
4
Pairwise period doubling renormalization of symmetric

bimodal maps

In this chapter, we introduce a pairwise period doubling renormalization operator to study
the dynamics of low smooth symmetric bimodal maps. Primarily, we construct a piece-wise
affine infinitely renormalizable map, namely fs∗ , corresponding to a pair of proper scaling data
s∗ = (s∗l ,s

∗
r ),where s∗l and s∗r are corresponding to the critical points c∗l and c∗r respectively. Further,

we show that the nested sequences of periodic intervals corresponding to the scaling data s∗l and
s∗r converge to the respective critical points c∗l and c∗r . Further, fs∗ is extended to aC1+Lip symmetric
bimodal map Fs∗ . Also, we prove that the topological entropy of the pairwise period doubling
renormalization operator acting on C1+Lip symmetric bimodal maps is unbounded. Finally, we
prove the continuum of fixed points of this renormalization operator by considering perturbed
scaling data.

Before proceeding further, we give some basic definitions required.
Let I = [a,b] be a closed interval.
A unimodal map u : I → I is called period doubling renormalizable map if there exists a proper
subinterval J of I such that
(1) J∩u(J) = /0 ,
(2) J is u2- invariant.
Then u2 : J → J is called a renormalization of u.

A map u : I → I is period doubling infinitely renormalizable map if there exists an infinite sequence
{Jn}∞

n=0 of nested intervals such that u2|Jn : Jn → Jn are renormalizations of u and the length of Jn

tends to zero as n → ∞.
Let U∞ be the collection of period doubling infinitely renormalizable maps.

Definition 4.0.1. A bimodal map b : I = [0,1]→ I, is a C1 map with two critical points cl and cr, is
said to be pairwise period doubling renormalizable if there exists a pair of disjoint intervals (Il, Ir),with
Il ∋ cl and Ir ∋ cr, such that
(i) Il ∩b(Il) = /0, Ir ∩b(Ir) = /0,
(ii) Il and Ir are b2-invariant,
(iii) The unimodal maps b̂l : [0, b(0)] → [0, b(0)] and b̂r : [b(1),1] → [b(1),1] are joined by ⊕ to
generate a bimodalmap b̂l⊕ b̂r, where⊕ is defined in the definition 3.0.1 in chapter 3. The unimodal
maps b̂l and b̂r are defined as

b̂l(x) = h−1
l b2hl(x)

and
b̂r(x) = h−1

r b2hr(x),

where hl : [0, b(0)]→ Il and hr : [b(1),1]→ Ir are the affine orientation reversing homeomorphisms.

The pairwise period doubling renormalization of a symmetric bimodal map is illustrated in Figure
4.1.
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Figure 4.1 : Pairwise period doubling renormalization of a bimodal map

The construction of the pairwise period doubling renormalization operator has been
explained in the next section.

4.1 CONSTRUCTION OF PIECE-WISE AFFINE RENORMALIZABLE MAPS
We recall a family of−+− symmetric bimodal mapsBc : [0,1]→ [0,1]which is defined in

chapter 3 as:

Bc(x) =

{
1− 1−6c+9c2−4c3+6cx−6c2x−3x2+2x3

(1−2c)3 , if c ∈
[
0, 1

4

]
1− 4c3−3c2+6cx−6c2x−3x2+2x3

(2c−1)3 , if c ∈
[3

4 ,1
]

≡
{

bc(x), if c ∈
[
0, 1

4

]
b̃c(x), if c ∈

[3
4 ,1
] (4.1)

We use the notion “−+− bimodal map” for a bimodal map which is increasing on the interval
between the critical points and decreasing elsewhere.

Define an open triangle
T2 =

{
(s0,s1) ∈ R2

+ : s0 + s1 < 1
}
.

The element (s0,s1) of T2 is called a scaling bi-factor. Two sets of affine maps (L0,L1) and (R0,R1)
are induced by a pair of scaling bi-factors (s0,l,s1,l) and (s0,r,s1,r) respectively. For each i = 0,1,

Li : IL = [0,bc(0)]→ IL

are defined as

L0(t) = bc(0)− s0,l · t,
L1(t) = s1,l · t,
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and

Ri : IR = [b̃c(1),1]→ IR

are defined as

R0(t) = b̃c(1)+ s0,r · (1− t),

R1(t) = 1− s1,r · (1− t).

