Robust Control Techniques for Virtual Impedance Shaping to Mitigate and Share the Double Line Frequency Ripple in Microgrids

A Thesis submitted by Shivam Chaturvedi

in partial fulfillment of the requirements for the award of the degree of Doctor of Philosophy

॥ त्वं ज्ञानमयो विज्ञानमयोऽसि ॥

Indian Institute of Technology Jodhpur **Department of Electrical Engineering** August 2020

Declaration

I hereby declare that the work presented in this Thesis titled *Robust Control Techniques for Virtual Impedance Shaping to Mitigate and Share the Double Line Frequency Ripple in Microgrids* submitted to the Indian Institute of Technology Jodhpur in partial fulfillment of the requirements for the award of the degree of Doctor of Philosophy, is a bonafide record of the research work carried out under the supervision of Professor Deepak M. Fulwani. The contents of this thesis in full or in parts, have not been submitted to, and will not be submitted by me to, any other Institute or University in India or abroad for the award of any degree or diploma.

Shivam Chaturvedi P15EE004

Certificate

This is to certify that the thesis titled *Robust Control Techniques for Virtual Impedance Shaping* to *Mitigate and Share the Double Line Frequency Ripple in Microgrids*, submitted by *Shivam Chaturvedi* (*P15EE004*) to the Indian Institute of Technology Jodhpur for the award of the degree of *Doctor of Philosophy*, is a bonafide record of the research work done by him under our supervision. To the best of my knowledge, the contents of this report, in full or in parts, have not been submitted to any other Institute or University for the award of any degree or diploma.

Dr. Deepak M. Fulwani Ph.D.Thesis Supervisor

Acknowledgments

I would like to express my sincere gratitude to my Ph.D. Thesis Supervisor, Professor Deepak M. Fulwani. He always had time for the empirical and constructive discussion from his schedule, tightly packed with academic and administrative responsibilities. I am thankful to him for his continuous efforts to inculcate the positive motivation in me and his continual guidance, generous support and patience, especially during the times of my slow progress. He introduced me to the field of sliding mode control and its use in the power applications. He gave me ample opportunities for the relevant exposure at conferences, despite limited resources. Professor Fulwani, has been my continuous source of inspiration in shaping up my world of academic and research, morals and ethics.

It's always been a pleasure and opportunity to work with my seniors Dr. Aditya Raw Gautam, and Dr. Ram Niwas Mahia who have been my constant source of inspiration through their 'can do' attitude and perseverance. My special thank goes to my laboratory colleagues, Rammohan, Poonam, Mohit, Sandeep, Arpita, Jitendra for their motivation and support throughout my research work. I thank Rohit, Aniket, Amrik, Abhishek, Dr. Dileep for their wonderful company and for all the liveliness they infused into the non-academic portion of the days at IIT Jodhpur. I thank my all friends who made my days at IIT Jodhpur a truly memorable experience.

Finally, I acknowledge and express my deepest gratitude to my Family for the patience, support and love which they ushered on me, and for bearing with me even when I was not spending any time with them. I pay utter regards to my parents, and sisters for all their love, sacrifices and blessings.

