization of a bimodal map

In the next section, we construct the renormalization operator defined on the space of
piece-wise affine maps which are infinitely renormalizable maps.

3.1 PIECE-WISE AFFINE RENORMALIZABLE MAPS
A symmetric bimodalmap b : [0,1]→ [0,1] of the form b(x) = a3x3+a2x2+a1x+a0, for a3 < 0,

is a C1 map with the following conditions

• b(0) = 1−b(1),

• b(1
2) =

1
2 ,
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• let cl and cr be the two critical points of b(x) , then b(cl) = 0 and b(cr) = 1.

Let us consider a one parameter family of symmetric bimodal mapsBc : [0,1]→ [0,1]which
are increasing on the interval between the critical points and decreasing elsewhere. then, we
obtained a family of bimodal maps as

Bc(x) =

{
1− 1−6c+9c2−4c3+6cx−6c2x−3x2+2x3

(1−2c)3 , if c ∈
[
0, 1

4

]
1− 4c3−3c2+6cx−6c2x−3x2+2x3

(2c−1)3 , if c ∈
[3

4 ,1
]

≡
{

bc(x), if c ∈
[
0, 1

4

]
b̃c(x), if c ∈

[3
4 ,1
] (3.1)

Note that the bimodal maps bc and b̃c are identical maps.

Let us define an open set

T3 =

{
(s0,s1,s2) ∈ R3 : s0,s1,s2 > 0,

2

∑
i=0

si < 1

}
.

Each element (s0,s1,s2) of T3 is called a scaling tri-factor. A pair of scaling tri-factors (s0,l,s1,l,s2,l)
and (s0,r,s1,r,s2,r) induces two sets of affine maps (F0,l,F1,l,F2,l) and (F0,r,F1,r,F2,r) respectively. For
each i = 0,1,2,

Fi,l : IL = [0,bc(0)]−→ IL

are defined as

F0,l(t) = bc(0)− s0,l · t,
F1,l(t) = b2

c(0)− s1,l · t,
F2,l(t) = s2,l · t

and

Fi,r : IR = [b̃c(1),1]−→ IR

are defined as

F0,r(t) = b̃c(1)+ s0,r · (1− t),

F1,r(t) = b̃2
c(1)+ s1,r · (1− t),

F2,r(t) = 1− s2,r · (1− t).

Note that IL
o ∩ IR

o = ϕ , for c ∈ [0, 3−
√

3
6 ].

The functions sl : N→ T3 and sr : N→ T3 are said to be a scaling data. We set scaling tri-factors
sl(n) = (s0,l(n),s1,l(n),s2,l(n)) ∈ T3 and sr(n) = (s0,r(n),s1,r(n),s2,r(n)) ∈ T3,
so that sl(n) and sr(n) induce the triplets of affine maps (F0,l(n)(t),F1,l(n)(t),F2,l(n)(t)) and
(F0,r(n)(t),F1,r(n)(t),F2,r(n)(t)) as described above.
For i = 0,1,2, let us define the intervals

In
i,l = F1,l(1)◦F1,l(2)◦F1,l(3)◦ .....◦F1,l(n−1)◦Fi,l(n)([0,bc(0)]).

Also,

In
i,r = F1,r(1)◦F1,r(2)◦F1,r(3)◦ .....◦F1,r(n−1)◦Fi,r(n)([b̃c(1),1]).
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Definition 3.1.1. A scaling data s j ≡ {s j(n)}, for j = l,r, is said to be proper if, for each n ∈ N,

d(s j(n),∂T3)≥ ε, for some ε > 0.

Where d(s j(n),∂T3) stands for the Euclidean distance between s j(n) and the closest boundary point
of T3.

A pair of proper scaling data sl : N→ T3 and sr : N→ T3,which is denoted by s = (sl,sr), induce the
sets Dsl =

∪
n≥1

(In
0,l ∪ In

2,l) and Dsr =
∪

n≥1
(In

0,r ∪ In
2,r), respectively. Consider a map

fs : Dsl ∪Dsr → [0,1]

defined as
fs(x) =

{
fsl (x), if x ∈ Dsl

fsr(x), if x ∈ Dsr

where fsl |In
0,l
and fsl |In

2,l
are the affine extensions of bc|∂ In

0,l
and bc|∂ In

2,l
respectively. Similarly, fsr |In

0,r

and fsr |In
2,r
are the affine extensions of bc|∂ In

0,r
and bc|∂ In

2,r
respectively. These affine extensions are

shown in Figure 3.2. The end points of the intervals at each level are labeled by

I2,l
1 I0,l

1

I2,r
1I0,r

1

bc

Figure 3.2 : Piece-wise a ne extension

y0 = 0, z0 = bc(0), I0
1,l = IL = [0,bc(0)]

and for n ≥ 1

xn = ∂ In
0,l\∂ In−1

1,l

y2n−1 = max{∂ I2n−1
1,l }

y2n = min{∂ I2n
1,l}

z2n−1 = min{∂ I2n−1
1,l }

z2n = max{∂ I2n
1,l}

wn = ∂ In
2,l\∂ In−1

1,l ,
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Figure 3.3 : Formation of interval In−1
1,l into three sub-intervals In

2,l, In
1,l and In

0,l .