Note that IL
o ∩ IR

o = ϕ , for c ∈ [0, 3−
√

3
6 ].

The sequences of scaling bi-factors sl : N→ T2 and sr : N→ T2 are said to be a scaling data.
Set scaling bi-factors sl(n) = (s0,l(n),s1,l(n)) ∈ T2 and sr(n) = (s0,r(n),s1,r(n)) ∈ T2, so that sl(n) and
sr(n) induce the pair of affine maps (L0(n)(t),L1(n)(t)) and (R0(n)(t),R1(n)(t)) as described above.
For i = 0,1, let us define the intervals

In
i,l = L0(1)◦L0(2)◦L0(3)◦ .....◦L0(n−1)◦Li(n)([0,bc(0)]).

Also,

In
i,r = R0(1)◦R0(2)◦R0(3)◦ .....◦R0(n−1)◦Ri(n)([b̃c(1),1]).

Definition 4.1.1. For j = l,r, if d(s j(n),∂T2)≥ ε, for some ε > 0, then the scaling data s j(n) is said
to be proper scaling data.

A pair of proper scaling data sl : N→ T2 and sr : N→ T2,which is denoted by s = (sl,sr), induce the
sets Dsl =

∪
n≥1

In
1,l and Dsr =

∪
n≥1

In
1,r, respectively. Consider a map

fs : Dsl ∪Dsr → [0,1]

defined as
fs(x) =

{
fsl (x), if x ∈ Dsl

fsr(x), if x ∈ Dsr

where fsl |In
1,l
and fsr |In

1,r
be the affine extensions of bc|∂ In

1,l
and bc|∂ In

1,r
, respectively. These affine

extensions are shown in Figure 4.2. The end points of the intervals at each level are labeled by

u−1 = 0, u0 = bc(0), I0
0,l = IL = [0,bc(0)]

u′0 = b̃c(1), u′−1 = 1, I0
0,r = IR = [b̃c(1),1]

and for n ≥ 1,
un = ∂ In

0,l\∂ In−1
0,l , u′n = ∂ In

0,r\∂ In−1
0,r

vn = ∂ In
1,l\∂ In−1

0,l , v′n = ∂ In
1,r\∂ In−1

0,r .

These points are illustrated in Figures 4.3a and 4.3b.

Definition 4.1.2. For a given pair of proper scaling data sl,sr :N→ T2, amap fs is said to be pairwise
infinitely renormalizable if for n ≥ 1,

1(i) [0, fsl (un−1)] is the maximal interval containing 0 on which f 2n−1
sl

is defined affinely,

(ii) [ fsr(u
′
n−1),1] is the maximal interval containing 1 on which f 2n−1

sr
is defined affinely,

2(i) f 2n−1
sl

([0, fsl (un−1)]) = In
0,l,
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I1,l
1 I0,l

1

I1,r
1I0,r

1bc

Figure 4.2 : Piece-wise a ne extension fs

(a) (b)

Figure 4.3 : Next generations intervals in Il (Fig. 4.3a) and Ir (Fig. 4.3b).

(ii) f 2n−1
sr

([ fsr(u
′
n−1),1]) = In

0,r.

Define B∞ = { fs : fs is pairwise infinitely renormalizable}.
Note that fsl and fsr are said to be infinitely renormalizable if fsl satisfies conditions 1(i)& 2(i) and
fsr satisfies conditions 1(ii) & 2(ii), respectively.

4.1.1 Left sided renormalization operator Rl on left branch IL
Let fsl ∈ U∞ be given by the proper scaling data sl : N→ T2 and define

În
0,l = [0,bc(un−1)] = [0, fsl (un−1)].

To construct the renormalization operator Rl , we have to define the homeomorphisms. Let

hsl ,n : [0,bc(0)]→ [0,bc(0)]
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be a homeomorphism which is defined by

hsl ,n = L0(1)◦L0(2)◦L0(3)◦ .....◦L0(n).