> Shivam Chaturvedi Ph.D. Student

List of Figures

Figure	Title	page
1.1	Concept of impedance shaping	5
1.2	q-Z Source Inverter	6
1.3	eq-Switched Boost Inverter	6
1.4	Virtual impedance shaping for SSIs	6
1.5	Proposed power sharing scheme: High and low impedance at 2 f_{ac} is achieved by output	
	impedance shaping	7
1.6	Without impedance control	9
1.7	Virtual impedance control	9
1.8	A two node microgrid	9
1.9	Proposed dual loop with SRC control loop	10
1.10	Proposed dual loop with ISM control	12
1.11	Sliding mode control (a) Constant Surface (b) Dynamic Surface	12
1.12	System Dynamics: (a) With $u^+(x,t)$, (b) With $u^-(x,t)$, (c) Dynamics with sliding mode control	14
2.1	Series interfacing of APDC	22
2.2	Parallel interfacing of active power APDC	22
2.3	Active power filter for CSIs	22
2.4	Active power buffer for CSI	23
2.5	Active filter for qZSIs	23
2.6	High frequency flyback based utility interactive topology	24
2.7	Flyback type single phase grid interactive inverters	24
2.8	Flyback inverter for PV applications	25
2.9	Single phase pulse width modulation voltage source rectifier	25
2.10	Series interfacing of active power APDC	26
2.11	ACRC proposed in Mellincovsky <i>et al.</i> [2018]	26
2.12	Doubly ground inverter topology proposed in Xia et al. [2017]	27
2.13	Configuration proposed in Ohnuma and Itoh [2014]	27
2.14	SRC control configuration proposed in Zhu <i>et al.</i> [2016]	28
2.15	Configuration proposed in Serban [2015]	28
2.16	Configuration proposed in Ohnuma <i>et al.</i> [2015]	29
2.17	Symmetrical half bridge configuration proposed in Tang <i>et al.</i> [2015]	29
2.18	Half bridge split capacitor proposed in Yao <i>et al.</i> [2017]	30
2.19	Load current feed-forward methodology	30
2.20	An feed-forward control scheme Yang <i>et al.</i> [2014]	32
2.21	Resonant controller based dual loop control ZhengWei et al. [2012]	32
2.22	Virtual resistance scheme	33
2.23	Band pass filter inductor current feedback scheme	33
2.24	BPFICF with parallel impedance loop	34
2.25	Notch-Filter-Inserted Load-Current Feedforward Scheme (NF-LCFFS)	34
2.26	NF-LCFFS with VRS	35
2.27	Conventional PWM for SSIs	35
2.28	PWM strategy proposed in Nguyen <i>et al.</i> [2019]	36

2.29	PWM strategy proposed in Ravindranath <i>et al.</i> [2013]	37	
2.30	PWM strategy proposed in Yu et al. [2011a]	38	
2.31	Concept of centralized and decentralized control		
2.32	Control hierarchy for microgrids		
2.33	Communication: (a) All to All (b) Neighboring (c) Sparse	41	
2.34	Tertiary Control	41	
3.1	A conventional inverter	45	
3.2	eqSBI	45	
3.3	DC-AC converters	45	
3.4	A Quasi-Z-source Inverter (qZSI)	46	
3.5	Embedded Quasi Switched Boost Inverter (eqSBI)	46	
3.6	Single stageDC-AC converters	46	
3.7	The maximum power point oscillates due to second order ripple in DC voltage and currents	47	
3.8	A capacitor with a larger value is required to reduce the SRCs	47	
3.9	Switching logic for qZSI	53	
3.10	Switching logic for eqSBI	53	
3.11	Simulation of gate pulses for shoot through in qZSI	53	
3.12	Simulation of gate pulses for shoot through in eqSBI	54	
3.13	An instance of SPWM with shoot through for switches S_1, S_4 and S_5 for qSBI converters	54	
3.14	An instance of SPWM with shoot through for switches S_2 , S_3 and S_5 for qSBI converters	54	
3.15	Simulation of qZSI	56	
3.16	Simulation of eqSBI	56	
3.17	Hardware setup	57	
3.18	Output inverter voltage and inductor current with SRC	57	
3.19	Output inverter voltage and inductor current with SRC control	58	
3.20	Waveforms with and without impedance control	58	
3.21	Waveforms with low pass filter time constant variation	59	
4.1	Single stage inverter operation stages- (a) shoot through stage qZSI (b) non-shoot		
	through stage qZSI (c) shoot through stage eqSBI (d) non-shoot through stage eqSBI	63	
4.2	Bode plots with and without dual loop control: (a) Current control loop q2SI, (b)		
	Voltage control loop qZSI, (c) Impedance bode plot qZSI, (d) Current control loop eqSBI,		
	(e) Voltage control loop eqSBI, (f) Impedance bode plot eqSBI	66	
4.3	Proposed ISMRM with dual loop control	68 70	
4.4	Waveforms of d_o , and estimated magnitude of d_{2f} -(a) with constant d_o , (b) with varying d_o	70	
4.5	Voltage and current waveforms and control parameters for q2Si	/1	
4.6	Voltage and current waveforms and control parameters for q2Si	72	
4.7	Voltage and current waveforms with perturbed voltage reference for (a) q251 and (b)eq581	73	
4.8	FFT analysis: (a) THD plot of inductor current without control-11% of load current at $2 f_{ac}$,	74	
4.0	(b) THD plot of inductor current with control-1.2% of the load current at $2J_{ac}$	74	
4.9	Hardware setup for a 751 and as 81	74	
4.10	Hardware setup for q251 and eq581	75	
4.11	Waveforms of gZSI with control deactivation	70 77	
4.12	waveronnis of q251 with control deactivation	// 77	
4.13	q251 with inductive load and control activated	70	
4.14	q251 with inductive load and control activated	70 79	
4.15	eqSBI waveforms without control	70 70	
4.10	SRC reduction with load variation for a7SI	79 70	
4•1/ 1 18	Waveforms of eqSBI with load variations	79 80	
4.10	Waveforms with sinusoidal disturbance	00 20	
4.19		00	

