Contents

		page	
Abstr		i iii	
	Acknowledgements Contents		
	List of Figures		
	f Tables	vii viii	
	, f Symbols	xiii	
List o	f Abbreviations	XV	
Chan	oter 1: Introduction	1	
1.1	Motivation and Research Objectives	3	
1.2	Concept of impedance shaping	5	
	1.2.1 Virtual impedance shaping in the Single Stage Inverters	5 6	
	1.2.2 Virtual impedance shaping in the DC Microgrids	6	
1.3	Requirements for the SRC control	8	
	1.3.1 Requirements for the SRC control in the Single Stage Inverters:1.3.2 Requirements for the SRC control in the DC Microgrid system:	9	
1.4	Proposed Control methodologies	9 9	
	1.4.1 Dual loop control integrated with the second-order ripple control loop	10	
	1.4.2 Linear control integrated with ISM control	10	
	1.4.3 Sliding mode control methodology	11	
	1.4.4 Adaptive sliding mode control methodologies	12	
4 5	1.4.5 Integral Sliding Mode control based secondary control	13 13	
1.5	Preliminaries 1.5.1 The concept of Sliding Mode and Integral Sliding Mode Control	13 13	
	1.5.2 Graph Theory	14	
1.6	Contributions	15	
1.7	Organization of Thesis	16	
1.8	Publications	18	
Chap	oter 2: Literature Review	19	
2.1	Effects of SRCs on the sources	19	
	2.1.1 Fuel cell	19	
	2.1.2 Battery storage	20	
	2.1.3 Photo-voltaic sources	20	
	2.1.4 Wind Turbines 2.1.5 Effect of SRCs on converter components	20 21	
2.2	Second order ripple mitigation methodologies	21	
	2.2.1 Passive Power Decoupling methodology	21	
	2.2.2 Active power decoupling methodologies	21	
2.3	Control based SRC mitigation methodologies	30	
2.4	Single stage inverters with nanogrid applications	34	
2.5	2.4.1 Control of SSIs Control of microgrids	36 38	
2.5	2.5.1 Centralized control	38	
	2.5.2 Decentralized control	38	
	2.5.3 Distributed control	39	
2.6	Summary and Open Issues	42	
Chan	oter 3: Control of Single Stage Inverters and Second Order Ripple Regulation Using		
cnup	Sliding Mode Control	45	
3.1	Proposed Methodology	47	
3.2	Control law for qZSI	48	
3.3	Control law for eqSBI	49	
3.4	Current and voltage reference and derivation of boundary conditions	49	
	3.4.1 Bounds for qZSI 3.4.2 Bounds for eqSBI	50 50	
3.5	Stability of proposed control	50 51	
J-J	3.5.1 Derivation of low pass filter time constant for current reference generation	51	
		-	

3.6 3.7 3.8	Effect of low pass filter time constant on inductor impedance PWM generation logic Simulation Results	52 52 52
3.9	3.8.1 SRC control for qZSI 3.8.2 SRC control of eqSBI Experimental Results	52 55 55
	 3.9.1 DC voltage boost, without impedance control 3.9.2 With Impedance control 3.9.2 Pipple control explaination 	55 55 58
3.10	3.9.3 Ripple control explaination Conclusion	50 59
Chap	ter 4: A Double Line Frequency Ripple Control using Integral Sliding Mode for qZSI	
4.1	and eqSBI Principle of Integral sliding mode control	61 62
4.2	Modelling of qZSI and eqSBI	63
	4.2.1 Modelling of Switched boost inverters (SBIs)4.2.2 Modelling of qZSI	64 65
	4.2.3 Modelling of eqSBI	66
4.3	Dual loop control 4.3.1 Impedance analysis	67 67
	4.3.2 Estimation of second order component in the d_{st}	67
4.4	Proposed ISM based dual loop control methodology	68 68
	4.4.1 Without unmatched uncertainty ψ_{u} =0 4.4.2 With unmatched uncertainty ψ_{u}	60 69
	4.4.3 Selection of matrix M	69
	4.4.4 Control law d_n and reachability condition 4.4.5 Value and limitations of Γ	69 70
4.5	Simulation Results	70 70
	4.5.1 Dynamic performance	71
	4.5.2 Uncertainty mitigation4.5.3 Virtual impedance analysis	71 71
4.6	Experimental Results	72
	4.6.1 SRC control for qZSIs4.6.2 SRC control for eqSBI	73
4.7	Conclusion	73 75
	ter 5: Dynamic Virtual Impedance based Second Order Ripple Regulation in DC Microgrids	83