Furthermore, let
ĥsl ,n : [0,bc(0)]→ În

1,l

be the affine orientation preserving homeomorphism. Then define

Rl
n fs : h−1

sl ,n(Dsl )→ [0,bc(0)]

by
Rl

n fsl (x) = ĥ−1
sl ,n ◦ fsl ◦hsl ,n(x),

which is illustrated in Figure 4.4.

Figure 4.4 : Illustration of operator Rl
n

Let σ : TN
2 → TN

2 be the shift map defined as σ(s1
l s2

l s3
l s4

l ....) = (s2
l s3

l s4
l ....),where si

l ∈ T2 for all i ∈ N.

Lemma 4.1.1. The piece-wise affine map fsl is infinitely renormalizable for a proper scaling data sl : N→ T2
. Then

Rl
n fsl = fσn(sl).

Let fsl be infinitely renormalizable map, then for n ≥ 0,we have

f 2n

sl
: Dsl ∩ In

0,l → In
0,l

is well defined.
Define the left renormalization Rl : U∞ → U∞ by

Rl fsl = h−1
sl ,1 ◦ f 2

sl
◦hsl ,1.

The map f 2n−1
sl

: În
0,l → In

0,l is the affine homeomorphism whenever fsl ∈ U∞. Then this gives the
following lemma,

Lemma 4.1.2. One has (Rl)n fsl : Dσn(sl) → [0,bc(0)] and (Rl)n fsl = Rl
n fsl .

The Lemma 4.1.1 and Lemma 4.1.2 give the following result.

Proposition 4.1.3. One has fs∗l ∈ U∞, where s∗l is characterized by

Rl fs∗l = fs∗l .
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Proof. Let us consider a proper scaling data sl :N→ T2 such that fsl be an infinitely renormalizable.
Let cn be the critical point of fσn(sl). Then

(a)

(b)

Figure 4.5 : Length of intervals.

The following scaling ratios, which are illustrated in Figure 4.5, can be written as

s0,l(n) =
bcn(0)−b3

cn
(0)

bcn(0)
(4.2)

s1,l(n) =
b2

cn
(0)

bcn(0)
(4.3)

cn+1 =
bcn(0)− cn

s0,l(n)
≡ R(cn). (4.4)

Since (s0,l(n),s1,l(n)) ∈ T2, then

s0,l(n), s1,l(n)> 0 (4.5)
s0,l(n)+ s1,l(n)< 1 (4.6)

0 < cn <
3−

√
3

6
(4.7)

We solve Eqns (4.2) and (4.3) by using Mathematica, then we get the expressions for s0,l(n) and
s1,l(n). Let si,l(n) ≡ Si,l(cn) for i = 0,1. The graphs of Si,l(cn) are illustrated in Figure 4.6. From the
conditions (4.5) to (4.7), we define the feasible domain F l

d to be:

F l
d =

{
c ∈

(
0,

3−
√

3
6

)
: Si,l(c)> 0 for i = 0,1,S0,l(n)+S1,l(n)< 1

}
. (4.8)

The feasible domain is same as the subinterval(s) in which the conditions of (4.8) are satisfied. By
using Mathematica with the following command, we obtain the feasible domain

N[Reduce[
{

S0,l(c)> 0,S1,l(c)> 0,S0,l(n)+S1,l(n)< 1,0 < c <
3−

√
3

6

}
,c]].
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(a) (b)

(c)

Figure 4.6 : (a), (b) and (c) show the graphs of S0,l(c), S1,l(c), and (S0,l +S1,l)(c).

This implies:

F l
d = (0, 0.146447...)∪ (0.146447..., 0.182324...)≡ F l

d1
∪F l

d2
.

From the Eqn.(4.5), the graphs of R(c) are plotted in the sub-domains F l
d1
and F l

d2
of F l

d which
are shown in Figures 4.7a and 4.7b, respectively. Note that the map R : F l

d → R is expanding in

(a)R has no xed point in F l
d1
. (b)R has only one xed point in F l

d2
.