These points are illustrated in Figure 3.3.

Also, the end points of the intervals at each level are labeled by

z′0 = b̃c(1), y′0 = 1, I0
1,r = IR = [b̃c(1),1]

and for n ≥ 1

x′n = ∂ In
0,r\∂ In−1

1,r

y′2n−1 = min{∂ I2n−1
1,r }

y′2n = max{∂ I2n
1,r}

z′2n−1 = max{∂ I2n−1
1,r }

z′2n = min{∂ I2n
1,r}

w′
n = ∂ In

2,r\∂ In−1
1,r .

These points are illustrated in Figure 3.4.

Figure 3.4 : Formation of interval In−1
1,r into three sub-intervals In

0,r, In
1,r and In

2,r.

Definition 3.1.2. For a given pair of proper scaling data sl,sr :N→ T3, amap fs is said to be infinitely
renormalizable if for n ≥ 1,

1(i) [0, fsl (yn)] is the maximal domain containing 0 on which f 3n−1
sl

is defined affinely,
[ f 2

sl
(yn), fsl (0)] is the maximal domain containing fsl (0) on which f 3n−2

sl
is defined affinely,

(ii) [ fsr(y
′
n),1] is the maximal domain containing 1 on which f 3n−1

sr
is defined affinely and

[ fsr(1), f 2
sr
(y′n)] is the maximal domain containing fsr(1) on which f 3n−2

sr
is defined affinely,

2(i) f 3n−1
sl

([0, fsl (yn)]) = In
1,l,
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(ii) f 3n−2
sl

([ f 2
sl
(yn), fsl (0)]) = In

1,l,

(iii) f 3n−1
sr

([ fsr(y
′
n),1]) = In

1,r,

(iv) f 3n−2
sr

([ fsr(1), f 2
sr
(y′n)]) = In

1,r.

DefineW = { fs : fs is infinitely renormalizable map}.
Further using definition 3.1.2, we writeWl = { fsl : fsl satisfies 1(i), 2(i) and 2(ii)}
andWr = { fsr : fsr satisfies 1(ii), 2(iii) and 2(iv)}.
Note that Wl and Wr be the collection of the piece-wise affine period tripling infinitely
renormalizable maps fsl on IL and fsr on IR, respectively.
The combinatorics for renormalization of fsl and fsr are shown in the following Figures 3.5a and
3.5b.

(a) (b)

Figure 3.5 : The combinatorics: (a) corresponding to fsl , (I
n
1,l → In

2,l → In
0,l → In

1,l) and
(b) corresponding to fsr , (I

n
1,r → In

2,r → In
0,r → In

1,r).

3.1.1 Renormalization on IL = [0,bc(0)]
Let fsl ∈Wl be given by the proper scaling data sl : N→ T3 and define

Ĩn
1,l = [b2

c(yn),bc(0)] = [ f 2
sl
(yn), fsl (0)],

and
În
1,l = [0,bc(yn)] = [0, fsl (yn)].

Let
hsl ,n : [0,bc(0)]→ In

1,l

be defined by
hsl ,n = F1,l(1)◦F1,l(2)◦F1,l(3)◦ .....◦F1,l(n)

Furthermore, let
h̃sl ,n : [0,bc(0)]→ Ĩn

1,l and ĥsl ,n : [0,bc(0)]→ În
1,l

be the affine orientation preserving homeomorphisms. Then define

Rl
n fsl : h−1

sl ,n(Dsl ∩ In
1,l)→ [0,bc(0)]

by

Rl
n fsl (x) =

 Rl−
n fsl (x), if x ∈ h−1

sl ,n( ∪
m≥n+1

Im
0,l)

Rl+
n fsl (x), if x ∈ h−1

sl ,n( ∪
m≥n+1

Im
2,l)

where,
Rl−

n fsl : h−1
sl ,n( ∪

m≥n+1
Im
0,l)→ [0,bc(0)]
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and
Rl+

n fsl : h−1
sl ,n( ∪

m≥n+1
Im
2,l)→ [0,bc(0)]

are defined by
Rl−

n fsl (x) = h̃−1
sl ,n ◦ f 2

sl
◦hsl ,n(x)

Rl+
n fsl (x) = ĥ−1

sl ,n ◦ fsl ◦hsl ,n(x),

which are illustrated in Figure 3.6. Let σ : TN
3 → TN

3 be the shift map defined as

Figure 3.6 : Illustration of operators Rl−
n and Rl+

n

σ(sl(1)sl(2)sl(3)sl(4)....) = (sl(2)sl(3)sl(4)....),

where sl(i) ∈ T3 for all i ∈ N.

Note that the operator Rl
n normalize the affine pieces f 2

sl
( ∪

m≥n+1
Im
0,l) and fsl ( ∪

m≥n+1
Im
2,l) to IL with the

help of affine homeomorphism h̃−1
sl ,n and ĥ−1

sl ,n, respectively.
This implies, Rl

n fsl is a piecewise affine map associated with the scaling data
(sl(n+1)sl(n+2)sl(n+3) . . .). Thus,

Rl
n fsl = fsl(n+1)sl(n+2)sl(n+3)....