5.1	Output impedance shaping	85
	ter 5: Dynamic Virtual Impedance based Second Order Ripple Regulation in DC Microgrids Output impedance shaping Proposed second order impedance control 5.2.1 Reduction of magnitude of ripple content $i_{ref \triangle -n}$	83 85 86 87
5.1 5.2	Output impedance shaping Proposed second order impedance control 5.2.1 Reduction of magnitude of ripple content $i_{ref \triangle -n}$ 5.2.2 Reduction of maximum ripple current to DC ratio- i_{rm}/i_{dc}	85 86 87 87
5.1 5.2 5.3	Output impedance shaping Proposed second order impedance control 5.2.1 Reduction of magnitude of ripple content $i_{ref \triangle -n}$ 5.2.2 Reduction of maximum ripple current to DC ratio- i_{rm}/i_{dc} Controller parameter design	85 86 87 87 87
5.1 5.2 5.3 5.4	Output impedance shaping Proposed second order impedance control 5.2.1 Reduction of magnitude of ripple content $i_{ref \triangle -n}$ 5.2.2 Reduction of maximum ripple current to DC ratio- i_{rm}/i_{dc} Controller parameter design Stability analysis with proposed control Simulation	85 86 87 87
5.1 5.2 5.3	Output impedance shaping Proposed second order impedance control 5.2.1 Reduction of magnitude of ripple content $i_{ref \triangle -n}$ 5.2.2 Reduction of maximum ripple current to DC ratio- i_{rm}/i_{dc} Controller parameter design Stability analysis with proposed control Simulation Experimental Validation	85 86 87 87 87 91 96 97
5.1 5.2 5.3 5.4 5.5	Output impedance shaping Proposed second order impedance control 5.2.1 Reduction of magnitude of ripple content $i_{ref \triangle -n}$ 5.2.2 Reduction of maximum ripple current to DC ratio- i_{rm}/i_{dc} Controller parameter design Stability analysis with proposed control Simulation Experimental Validation 5.6.1 Equal DC load sharing	85 86 87 87 91 96 97 98
5.1 5.2 5.3 5.4 5.5	Output impedance shaping Proposed second order impedance control 5.2.1 Reduction of magnitude of ripple content $i_{ref \triangle -n}$ 5.2.2 Reduction of maximum ripple current to DC ratio- i_{rm}/i_{dc} Controller parameter design Stability analysis with proposed control Simulation Experimental Validation	85 86 87 87 87 91 96 97
5.1 5.2 5.3 5.4 5.5 5.6 5.7 Chap	Output impedance shaping Proposed second order impedance control 5.2.1 Reduction of magnitude of ripple content $i_{ref \triangle -n}$ 5.2.2 Reduction of maximum ripple current to DC ratio- i_{rm}/i_{dc} Controller parameter design Stability analysis with proposed control Simulation Experimental Validation 5.6.1 Equal DC load sharing 5.6.2 SRC mitigation with AC and DC load variation Conclusion ter 6: Adaptive Voltage Tuning Based Load Sharing in DC Microgrid	85 86 87 87 91 96 97 98 100 104 107
5.1 5.2 5.3 5.4 5.5 5.6 5.7	Output impedance shaping Proposed second order impedance control 5.2.1 Reduction of magnitude of ripple content $i_{ref \triangle -n}$ 5.2.2 Reduction of maximum ripple current to DC ratio- i_{rm}/i_{dc} Controller parameter design Stability analysis with proposed control Simulation Experimental Validation 5.6.1 Equal DC load sharing 5.6.2 SRC mitigation with AC and DC load variation Conclusion ter 6: Adaptive Voltage Tuning Based Load Sharing in DC Microgrid Proposed Primary Control	85 86 87 87 91 96 97 98 100 104 107
5.1 5.2 5.3 5.4 5.5 5.6 5.7 Chap	Output impedance shaping Proposed second order impedance control 5.2.1 Reduction of magnitude of ripple content $i_{ref \triangle -n}$ 5.2.2 Reduction of maximum ripple current to DC ratio- i_{rm}/i_{dc} Controller parameter design Stability analysis with proposed control Simulation Experimental Validation 5.6.1 Equal DC load sharing 5.6.2 SRC mitigation with AC and DC load variation Conclusion ter 6: Adaptive Voltage Tuning Based Load Sharing in DC Microgrid Proposed Primary Control 6.1.1 Modelling of individual converter and DC Microgrid in error co-ordinates 6.1.2 Switching function	85 86 87 87 91 96 97 98 100 104 107