Figure 4.7 : The graph of R : F l
d → R and the diagonal R(c) = c.

the neighborhood of fixed point c∗l ( see Figure 4.7b). By Mathematica computations, we have an
unstable fixed point c∗l = 0.175749... in F l

d such that

R(c∗l ) = c∗l

corresponds to an infinitely renormalizable maps fs∗l .
In other words, consider the scaling data sl

∗ : N→ T2 with

sl
∗(n) = (s∗0,l(n),s

∗
1,l(n))

=

(
bc∗l (0)−b3

c∗l
(0)

bc∗l (0)
,

b2
c∗l
(0)

bc∗l (0)

)
.
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Then σ(s∗l ) = s∗l and using Lemma 4.1.1 we have

Rl fs∗l = fs∗l .

4.1.2 Right sided renormalization operator Rr on right branch IR
In subsection 4.1.1, the bimodal map bc(x) has two critical points c ∈ IL and 1−c ∈ IR and we define
the piece-wise renormalization on IL. In similar fashion, to define the renormalization operator Rr

on IR with c ∈ IR, from Eqn (4.1), we consider

b̃c(x) = 1− 4c3 −3c2 +6cx−6c2x−3x2 +2x3

(2c−1)3

where x ∈ [0,1] and c ∈ [3
4 ,1].

Note that IL
o ∩ IR

o = ϕ , for c ∈ [3+
√

3
6 ,1].

Let fsr ∈ U∞ be given by the proper scaling data sr : N→ T2 and define

În
0,r = [b̃c(u′n−1),1] = [ fsr(u

′
n−1),1].

Let us define homeomorphism
hsr,n : [b̃c(1),1]→ [b̃c(1),1]

as
hsr,n = R0(1)◦R0(2)◦R0(3)◦ .....◦R0(n).

Further, let
ĥsr,n : [b̃c(1),1]→ În

0,r

be the affine orientation preserving homeomorphism. Then define

Rr
n fs : h−1

sr,n(Dsr)→ [b̃c(1),1]

by
Rr

n fsr(x) = ĥ−1
sr,n ◦ fsr ◦hsr,n(x),

which is illustrated in Figure 4.8.

Figure 4.8 : Illustration of operator Rr
n

Let σ : TN
2 → TN

2 be the shift map defined as σ(s1
r s2

r s3
r s4

r ....) = (s2
r s3

r s4
r ....),where si

r ∈ T2 for all i ∈ N.
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Lemma 4.1.4. The piece-wise affine map fsr is infinitely renormalizable for a proper scaling data sr :N→ T2
. Then

Rr
n fsr = fσn(sr).

Let fsr be infinitely renormalizable map, then for n ≥ 0,we have

f 2n

sr
: Dsr ∩ In

0,r → In
0,r

is well defined.
Define the renormalization Rr : U∞ → U∞ by

Rr fsr = h−1
sr,1 ◦ f 2

sr
◦hsr,1.

The map f 2n−1
sr

: Ĩn
0,r → In

0,r is the affine homeomorphism whenever fsr ∈ U∞. Then

Lemma 4.1.5. One has (Rr)n fsr : Dσn(sr) → [b̃c(1),1] and (Rr)n fsr = Rr
n fsr .

The Lemma 4.1.4 and Lemma 4.1.5 give the following result.

Proposition 4.1.6. One has a map fs∗r ∈ U∞, where s∗r is characterized by

Rr fs∗r = fs∗r .

Proof. The proof of the Proposition 4.1.6 is similar to the proof of the Proposition 4.1.3. In fact,
one has an unstable fixed points c∗r = 0.824251... in the feasible domain corresponds to an infinitely
renormalizable maps fs∗r .
In other words, consider the scaling data s∗r : N→ T2 with

s∗r (n) = (s∗0,r(n),s
∗
1,r(n))

=

(
b3

c∗r
(1)−bc∗r (1)

1−bc∗l (1)
,

1−b2
c∗r
(1)

1−bc∗r (1)

)
.

Then σ(s∗r ) = s∗r and using Lemma 4.1.4 we have

Rr fs∗r = fs∗r .