The above explanation leads the following lemma.

Lemma 3.1.1. Let sl : N→ T3 be proper scaling data such that fsl is infinitely renormalizable. Then

Rl
n fsl = fσn(sl).

Let fsl be infinitely renormalization, then for n ≥ 0,we have

f 3n

sl
: Dsl ∩ In

1,l → In
1,l

is well defined.
Define the renormalization Rl : Wl →Wl by

Rl fsl = h−1
sl ,1 ◦ f 3

sl
◦hsl ,1.

The maps f 3n−2
sl

: Ĩn
1,l → In

1,l and f 3n−1
sl

: În
1,l → In

1,l are the affine homeomorphisms whenever fsl ∈Wl .

One can observe that, for each n ∈ N, ∪
m≥n+1

Im
0,l ⊂ In

1,l and ∪
m≥n+1

Im
2,l ⊂ In

1,l.

By the definition of Rl
n, the operator Rl

n is just normalizing the affine pieces, which are contained in
In
1,l, to IL. Also, In

1,l are the renormalization intervals corresponding to nth renormalization operator
(Rl)n. Then, we have the following lemma,
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Lemma 3.1.2. We have (Rl)n fsl : Dσn(sl) → [0,bc(0)] and (Rl)n fsl = Rl
n fsl .

Using Lemma 3.1.1 and Lemma 3.1.2, now we are in a position to state the following proposition:

Proposition 3.1.3. There exists a map fs∗l ∈Wl, where s∗l is characterized by

Rl fs∗l = fs∗l .

Proof. Consider sl : N→ T3 be proper scaling data such that fsl is an infinitely renormalizable. Let
cn be the critical point of fσn(sl). Then

Figure 3.7 : Length of intervals

we have the following scaling ratios which are illustrated in Figure 3.7

s0,l(n) =
bcn(0)−b4

cn
(0)

bcn(0)
(3.2)

s1,l(n) =
b2

cn
(0)−b5

cn
(0)

bcn(0)
(3.3)

s2,l(n) =
b3

cn
(0)

bcn(0)
(3.4)

cn+1 =
b2

cn
(0)− cn

s1,l(n)
≡ R(cn). (3.5)

Since (s0,l(n),s1,l(n),s2,l(n)) ∈ T3, this implies the following conditions

s0,l(n), s1,l(n), s2,l(n)> 0 (3.6)
s0,l(n)+ s1,l(n)+ s2,l(n)< 1 (3.7)

As the intervals In
i,l, for i = 0,1,2, are mutually disjoint, we denote the gap ratios as gn

0,l and gn
1,l

which are in between In
0,l & In

1,l and In
1,l & In

2,l respectively. The gap ratios are defined as,
for n ∈ N,

gn
0,l =

b4
cn
(0)−b2

cn
(0)

bcn(0)
≡ G0,l(cn)> 0 (3.8)

gn
1,l =

b5
cn
(0)−b3

cn
(0)

bcn(0)
≡ G1,l(cn)> 0 (3.9)

0 < cn <
3−

√
3

6
(3.10)

We use Mathematica for solving the equations (3.2), (3.3) and (3.4), then we get the expressions for
s0,l(n), s1,l(n) and s2,l(n).
Let si,l(n) ≡ Si,l(cn) for i = 0,1,2. The graphs of Si,l(c) are shown in Figures 3.8a, 3.8b and 3.9a.
Note that the conditions (3.6), (3.8) and (3.9) give the condition (3.7)

0 <
2

∑
i=0

si,l(n)< 1.
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(a) (b)

Figure 3.8 : (a) and (b) shows the graph of S0,l(c), and S1,l(c) respectively.

(a) (b)

Figure 3.9 : (a) and (b) shows the graph of S2,l(c), and (S0,l +S1,l +S2,l)(c) respectively.

The conditions (3.6) together with (3.8) to (3.10) define the feasible domain F l
d is to be:

F l
d =

{
c ∈

(
0,

3−
√

3
6

)
: Si,l(c)> 0 for i = 0,1,2,G0,l(c)> 0,G1,l(c)> 0

}
. (3.11)

To compute the feasible domain F l
d ,we need to find subinterval(s) of

(
0, 3−

√
3

6

)
which satisfies the

conditions of (3.11). By usingMathematica software, we employ the following command to obtain
the feasible domain

N[Reduce[
{

S0,l(c)> 0,S1,l(c)> 0,S2,l(c)> 0,G0,l(c)> 0,G1,l(c)> 0,0 < c <
3−

√
3

6

}
,c]].

This yields:

F l
d = (0.188816..., 0.194271...)∪ (0.194271..., 0.199413...)≡ F l

d1
∪F l

d2
.

From the Eqn.(3.5), the graphs of R(c) are plotted in the sub-domains F l
d1
and F l

d2
of F l

d which
are shown in Figure 3.10. The map R : F l

d → R is expanding in the neighborhood of fixed point c∗l
which is illustrated in Figure 3.10b. ByMathematica computations, we get an unstable fixed points
c∗l = 0.196693... in F l

d such that
R(c∗l ) = c∗l

corresponds to an infinitely renormalizable maps fs∗l .We observe that the map fsl
∗ corresponding

to c∗l has the following property
{c∗l }=

∩
n≥1

In
1,l.
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(a)R has no xed point in F l
d1
. (b)R has only one xed point in F l

d2
.