5.1 5.2 5.3 5.4 5.5 5.6 5.7 Chap	Output impedance shaping Proposed second order impedance control 5.2.1 Reduction of magnitude of ripple content $i_{ref \triangle -n}$ 5.2.2 Reduction of maximum ripple current to DC ratio- i_{rm}/i_{dc} Controller parameter design Stability analysis with proposed control Simulation Experimental Validation 5.6.1 Equal DC load sharing 5.6.2 SRC mitigation with AC and DC load variation Conclusion ter 6: Adaptive Voltage Tuning Based Load Sharing in DC Microgrid Proposed Primary Control 6.1.1 Modelling of individual converter and DC Microgrid in error co-ordinates 6.1.2 Switching function 6.1.3 Control Law	85 86 87 87 91 96 97 98 100 104 107 110 110 111 111
5.1 5.2 5.3 5.4 5.5 5.6 5.7 Chap	Output impedance shaping Proposed second order impedance control 5.2.1 Reduction of magnitude of ripple content $i_{ref \triangle - n}$ 5.2.2 Reduction of maximum ripple current to DC ratio- i_{rm}/i_{dc} Controller parameter design Stability analysis with proposed control Simulation Experimental Validation 5.6.1 Equal DC load sharing 5.6.2 SRC mitigation with AC and DC load variation Conclusion ter 6: Adaptive Voltage Tuning Based Load Sharing in DC Microgrid Proposed Primary Control 6.1.1 Modelling of individual converter and DC Microgrid in error co-ordinates 6.1.2 Switching function 6.1.3 Control Law 6.1.4 Defining limits on value of λ_j	85 86 87 87 91 96 97 98 100 104 107 110 110 111 111 112
5.1 5.2 5.3 5.4 5.5 5.6 5.7 Chap 6.1	Output impedance shaping Proposed second order impedance control 5.2.1 Reduction of magnitude of ripple content $i_{ref \triangle - n}$ 5.2.2 Reduction of maximum ripple current to DC ratio- i_{rm}/i_{dc} Controller parameter design Stability analysis with proposed control Simulation Experimental Validation 5.6.1 Equal DC load sharing 5.6.2 SRC mitigation with AC and DC load variation Conclusion ter 6: Adaptive Voltage Tuning Based Load Sharing in DC Microgrid Proposed Primary Control 6.1.1 Modelling of individual converter and DC Microgrid in error co-ordinates 6.1.2 Switching function 6.1.3 Control Law 6.1.4 Defining limits on value of λ_j Integral sliding mode secondary control 6.2.1 Small signal Modeling	85 86 87 87 91 96 97 98 100 104 107 110 110 111 111
5.1 5.2 5.3 5.4 5.5 5.6 5.7 Chap 6.1	Output impedance shaping Proposed second order impedance control 5.2.1 Reduction of magnitude of ripple content $i_{ref \triangle -n}$ 5.2.2 Reduction of maximum ripple current to DC ratio- i_{rm}/i_{dc} Controller parameter design Stability analysis with proposed control Simulation Experimental Validation 5.6.1 Equal DC load sharing 5.6.2 SRC mitigation with AC and DC load variation Conclusion ter 6: Adaptive Voltage Tuning Based Load Sharing in DC Microgrid Proposed Primary Control 6.1.1 Modelling of individual converter and DC Microgrid in error co-ordinates 6.1.2 Switching function 6.1.3 Control Law 6.1.4 Defining limits on value of λ_j Integral sliding mode secondary control 6.2.1 Small signal Modeling 6.2.2 Estimation of duty cycle	85 86 87 87 91 96 97 98 100 104 107 110 110 111 111 112 113 114 114