Remark 4.1.1. By Matlab computations, we observe that the nested sequence of periodic intervals In
0,l

converges to c∗l corresponding to fsl
∗ and In

0,r converges to c∗r corresponding to fsr∗ , i.e.,

{c∗l }=
∩
n≥1

In
0,l, {c∗r}=

∩
n≥1

In
0,r.

Now we are in a position to introduce renormalization operator, which is a pair of period
doubling renormalizations (Rl,Rr) defined in subsections 4.1.1 and 4.1.2.
For a given pair of proper scaling data s = (sl,sr),we defined a map

fs : Dsl ∪Dsr → [0,1]

as
fs(x) =

{
fsl (x), if x ∈ Dsl

fsr(x), if x ∈ Dsr
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Then, the pairwise period doubling renormalization of fs is defined as

R fs(x) =
{

Rl fsl (x), if x ∈ Dsl

Rr fsr(x), if x ∈ Dsr

From proposition 4.1.3 and 4.1.6, for a given pair of proper scaling data s∗l and s∗r , one can easily
conclude that fs∗l and fs∗r are period doubling infinitely renormalizable maps. Then, this implies

R fs∗(x) =
{

Rl fs∗l (x), if x ∈ Ds∗l
Rr fs∗r (x), if x ∈ Ds∗r

=

{
fs∗l (x), if x ∈ Ds∗l
fs∗r (x), if x ∈ Ds∗r

= fs∗(x)

The above construction will imply the following theorem,

Theorem 4.1.7. One has B∞ = { fs∗}, where s∗ = (s∗l ,s
∗
r ) is characterized by

R fs∗ = fs∗ .

Remark 4.1.2. The scaling data holds the following inequality conditions,

(i) (s∗0,l)
2 > s∗1,l

(ii) (s∗0,r)
2 > s∗1,r

Note that the above conditions are in contrast to the case of period doubling renormalization acting
on unimodal maps with low smoothness where the equality occurs [Chandramouli et al., 2009].

4.2 EXTENSION OF fs∗ TO AC1+Lip SYMMETRIC BIMODAL MAP
In this section, our goal is to extend the piece-wise affine infinitely renormalizable map fs∗

to aC1+Lip symmetric bimodal map. Define a pair of proper scaling maps

ξl : [0, bc∗l (0)]
2 → [0, bc∗l (0)]

2

ξr : [b̃c∗r (1), 1]2 → [b̃c∗r (1), 1]2

as

ξl

(
x
y

)
=

(
bc∗l (0)− s∗0,l · x
s∗1,l · y

)
;

ξr

(
x
y

)
=

(
b̃c∗r (1)+ s∗0,r · (1− x)
1− s∗1,r · (1− y)

)
.

Let Fs∗ be an extension of fs∗ and Γ be the graph of Fs∗ , where fs∗ : Ds∗l ∪Ds∗r → [0, 1]. Let Fs∗ |[u−1, u1]

and Fs∗ |[u′1, u′−1]
are the C1+Lip extension of fs∗ |[u−1, u1] and fs∗ |[u′1, u′−1]

respectively. Suppose Γ1
l and Γ1

r
be the graphs of Fs∗ |[u−1, u1] and Fs∗ |[u′1, u′−1]

, respectively, which are shown in Figure 4.9. Also for
symmetricity, let Γ1

r be the reflection of Γ1
l across the point

(1
2 ,

1
2

)
respectively. Define

Γl = ∪n≥1ξ n
l (Γ

1
l ) and Γr = ∪n≥1ξ n

r (Γ
1
r ).

Then, the unimodal map Fs∗l is the extension of fs∗l with the graph Γl and the unimodal map Fs∗r is
the extension of fs∗r with the graph Γr. Therefore, Γ = graph(Fs∗), where Fs∗ = Fs∗l ⊕Fs∗r . We claim
that Fs∗ is aC1+Lip symmetric bimodal map.
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Let B0
l = [0, bc∗l (0)]× [0, bc∗l (0)] and B0

r = [b̃c∗r (1), 1]× [b̃c∗r (1), 1].
For n ∈ N, define

Bn
l = ξ n

l (B
0
l ) and Bn

r = ξ n
r (B

0
r )

as
Bn

l =

{
[un, un−1]× [0, ũn−1], if n is odd
[un−1, un]× [0, ũn−1], if n is even

and
Bn

r =

{
[u′n−1, u′n]× [ũ′n−1, 1], if n is odd
[u′n, u′n−1]× [ũ′n−1, 1], if n is even.