4.20	Cancellation of disturbance using the proposed control	81
5.1	Proposed SRC and DC component sharing (a) Without any virtual imedance control,	
	(b) With DVI control- The virtual impedance $Z_{v1} > Z_{v2}$ hence, $SRC_1 < SRC_2$. Similarly,	
	$R_{d1} < R_{d2}$ to share DC component equally.	85
5.2	(a) Proposed DVI control, (b) Proposed DVI with Δi_L as reference,(c) Proposed DVI with	
	<i>iref_{puN}</i> as reference	86
5.3	Bode plot of \hat{i}_L/\hat{d} with $Z_{ u}$	88
5.4	Output impedance with different Z_{v}	88
5.5	Bode plot of \hat{v}_o/\hat{d}	89
5.6	A two node DC microgrid	90
5.7	Proposed SRC control with Primary and Secondary control	90
5.8	Response time- variation in $ au$, C	91
5.9	Response time- variation in Z_{ν} , C	91
5.10	Response time- variation in $ au, Z_{ u}$	92
5.11	SRC with variation in L, Z_v	92
5.12	Root locus of $\hat{v}_{io}/\hat{v}_{refo}$ with Z_v	93
5.13	Variation of \hat{i}_L/\hat{i}_{Load} with Z_v at 2 f_{ac}	93
5.14	Equal DC load sharing and SRC control	95
5.15	Variation of Zv with load changes	95
5.16	Experimental setup	96
5.17	Source currents- C _{bus} 1.36mF	98
5.18	Equal DC load sharing	98
5.19	SRC with inverter load turned on	99
5.20	SRC mitigation- C _{bus} 1.36mF	99
5.21	SRC reduced at one node	100
5.22	SRC sharing between two nodes	100
5.23	Constant SRC with varying AC	101
5.24	Constant SRC with varying DC	101
5.25	Ripple sharing and mitigation	102
5.26	SRC in a three node microgrid	102
5.27	SRC mitigation at nodes 1 and 3	103
5.28	With AC loads turned- on and off	103
6.1	Proposed ISMSC and SMPC control	109
6.2	Phase plane plot: showing voltage and current error convergence to zero- (a) With	
	constant λ =0.01, (b) With dynamic λ and γ =0.01, (c) With dynamic λ and γ =0.05, (d)	
	With dynamic λ and γ =0.2	110
6.3	Existence region in phase plane for j^{th} node	113
6.4	Sliding surfaces: (a) Constant λ (b) Dynamic λ	114
6.5	Lyapunov's function at different nodes	119
6.6	Proposed voltage and current control waveform	122
6.7	Plug-in and out of node 1 (a) Node-1 to be connected, no communication with nodes-2	
	and 3 (b) Node-1 plugged in (c) Node-1 plugged out	122
6.8	Plug in and out with high loaded incoming node	123
6.9	Plug in and out with less loaded incoming node	123
6.10	Proportional load sharing with external disturbance in communicated per unit load current	124
6.11	Hardware setup	125
6.12	With Proposed Control	126
6.13	Plug in and out with less loaded node-1	127
6.14	Proportional load sharing with plug in and out of a less loaded incoming node (of higher rating) 127
6.15	Plug in and out with more loaded incoming node-1	128