Figure 3.10 : The graph of R : F l
d → R and the diagonal R(c) = c.

In other words, consider the scaling data sl
∗ : N→ T3 with

sl
∗(n) = (s∗0,l(n),s

∗
1,l(n),s

∗
2,l(n))

=

(
bc∗l (0)−b4

c∗l
(0)

bc∗l (0)
,

b2
c∗l
(0)−b5

c∗l
(0)

bc∗l (0)
,

b3
c∗l
(0)

bc∗l (0)

)
.

Then σ(s∗l ) = s∗l and using Lemma 3.1.1 we have

Rl fs∗l = fs∗l .

3.1.2 Renormalization on IR = [b̃c(1),1]
In subsection 3.1.1, the bimodal map bc(x) has two critical points c ∈ IL and 1−c ∈ IR and we define
the piece-wise renormalization on IL. In similar fashion, to define the renormalization on IR with
c ∈ IR, from Equation 3.1, we consider

b̃c(x) = 1− 4c3 −3c2 +6cx−6c2x−3x2 +2x3

(2c−1)3

where x ∈ [0,1] and c ∈ [3
4 ,1].

Note that IL
o ∩ IR

o = ϕ , for c ∈ [3+
√

3
6 ,1].

Let fsr ∈Wr be given by the proper scaling data sr : N→ T3 and define

Ĩn
1,r = [b̃c(1), b̃2

c(y
′
n)] = [ fsr(1), f 2

sr
(y′n)],

and
În
1,r = [b̃c(y′n),1] = [ fsr(y

′
n),1].

Let
hsr,n : [b̃c(1),1]→ In

1,r

be defined by
hsr,n = F1,r(1)◦F1,r(2)◦F1,r(3)◦ .....◦F1,r(n).

Furthermore, let
h̃sr,n : [b̃c(1),1]→ Ĩn

1,r and ĥsr,n : [b̃c(1),1]→ În
1,r
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be the affine orientation preserving homeomorphisms. Then define

Rr
n fsr : h−1

sr,n(Dsr ∩ In
1,r)→ [b̃c(1),1]

by

Rr
n fsr(x) =

 Rr−
n fsr(x), if x ∈ h−1

sr,n( ∪
m≥n+1

Im
0,r)

Rr+
n fsr(x), if x ∈ h−1

sr,n( ∪
m≥n+1

Im
2,r)

where,
Rr−

n fsr : h−1
sr,n( ∪

m≥n+1
Im
0,r)→ [b̃c(1),1]

and
Rr+

n fsr : h−1
sr,n( ∪

m≥n+1
In
2,r)→ [b̃c(1),1]

are defined by
Rr−

n fsr(x) = h̃−1
sr,n ◦ f 2

sr
◦hsr,n(x)

Rr+
n fsr(x) = ĥ−1

sr,n ◦ fsr ◦hsr,n(x),

which are illustrated in Figure 3.11.

Figure 3.11 : Illustration of operators Rr−
n and Rr+

n

Let σ : TN
3 → TN

3 be the shift map which is defined as

σ(sr(1)sr(2)sr(3)sr(4)....) = (sr(2)sr(3)sr(4)....),

where sr(i) ∈ T3 for all i ∈ N.

Lemma 3.1.4. Let sr : N→ T3 be proper scaling data such that fsr is infinitely renormalizable. Then

Rr
n fsr = fσn(sr).

Let fsr be infinitely renormalization, then for n ≥ 0,we have

f 3n

sr
: Dsr ∩ In

1,r → In
1,r

is well defined.
Define the renormalization Rr : Wr →Wr by

Rr fsr = h−1
sr,1 ◦ f 3

sr
◦hsr,1.

The maps f 3n−2
sr

: Ĩn
1,r → In

1,r and f 3n−1
sr

: În
1,r → In

1,r are the affine homeomorphisms whenever fsr ∈Wr.
Then we have:
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Lemma 3.1.5. We have (Rr)n fsr : Dσn(sr) → [b̃c(1),1] and (Rr)n fsr = Rr
n fsr .

From the above Lemma 3.1.4 and Lemma 3.1.5, consequently we get

Proposition 3.1.6. There exists a map fs∗r ∈Wr, where s∗r is characterized by

Rr fs∗r = fs∗r .

Proof. Consider sr : N→ T3 be proper scaling data such that fsr is an infinitely renormalizable. Let
cn be the critical point of fσn(sr). Then from Figure 3.12, we have the following scaling ratios

Figure 3.12 : Length of intervals

s0,r(n) =
b̃4

cn
(1)− b̃cn(1)

1− b̃cn(1)
(3.12)

s1,r(n) =
b̃5

cn
(1)− b̃2

cn
(1)

1− b̃cn(1)
(3.13)

s2,r(n) =
1− b̃3

cn
(1)

1− b̃cn(1)
(3.14)

cn+1 = 1−
cn − b̃2

cn
(1)

s1,r(n)
≡ R(cn). (3.15)

Use the same argument as given in subsection 3.1.1, one can compute feasible domain Fr
d . Finally,

we get

Fr
d = (0.800587..., 0.805729...)∪ (0.805729..., 0.811184...)≡ Fr

d1
∪Fr

d2
.