Let pn
l = (un−1, ũn−1) = ξl(0, bc∗l (0)) and pn

r =
(
u′n−1, ũ′n−1

)
= ξr(b̃c∗r (1), 1),

where ũn = bc∗l (un), and ũ′n = b̃c∗r (u
′
n).

Figure 4.9 : Extension of fs∗

Then the above construction will lead to the following proposition,

Proposition 4.2.1. Γ is the graph of C1 extension Fs∗ of fs∗ .

Proof. Let Γm
l = ξ m−1

l (Γ1
l ) for each m ∈ N. Therefore, Γm

l is the graph of a C1 function defined

on [um−2, um] if m ∈ 2N−1,

on [um, um−2] if m ∈ 2N.

Also, we have Γm
r = ξ m−1

r (Γ1
r ) for each m ∈ N.Note that Γm

r is the graph of a C1 function defined

on [u′m, u′m−2] if m ∈ 2N−1,

on [u′m−2, u′m] if m ∈ 2N.

We prove the proposition by checking the continuous differentiability of Fs∗ at the points pm
l and

pm
r . Choose a small neighborhood (u1 − ε,u1 + ε) of u1 containing p2

l . Clearly, on the subinterval
(u1,u1 + ε) the slope is given by an affine pieces of fs∗l and on the subinterval (u1 − ε,u1) the slope
is given by the chosen C1 extension on (u1 − ε,u1). This implies, Γ1

l isC1 at p2
l .

Let γ ⊂ Γl be the graph over the interval (u1 − ε,u1 + ε), then, for m > 1, the graph Γl is equal to
ξ m−2

l (γ) locally around pm
l . This implies, Γm

l is C1 at pm+1
l for m ∈ N. Hence Γl is a graph of a C1

function Fs∗l on [0,bc∗l (0)]\{c∗l }.
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Wenote that the horizontal contraction of ξl is weaker than the vertical contraction of ξl . Therefore,
for large n, the slope of Γn

l tends to zero. Hence, Γl is the graph of a C1 function Fs∗l on [0,bc∗l ]. In
similar way, Γr is the graph of a C1 function Fs∗r on [b̃c∗r ,1]. Therefore, Γ = Γl ⊕Γr is the graph of a
C1 symmetric bimodal map Fs∗ = Fs∗l ⊕Fs∗r which is aC1 extension of fs∗ .

Proposition 4.2.2. One has Fs∗ is a C1+Lip symmetric bimodal map.
Proof. We need to prove, for i ∈ {l, r}, Γn

i is the graph of a C1+Lip function

Fn
s∗i

: Dom(Γn
i )→ [0,1]

with an uniform Lipschitz bound.
That is, for n ≥ 1,

Lip((Fn+1
s∗i

)′)≤ Lip((Fn
s∗i
)′)

Assume that Fn
s∗l
isC1+Lip with Lipschitz constant λn for its derivatives. We show that λn+1 ≤ λn.

For given (x,y) on the graph of Fn
s∗l
, i.e., Fn

s∗l
(x) = y.

Then, there is (x̄, ȳ) = ξl(x,y) on the graph of Fn+1
s∗l

, this implies

Fn+1
s∗l

(x̄) = ȳ = s∗1,l · y = s∗1,l ·Fn
s∗l
(x)

Since x̄ = ξl(x), this implies x =
bc∗l

(0)−x̄

s∗0,l
,we have

Fn+1
s∗l

(x̄) = s∗1,l ·Fn
s∗l

(
bc∗l (0)− x̄

s∗0,l

)
Differentiate both sides with respect to x̄, we have(

Fn+1
s∗l

)′
(x̄) =−

s∗1,l
s∗0,l

·
(
Fn

s∗l

)′(bc∗l (0)− x̄
s∗0,l

)