6.16	Proportional load sharing with plug in and out of a high loaded incoming node (of higher rating)) 129
6.17	Proportional load sharing in presence of disturbance	130
7.1	Proposed power sharing scheme: High and low impedance at $2 f_{ac}$ is achieved by output	
	impedance shaping	133
7.2	Variation of alpha with voltage error	135
7.3	Proposed Control Strategy with Primary and Secondary Control layers	136
7.4	Frequency response of X_c , X_L and Z_o with impedance shaping, $ ho_3 > ho_2 > ho_1$ and $Z_{o3} >$	
	$Z_{o2} > Z_{o1}, Z_{o1}$ is impedance without control	139
7.5	Stability analysis of voltage variation at N converter nodes	140
7.6	Current sharing among sources	144
7.7	Reduced ripple through sources 14	
7.8	FFT analysis of current- (a) Converter 1 (b) Converter 1 when ac load is doubled (c)	
	Converter 1 after ASMCOIS is implemented (SRC mitigated) (d) Converter 3 (increased	
	SRC due to low output impedance)	145
7.9	The output impedance estimation using frequency sweep (10 to 10^4 Hz)	146
7.10	Frequency response of \hat{v}_c/\hat{i}_L obtained from frequency sweep to verify effect of $ ho$ on	
	impedance at 100 Hz	147
7.11	Experimental setup	148
7.12	Equal load current sharing among converters	149
7.13	Dynamic variation in droop during load changes	149
7.14	SRC when inverter is turned on	149
7.15	Equal dc component sharing among sources	150
7.16	Reduced ripple propagating through converter 1 and 3	151
7.17	Proportional dc component sharing	151
7.18	Ripple component sharing among converters	152
7.19	Ripple component sharing among converters	152

List of Tables

Table	Title	page
2.1	Summary of active control methodologies	31
2.2	Summary of Control methodologies	43
3.1	Simulation and experimental parameters	55
4.1	Simulation and experimental parameters	72
5.1	Simulation and Experiment Parameters	97
5.2	Comparison of components for SRC mitigation	104
6.1	Simulation and Experimental Parameters	121
6.2	Comparison	128
7.1	Simulation and Experimental parameters	150
7.2	Comparison	150

List of Symbols

Symbol	Description
P _c	Power dc component
P_r	Power ripple component
ω	ac supply frequency
ϕ	Load power factor angle
V_m	Voltage maximum values
I_m	Current maximum values
i_L	Inductor current
V _c	Capacitor terminal voltage
d_{st}	Shoot through duty cycle
e_i	Inductor current error
e_v	Voltage error
κ	Positive constant
L	Inductance
С	Capacitance
<i>i_{ref}</i>	Current reference
v_{ref}	Voltage reference
au	Low pass filter time constant
2ω	Angular frequency of second-order ripple
V_c	Steady state values of capacitor voltage
I_L	Steady state values of inductor current
D	Steady state values of duty cycle
Ε	Source voltage
r_L	Inductor resistance
G_{vd}	Capacitor voltage to control
G_{id}	Inductor current to control
G_{vi}	Capacitor voltage to inductor current
G_i	Inductor Current Controller
G_{v}	Capacitor Voltage Controller
T_{pi}	Control to inductor current transfer function
T_{pv}	Control to voltage transfer function
G_{iLio}	Inductor current to output current transfer function
G_{vcio}	Capacitor voltage to output current transfer
$\phi_m(t)$	Matched uncertainty
$\phi_u(t,x)$	Unmatched uncertainty
d_o	Nominal control law
d_{2f}	Second order oscillations in the control law
d_n	Non-linear control law
d_{pi}	Control law from PI controller
d_{neq}	Equivalent control law
H_1, H_2	Current and voltage sensor gain
Z_{v}	Virtual Impedance