From the Eqn.(3.15), the graphs of R(c) are plotted in the sub-domains Fr
d1
and Fr

d2
of Fr

d which are
shown in Figure 3.13.

(a)R has only one xed point in Fr
d1
. (b)R has no xed point in Fr

d2
.

Figure 3.13 : The graph of R : Fr
d → R and the diagonal R(c) = c.
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The mapR : Fr
d →R is expanding in the neighborhood of fixed point c∗r which is illustrated

in Figure 3.13a. By Mathematica computations, we get an unstable fixed points c∗r = 0.803307... in
Fr

d such that

R(c∗r ) = c∗r

corresponds to an infinitely renormalizable maps fs∗r .We observe that the map fsr∗ corresponding
to c∗r has the following property

{c∗r}=
∩
n≥1

In
1,r.

In other words, consider the scaling data sr
∗ : N→ T3 with

sr
∗(n) = (s∗0,r(n),s

∗
1,r(n),s

∗
2,r(n))

=

(
b̃4

c∗r
(1)− b̃c∗r (1)

1− b̃c∗r (1)
,

b̃5
c∗r
(1)− b̃2

c∗r
(1)

1− b̃c∗r (1)
,

1− b̃3
c∗r
(1)

1− b̃c∗r (1)

)
.

Then σ(s∗r ) = s∗r and using Lemma 3.1.4 we have

Rr fs∗r = fs∗r .

For a given pair of proper scaling data s = (sl,sr),we defined a map

fs : Dsl ∪Dsr → [0,1]

as
fs(x) =

{
fsl (x), if x ∈ Dsl

fsr(x), if x ∈ Dsr

Then, the renormalization of fs is defined as

R fs(x) =
{

Rl fsl (x), if x ∈ Dsl

Rr fsr(x), if x ∈ Dsr

From proposition 3.1.3 and 3.1.6, we conclude that the period tripling infinitely renormalizable
maps fs∗l and fs∗r are fixed points of Rl and Rr corresponding to the proper scaling data s∗l and s∗r ,
respectively. Then, for a given pair of scaling data s∗ = (s∗l ,s

∗
r ),we have

R fs∗(x) =
{

Rl fs∗l (x), if x ∈ Ds∗l
Rr fs∗r (x), if x ∈ Ds∗r

=

{
fs∗l (x), if x ∈ Ds∗l
fs∗r (x), if x ∈ Ds∗r

= fs∗(x)

This will give us the following theorem,

Theorem 3.1.7. There exists a map fs∗ ∈W, where s∗ = (s∗l ,s
∗
r ) is characterized by

R fs∗ = fs∗ .

In particular, W = { fs∗}.
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Remark 3.1.1. The constructed map fs∗ with a pair of proper scaling data s∗ = (s∗l ,s
∗
r ) holds the following

conditions,

(i) s∗2,l ≤ (s∗1,l)
2

(ii) s∗2,r ≤ (s∗1,r)
2

Note that for i ∈ {0,1,2}, the scaling ratios si,l(n) are the expressions in the terms of cn

which are described in equations (3.2)-(3.4). Therefore, one can easily compute s∗0,l, s∗1,l and s∗2,l
by substituting cn = c∗l in the respective expressions. Then,

s∗2,l = s2,l(n)
∣∣
cn=c∗l

≤
(

s1,l(n)
∣∣
cn=c∗l

)2
=
(
s∗1,l
)2
.

Similarly,

s∗2,r = s2,r(n)
∣∣
cn=c∗r

≤
(

s1,r(n)
∣∣
cn=c∗r

)2
=
(
s∗1,r
)2
.

Remark 3.1.2. The invariant Cantor set of the map fs∗ , namely Λs∗ , is next in complexity to the invariant
doubling Cantor set, namely Λσ∗ , of piece-wise affine period doubling infinitely renormalizable map fσ∗

[Chandramouli et al., 2009] in the following sense,

(i) like the both Cantor sets Λs∗ and Λσ∗ , on each scale and everywhere the same scaling ratio s∗ and σ∗

are used respectively,

(ii) but unlike the doubling Cantor set Λσ∗ , there are now a pair of three different ratios at each scale
corresponding to s∗.

Furthermore, the geometry of the invariant Cantor set of fs∗ is different from the geometry of the invariant
Cantor set of piece-wise affine period tripling renormalizable map because the Cantor set of fs∗ has 2−copy
of Cantor set of Kumar and Chandramouli [2021].

3.2C1+Lip EXTENSION OF fs∗

In Section 3.1, we have constructed a piece-wise affine infinitely renormalizable map fs∗

corresponding to the pair of scaling data s∗ = (s∗l , s∗r ). Let us define a pair of scaling functions

Sl : [0, bc∗l (0)]
2 → [0, bc∗l (0)]

2

Sr : [b̃c∗r (1), 1]2 → [b̃c∗r (1), 1]2

as

Sl

(
x
y

)
=

(
b2

c∗l
(0)− s∗1,l · x

s∗2,l · y

)
; Sr

(
x
y

)
=

(
b̃2

c∗r
(1)+ s∗1,r · (1− x)

1− s∗2,r · (1− y)

)
.