Therefore,∣∣∣∣(Fn+1
s∗l

)′
(x̄1)−

(
Fn+1

s∗l

)′
(x̄2)

∣∣∣∣=
∣∣∣∣∣s∗1,ls∗0,l

∣∣∣∣∣ ·
∣∣∣∣∣(Fn

s∗l

)′(bc∗l (0)− x̄1

s∗0,l

)
−
(
Fn

s∗l

)′(bc∗l (0)− x̄2

s∗0,l

)∣∣∣∣∣
≤

s∗1,l
(s∗0,l)

2 ·λ
(
Fn

s∗l

)′
|x̄1 − x̄2|

From remark 4.1.2, we have (s∗0,l)2 > s∗1,l. Then,

λ (Fn+1
s∗l

)′ < λ (Fn
s∗l
)′ < λ (F1

s∗l
)′.

Analogously, one can prove that

λ (Fn+1
s∗r

)′ < λ (Fn
s∗r )

′ < λ (F1
s∗r )

′.

Therefore, choose λ = max{λ (F1
s∗l
)′, λ (F1

s∗r
)′} is the uniform Lipschitz bound.

In this section, we have claimed that Fs∗ is a C1+Lip extension of a piece-wise affine infinitely
renormalizable map fs∗ corresponding to a pair of proper scaling data s∗ = (s∗l ,s

∗
r ). This implies

Fs∗ is also renormalizable map. Since RFs∗ is an extension of R fs∗ , therefore RFs∗ is renormalizable.
In fact, Fs∗ is infinitely renormalizable map which is not a C2 map. Then we have the following
theorem,

Theorem 4.2.3. For a given proper scaling data s∗ = (s∗l ,s
∗
l ), one has a pairwise infinitely renormalizable

C1+Lip symmetric bimodal map Fs∗ such that

RFs∗ = Fs∗ .
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4.3 TOPOLOGICAL ENTROPY OF RENORMALIZATION OPERATOR
Let us opt two pairs of C1+Lip maps, say, ηi : [0,u1]→ [0,bc∗l (0)] and φi : [u′1,1]→ [b̃c∗r (1),1],

for i = 0,1,which extend fs∗ . Because of symmetricity,
φi(x) = 1−ηi(1− x).
For a sequence β = {βn}n≥1 ∈ Σ2,where Σ2 = {{xn}n≥1 : xn ∈ {0, 1}} is called full 2-Shift.
Now define

Γn
l (β ) = ξ n

l (graph ηβn) and Γn
r (β ) = ξ n

r (graph φβn),

then, we have
Γl(β ) =

∪
n≥1

Γn
l (β ) and Γr(β ) =

∪
n≥1

Γn
r (β ).

Therefore, one can prove that Γ(β ) = Γl(β )⊕Γr(β ) is the graph of aC1+Lip symmetric bimodal map
bβ by using the same arguments of Section 4.2.
The shift map σ : Σ2 → Σ2 is defined as

σ(β1β2β3 . . .) = (β2β3β4 . . .).

Proposition 4.3.1. For all β ∈ Σ2, the restricted maps b2
β : [u1, u0]→ [u1, u0] and b2

β : [u′0, u′1]→ [u′0, u′1]
are unimodal maps. In particular, bβ is a renormalizable map and Rbβ = bσ(β ).

Proof. Since bβ : [u1, u0]→ I1
1,l is a unimodal and onto, and also bβ : I1

1,l → [u1, u0] is onto and affine.
This implies, b2

β is a unimodal map on [u1, u0]. Analogously, one can prove that b2
β is a unimodal

map on [u′0, u′1]. The above construction implies

Rbβ = bσ(β ).

Then the above construction yields a result on topological entropy.

Theorem 4.3.2. The pairwise period doubling renormalization operator R acting on the space of C1+Lip

symmetric bimodal maps has unbounded topological entropy.