Symbol	Description
V _{refo}	DC bus voltage reference
k_1, k_2	Current share proportions
V _{refi}	Voltage reference of <i>i</i> th converter
G_D	Communication delay
G_{com}	PI controller for secondary control
I_i^{pu}	Per-unit loading of <i>i</i> th converter
I_{i}^{pu}	Per-unit loading of <i>j</i> th converter
V_{dcj}	The source voltage
V _{cj}	Voltage across output capacitor
i_{Lj}	Inductor current of j^{th} converter
u_{1j}	Duty cycle of <i>j</i> th converter
\mathcal{N}_{j}	Number of electrically connected neighbors of <i>j</i> th converter
r_{Lj}	the inductor resistance
i _{oj}	total current flowing out of j^{th} converter
ΔV_{ref}	the voltage reference variation due to ISMSC control
d_i	Dynamic droop
d_o	Constant droop
$k_i, \beta_i, \alpha_i, \rho_i, \mu$	Positive Constants
Γ_i, Q_i	SMC reaching Design parameters
$I_i^{\overline{p}u}$	Average microgrid load
$\dot{I_i}$	The load current of <i>i</i> th converter
I_r	Converter's current rating

List of Abbreviation

Abbreviation	Full form
ASMCOIC	Adaptive Sliding Mode Control based Output Impedance Shaping
AACC	Adaptive Active Capacitor Converter
APDC	Active Power Decoupling Scheme
APF	Active Power Filter
BMS	Battery Management System
BPFICF	Band-Pass Incorporated Inductor Current Feedback
CSI	Current Source Inverter
CPD	Combinational Power Decoupling
eqSBI	Embedded Quasi Switched Boost Inverter
FCs	Fuel Cell
ISMC	Integral Sliding Mode Control
LED	Light Emitting Diode
Li-ion	Lithium Ion
MPPT	Maximum Power Point Tracking/Tracker
MPP	Maximum Power Point
MOSFET	Metal-Oxide Semiconductor Field Transistor
MMCs	Modular Multilevel Converters
NF	Notch Filter
NF - CR	Notch Filter inserted Current Reference
NF - LCFFS	Notch Filter inserted Load Current Feed Forward Scheme
Na-S	Sodium Sulphur
Ni-Cd	Nickel Cadmium
NFVRLCFFS	Notch Filter Cascading Voltage Regulator Load Current Feed-Forward Scheme
PEMFC	Proton Exchange Membrane based Fuel Cell
PMU	Power Management Unit
PV	Photo Voltaic
PWM	Pulse Width Modulation
qZSIs	Quasi-Z Source Inverters
SSIs	Single Stage Inverters
SLZSI	Switched Inductor Switched Boost Inverter
SMC	Sliding Mode Control
SMPC	Sliding Mode Based Primary Control
SRCs	Second Order Ripple Currents

Abbreviation	Full form
SORI	Second Order Ripple Impedance
SMM	Sequential Magnetization Modulation
SCC	Stacked Switched Capacitor
TZSI	Trans-Z Source Inverter
THD	Total Harmonic Distortion
ТММ	Time Shared Magnetization Modulation
VLA	Vented Lead Acid
VRLA	Valve Regulated Lead Acid
VAWT	Vertical Axis Wind Turbines
VRS	Virtual Resistance Scheme
VSI	Voltage Source Inverter
WT	Wind Turbines
ZVS	Zero Voltage Switching
ZSN	Z-Source Network