Let G be the graph of gs∗ which is an extension of fs∗ where fs∗ : Ds∗l ∪Ds∗r → [0, 1]. Let G1
l and G2

l

are the graphs of gs∗ |[y1, z0] which is a C1+Lip extension of fs∗ on Ds∗l ∩ [y1, z0] and gs∗ |[y0, z1] which is
a C1+Lip extension of fs∗ on Ds∗l ∩ [y0, z1] respectively. Also, G1

r and G2
r are the graphs of gs∗ |[z′0, y′1]

which is an C1+Lip extension of fs∗ on Ds∗r ∩ [z′0, y′1] and gs∗ |[z′1, y′0]
which is an C1+Lip extension of fs∗

on Ds∗r ∩ [z′1, y′0] respectively which are shown in Figure 3.14. Also, note that G1
r and G2

r are the
reflections of G1

l and G2
l across the point

(1
2 ,

1
2

)
respectively. Define

Gl = ∪n≥0Sn
l (G

1
l ∪G2

l ) and Gr = ∪n≥0Sn
r (G

1
r ∪G2

r ).
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Then, Gl is the graph of a unimodal map gs∗l which extends fs∗l and Gr is the graph of a unimodal
map gs∗r which extends fs∗r . Consequently, G is the graph of gs∗ = gs∗l ⊕ gs∗r . We claim that gs∗ is a
C1+Lip symmetric bimodal map. Let B0

l = [0, bc∗l (0)]× [0, bc∗l (0)] and B0
r = [b̃c∗r (1), 1]× [b̃c∗r (1), 1].

For n ∈ N, define
Bn

l = Sn
l (B

0
l ) and Bn

r = Sn
r (B

0
r )

as
Bn

l =

{
[zn, yn]× [0, ŷn], if n is odd
[yn, zn]× [0, ŷn], if n is even

and
Bn

r =

{
[y′n, z′n]× [ŷ′n, 1], if n is odd
[z′n, y′n]× [ŷ′n, 1], if n is even.

Let pn
l and pn

r be the points on the graph of the bimodal map bc∗l (x) and bc∗r (x) respectively. For all
n ∈ N, pn

l and pn
r are defined as

pn
l =


(

y n+1
2

ŷ n+1
2

)
, if n is odd(

z n
2

ẑ n
2

)
, if n is even

pn
r =



(
y′n+1

2

ŷ′ n+1
2

)
, if n is odd(

z′n
2

ẑ′ n
2

)
, if n is even

where ŷn = bc∗l (yn), ẑn = bc∗l (zn), ŷ′n = b̃c∗r (y
′
n) and ẑ′n = b̃c∗r (z

′
n).

Figure 3.14 : Extension of fs∗

Then the above construction will lead to following proposition,

Proposition 3.2.1. G is the graph of gs∗ which is a C1 extension of fs∗ .

Proof. Since G1
l and G2

l are the graph of fs∗l |[y1,z0] and fs∗l |[y0,z1], respectively, and G1
r and G2

r are the
graph of fs∗r |[z′0,y′1] and fs∗r |[z′1,y′0], respectively, we obtain G2n+1

l = Sn
l (G

1
l ) and G2n+2

l = Sn
l (G

2
l ) for each
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n ∈ N.Note that Gn
l is the graph of a C1 function defined

on [z n−1
2
, y n+1

2
] if n ∈ 4N−1,

on [z n
2
, y n

2−1] if n ∈ 4N,
on [y n+1

2
, z n−1

2
] if n ∈ 4N+1,

and on [y n
2−1, z n

2
] if n ∈ 4N+2.

Also, we have G2n+1
r = Sn

r (G
1
r ) and G2n+2

r = Sn
r (G

2
r ) for each n ∈ N. Note that Gn

r is the graph of a C1

function defined

on [y′n+1
2
, z′n−1

2
] if n ∈ 4N−1,

on [y′n
2−1, z′n

2
] if n ∈ 4N,

on [z′n−1
2
, y′n+1

2
] if n ∈ 4N+1,

and on [z′n
2
, y′n

2−1] if n ∈ 4N+2.

To prove the proposition, we have to check continuous differentiability at the points pn
l and pn

r .
Consider the neighborhoods (y1 − ε,y1 + ε) around y1 and (z1 − ε,z1 + ε) around z1, the slopes are
given by an affine pieces of fs∗l on the subintervals (y1 − ε,y1) and (z1,z1 + ε) and the slopes are
given by the chosenC1 extension on (y1,y1 +ε) and (z1 −ε,z1). This implies, G1

l and G2
l areC1 at p1

l
and p2

l , respectively.
Let γ1 ⊂ Gl be the graph over the interval (y1 − ε,y1 + ε) and γ2 ⊂ Gl be the graph over the interval
(z1 − ε,z1 + ε),

then the graph Gl locally around pn
l is equal to

{
S

n−1
2

l (γ1) if n is odd
S

n−2
2

l (γ2) if n is even
. This implies, for n ∈ N,

G2n−1
l isC1 at p2n−1

l and G2n
l isC1 at p2n

l .
Hence Gl is a graph of aC1 function on [0,bc∗l (0)]\{c∗l }.
We note that the horizontal contraction of Sl is smaller than the vertical contraction. This implies
that the slope of Gn

l tends to zero when n is large. Therefore, Gl is the graph of aC1 function gs∗l on
[0,bc∗l ]. In similar way, one can prove that Gr is the graph of a C1 function gs∗r on [b̃c∗r ,1]. Therefore,
G = Gl ⊕Gr is the graph of a C1 bimodal map gs∗ = gs∗l ⊕gs∗r which is aC1 extension of fs∗ .