Proof. From Section 4.1.1, one can conclude that the domain of Rl contains a copy, namely Λl,
of the full 2-shift. Analogously, in Section 4.1.2, the domain of Rr contains a copy, namely Λr,
of the full 2-shift. As topological entropy htop is an invariant of topological conjugacy. Hence
htop(R|Λl∪Λr

) > ln2. Opt n different symmetric pairs, namely (ηi, φi), of C1+Lip maps ηi and φi for
i = 0,1,2, ....,n− 1, which extends fs∗ . Then it will be embedded two copies of the full n− shift in
the domain of R. Since, n is an arbitrary natural number, hence, the topological entropy of R acting
on the space of C1+Lip symmetric bimodal maps is unbounded.

4.4 CONTINUUMOF FIXED POINTS OF RENORMALIZATION
This section describes the construction of the fixed point of renormalization by perturbing

the scaling data as presented in Section 4.1, to get the following result:

Theorem 4.4.1. The renormalization operator acting onC1+Lip symmetric bimodal maps has a continuum
of its fixed points.

Proof. Let us perturb the scaling data and modify the construction as described in Section 4.1.
Define a neighborhoods Nl

ε and Nr
ε about the respective points (b2

c(0), b3
c(0)) and (b2

c(1), b3
c(1)) as

Nl
ε(b

2
c(0), b3

c(0)) = {(b2
c(0), ε ·b3

c(0)) : ε > 0 and ε close to 1}
Nr

ε(b
2
c(1), b3

c(1)) = {(b2
c(1), ε ·b3

c(1)) : ε > 0 and ε close to 1}
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(a) (b)

Figure 4.10 : The perturbed scaling data (a) on IL = [0,bc(0)]; (b) on IR = [bc(1),1].

(i). From Figure 4.10a, the perturbed scaling data on IL = [0,bc(0)] defines the scaling ratios as

s1,l(c,ε) =
b2

c(0)
bc(0)

s0,l(c,ε) =
bc(0)− εb3

c(0)
bc(0)

,

where c ∈ (0, 3−
√

3
6 ). Also, define

R(c,ε) =
bc(0)− c
s0,l(c,ε)

.

From subsection 4.1.1, the map R which is defined in Eqn. 4.4, has unique fixed point c∗.
Thus, R(c,ε) has exactly one unstable fixed point, namely c∗ε , for a given ε close to 1. Therefore,
corresponding to c∗ε ,we have the perturbed scaling data s∗l,ε : N→ ∆3 with

s∗l,ε =

(
bc∗ε (0)− εb3

c∗ε
(0)

bc∗ε (0)
,

b2
c∗ε
(0)

bc∗ε (0)

)
.

Then σ(s∗l,ε) = s∗l,ε and using Lemma 4.1.1, we get

Rl fs∗l,ε = fs∗l,ε .

(ii). Similarly, by considering the perturbed scaling data on IR,we get the scaling data s∗r,ε : N→ ∆3

with

s∗r,ε =

(
εb3

c∗ε
(1)−bc∗ε (1)

1−bc∗ε (1)
,

1−b2
c∗ε
(1)

1−bc∗ε (1)

)
.

Then σ(s∗r,ε) = s∗r,ε and using Lemma 4.1.4, we have

Rr fs∗r,ε = fs∗r,ε .

It follows that fs∗l,ε and fs∗r,ε are the piece-wise affine infinitely renormalizable maps. For a given
pair of perturbed scaling data s∗ε = (s∗l,ε , s∗r,ε),we get

R fs∗ε = fs∗ε .
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Further, the piece-wise renormalizable map fs∗ε is extended to a C1+Lip symmetric bimodal map,
namely gs∗ε . Therefore, gs∗ε is also a renormalizable map. As Rgs∗ε is an extension of R fs∗ε . This implies
Rgs∗ε is also renormalizable with Rgs∗ε = gs∗ε . Hence, for every ε close to 1, gs∗ε is a fixed point of the
renormalization. This proves the existence of a continuum of fixed points of the renormalization.

Moreover, we opt two different perturbed scaling data sε∗1 and sε∗2 , one can construct two
infinitely renormalizable maps gsε∗1

and gsε∗2
. Therefore, their respective Cantor attractors have

different scaling ratios. Consequently, this proves the non-rigidity for C1+lip symmetric bimodal
maps.

…
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