Proposition 3.2.2. Let gs∗ be the function whose graph is G then gs∗ is a C1+Lip symmetric bimodal map.
Proof. As the function gs∗ is a C1 extension of fs∗ . We have to show that, for i ∈ {l, r}, Gn

i is the
graph of a C1+Lip function

gn
s∗i

: Dom(Gn
i )→ [0,1]

with an uniform Lipschitz bound.
That is, for n ≥ 1,

Lip((gn+1
s∗i

)′)≤ Lip((gn
s∗i
)′)

let us assume that gn
s∗l
isC1+Lip with Lipschitz constant λn for its derivatives. We show that λn+1 ≤ λn.

For given
(

u
v

)
on the graph of gn

s∗l
, there is

(
ũ
ṽ

)
= Sl

(
u
v

)
on the graph of gn+1

s∗l
, this implies

gn+1
s∗l

(ũ) = s∗2,l ·gn
s∗l
(u)

Since u =
b2

c∗l
(0)−ũ

s∗1,l
,we have

gn+1
s∗l

(ũ) = s∗2,l ·gn
s∗l

(
b2

c∗l
(0)− ũ

s∗1,l

)
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Differentiate both sides with respect to ũ, we get

(
gn+1

s∗l

)′
(ũ) =−

s∗2,l
s∗1,l

·
(

gn
s∗l

)′(b2
c∗l
(0)− ũ

s∗1,l

)
.

Therefore,∣∣∣∣(gn+1
s∗l

)′
(ũ1)−

(
gn+1

s∗l

)′
(ũ2)

∣∣∣∣=
∣∣∣∣∣s∗2,ls∗1,l

∣∣∣∣∣ ·
∣∣∣∣∣(gn

s∗l

)′(b2
c∗l
(0)− ũ1

s∗1,l

)
−
(

gn
s∗l

)′(b2
c∗l
(0)− ũ2

s∗1,l

)∣∣∣∣∣
≤

s∗2,l
(s∗1,l)

2 ·λ
(

gn
s∗l

)′
|ũ1 − ũ2|

From remark 3.1.1, we have (s∗1,l)2 ≥ s∗2,l. Then,

λ (gn+1
s∗l

)′ ≤ λ (gn
s∗l
)′ ≤ λ (g1

s∗l
)′.

Similarly, one can show that
λ (gn+1

s∗r
)′ ≤ λ (gn

s∗r )
′ ≤ λ (g1

s∗r )
′.

Therefore, choose λ = max{λ (g1
s∗l
)′, λ (g1

s∗r
)′} is the uniform Lipschitz bound. This completes the

proof.

Note that for a given pair of proper scaling data s∗ = (s∗l ,s
∗
r ), the piece-wise affine map fs∗ is

infinitely renormalizable and gs∗ is aC1+Lip extension of fs∗ . This implies gs∗ is also renormalizable
map. Further, we observe that Rgs∗ is an extension of R fs∗ . Therefore Rgs∗ is renormalizable. Hence,
gs∗ is infinitely renormalizable map which is not aC2 map. Then we have the following theorem,

Theorem 3.2.3. There exists an infinitely renormalizable C1+Lip symmetric bimodal map gs∗ such that

Rgs∗ = gs∗ .

3.3 TOPOLOGICAL ENTROPY OF RENORMALIZATION
In this section, we calculate the topological entropy of the renormalization operator defined

on the space of C1+Lip bimodal maps.
Let us consider three pairs of C1+Lip maps ϕi : [0,z1]∪ [y1,bc∗l (0)] → [0,bc∗l (0)] and ψi : [b̃c∗r (1),y

′
1]∪

[z′1,1]→ [b̃c∗r (1),1], for i = 0,1,2,which extend fs∗ . Because of symmetricity, ψi(x) = 1−ϕi(1−x). For
a sequence α = {αn}n≥1 ∈ Σ3,
where Σ3 = {{xn}n≥1 : xn ∈ {0, 1, 2}} is called full 3-Shift.
Now define

Gn
l (α) = Sn

l (graph ϕαn) and Gn
r (α) = Sn

r (graph ψαn),

we have
Gl(α) =

∪
n≥1

Gn
l (α) and Gr(α) =

∪
n≥1

Gn
r (α).

Therefore, we conclude thatG(α) =Gl(α)⊕Gr(α) is the graph of aC1+Lip bimodalmap bα by using
the same facts of Section 3.2.
The shift map σ : Σ3 → Σ3 is defined as

σ(α1α2α3 . . .) = (α2α3α4 . . .).

Proposition 3.3.1. The restricted maps b3
α : [y1, z1]→ [y1, z1] and b3

α : [y′1, z′1]→ [y′1, z′1] are the unimodal
maps for all α ∈ Σ3. In particular, bα is a renormalizable map and Rbα = bσ(α).
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Proof. We know that bα : [y1, z1]→ I1
2,l is a unimodal and onto, bα : I1

2,l → I1
0,l is onto and affine and

also bα : I1
0,l → [y1, z1] is onto and affine. Therefore b3

α is a unimodal map on [y1, z1]. Analogously,
b3

α is a unimodal map on [y′1, z′1]. The above construction implies

Rbα = bσ(α).

This gives us the following theorem.

Theorem 3.3.2. The renormalization operator R acting on the space ofC1+Lip symmetric bimodal maps has
unbounded topological entropy.
Proof. From the above construction, we conclude that α 7−→ bα ∈C1+Lip is injective. The domain
of R contains two copies, namely Λ1 and Λ2, of the full 3-shift. As topological entropy htop is an
invariant of topological conjugacy. Hence htop(R|Λ1∪Λ2

)> ln3. In fact, if we choose n different pairs
of C1+Lip maps, say, ϕ0, ϕ1, ϕ2, . . .ϕn−1 and ψ0, ψ1, ψ2, . . .ψn−1, which extends fs∗ , then it will be
embedded two copies of the full n− shift in the domain of R. Hence, the topological entropy of R
onC1+Lip symmetric bimodal maps is unbounded.

3.4 NON-RIGIDITY OF RENORMALIZATION
In this section, we use an ε perturbation on the construction of the scaling data as presented

in Section 3.1, to obtain the following theorem

Theorem 3.4.1. There exists a continuum of fixed points of the renormalization operator acting on C1+Lip

symmetric bimodal maps.
Proof. Consider an ε variation on scaling data and wemodify the construction which is described
in section 3.1.

Let us define the neighborhoods Nl
ε and Nr

ε about the respective points (b3
c(0), b4

c(0)) and
(b3

c(1), b4
c(1)) as

Nl
ε(b

3
c(0), b4

c(0)) = {(b3
c(0), ε ·b4

c(0)) : ε > 0 and ε close to 1}
Nr

ε(b
3
c(1), b4

c(1)) = {(b3
c(1), ε ·b4

c(1)) : ε > 0 and ε close to 1}

(i). The perturbed scaling data on Il
0, then the scaling ratios are defined as

s2,l(c,ε) =
b3

c(0)
bc(0)

s0,l(c,ε) =
bc(0)− εb4

c(0)
bc(0)

s1,l(c,ε) =
b2

c(0)−bc(εb4
c(0))

bc(0)
,

where c ∈ (0, 3−
√

3
6 ). Also, we define

R(c,ε) =
b2

c(0)− c
s1,l(c,ε)

.

From subsection 3.1.1, we know that the map R which is defined in Eqn. 3.5, has unique fixed
point c∗. Consequently, for a given ε close to 1, R(c,ε) has only one unstable fixed point, namely
c∗ε . Therefore, we consider the perturbed scaling data s∗l,ε : N→ T3 with

s∗l,ε =

(
bc∗ε (0)− εb4

c∗ε
(0)

bc∗ε (0)
,

b2
c∗ε
(0)−bc∗ε (εb4

c∗ε
(0))

bc∗ε (0)
,

b3
c∗ε
(0)

bc∗ε (0)

)
.
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Then σ(s∗l,ε) = s∗l,ε and using Lemma 3.1.1, we have

Rl fs∗l,ε = fs∗l,ε .

(ii). Considering the perturbed scaling data on Ir
0, one has the scaling data s∗r,ε : N→ T3 with

s∗r,ε =

(
εb4

c∗ε
(1)−bc∗ε (1)

1−bc∗ε (1)
,

bc∗ε (εb4
c∗ε
(1))−b2

c∗ε
(1)

1−bc∗ε (1)
,

1−b3
c∗ε
(1)

1−bc∗ε (1)

)
.

Then σ(s∗r,ε) = s∗r,ε and using Lemma 3.1.4, we have

Rr fs∗r,ε = fs∗r,ε .

Moreover, fs∗l,ε and fs∗r,ε are the piece-wise affine maps which are infinitely renormalizable. For a
given pair of proper scaling data s∗ε = (s∗l,ε , s∗r,ε),we have

R fs∗ε = fs∗ε .

Now we use similar extension described in section 3.2, then we get gs∗ε is the C1+Lip extension of
fs∗ε . This implies that gs∗ε is a renormalizable map. As Rgs∗ε is an extension of R fs∗ε . Therefore Rgs∗ε is
renormalizable. Hence, for each ε close to 1, gs∗ε is a fixed point of the renormalization. This proves
the existence of a continuum of fixed points of the renormalization.

Remark 3.4.1. In particular, for two different perturbed scaling data sε∗1 and sε∗2 , one can construct two
infinitely renormalizable maps gsε∗1

and gsε∗2
. Therefore, the respective Cantor attractors will have different

scaling ratios. Consequently, it shows the non-rigidity for symmetric bimodal maps, whose smoothness is
C1+Lip.

…
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