5.1 5.2 5.3 5.4 5.5 5.6 5.7 Chap 6.1	Output impedance shaping Proposed second order impedance control 5.2.1 Reduction of magnitude of ripple content $i_{ref \triangle - n}$ 5.2.2 Reduction of maximum ripple current to DC ratio- i_{rm}/i_{dc} Controller parameter design Stability analysis with proposed control Simulation Experimental Validation 5.6.1 Equal DC load sharing 5.6.2 SRC mitigation with AC and DC load variation Conclusion ter 6: Adaptive Voltage Tuning Based Load Sharing in DC Microgrid Proposed Primary Control 6.1.1 Modelling of individual converter and DC Microgrid in error co-ordinates 6.1.2 Switching function 6.1.3 Control Law 6.1.4 Defining limits on value of λ_j Integral sliding mode secondary control 6.2.1 Small signal Modeling	85 86 87 87 91 96 97 98 100 104 107 110 110 111 111 112 113 114
5.1 5.2 5.3 5.4 5.5 5.6 5.7 Chap 6.1	Output impedance shaping Proposed second order impedance control 5.2.1 Reduction of magnitude of ripple content $i_{ref \triangle -n}$ 5.2.2 Reduction of maximum ripple current to DC ratio- i_{rm}/i_{dc} Controller parameter design Stability analysis with proposed control Simulation Experimental Validation 5.6.1 Equal DC load sharing 5.6.2 SRC mitigation with AC and DC load variation Conclusion ter 6: Adaptive Voltage Tuning Based Load Sharing in DC Microgrid Proposed Primary Control 6.1.1 Modelling of individual converter and DC Microgrid in error co-ordinates 6.1.2 Switching function 6.1.3 Control Law 6.1.4 Defining limits on value of λ_j Integral sliding mode secondary control 6.2.1 Small signal Modeling 6.2.2 Estimation of duty cycle Decomposition of uncertainty $\phi(x, t)$ 6.3.1 With Only matched uncertainty 6.3.2 With matched and unmatched uncertainty	85 86 87 97 98 100 104 107 110 110 111 111 112 113 114 115 115 116
5.1 5.2 5.3 5.4 5.5 5.6 5.7 Chap 6.1	Output impedance shaping Proposed second order impedance control 5.2.1 Reduction of magnitude of ripple content $i_{ref \triangle -n}$ 5.2.2 Reduction of maximum ripple current to DC ratio- i_{rm}/i_{dc} Controller parameter design Stability analysis with proposed control Simulation Experimental Validation 5.6.1 Equal DC load sharing 5.6.2 SRC mitigation with AC and DC load variation Conclusion ter 6: Adaptive Voltage Tuning Based Load Sharing in DC Microgrid Proposed Primary Control 6.1.1 Modelling of individual converter and DC Microgrid in error co-ordinates 6.1.2 Switching function 6.1.3 Control Law 6.1.4 Defining limits on value of λ_j Integral sliding mode secondary control 6.2.1 Small signal Modeling 6.2.2 Estimation of duty cycle Decomposition of uncertainty $\phi(x,t)$ 6.3.1 With Only matched uncertainty 6.3.2 Integral sliding surface	85 86 87 97 98 100 104 107 110 110 111 111 112 113 114 115 115 116 117
5.1 5.2 5.3 5.4 5.5 5.6 5.7 Chap 6.1	Output impedance shaping Proposed second order impedance control 5.2.1 Reduction of magnitude of ripple content $i_{ref \triangle -n}$ 5.2.2 Reduction of maximum ripple current to DC ratio- i_{rm}/i_{dc} Controller parameter design Stability analysis with proposed control Simulation Experimental Validation 5.6.1 Equal DC load sharing 5.6.2 SRC mitigation with AC and DC load variation Conclusion ter 6: Adaptive Voltage Tuning Based Load Sharing in DC Microgrid Proposed Primary Control 6.1.1 Modelling of individual converter and DC Microgrid in error co-ordinates 6.1.2 Switching function 6.1.3 Control Law 6.1.4 Defining limits on value of λ_j Integral sliding mode secondary control 6.2.1 Small signal Modeling 6.2.2 Estimation of duty cycle Decomposition of duty cycle Decomposition of uncertainty $\phi(x,t)$ 6.3.1 With Only matched uncertainty 6.3.2 With matched and unmatched uncertainty 6.3.3 Integral sliding surface 6.3.4 Global stability of proposed controller 5.3.1 Kegnal sliding surface 6.3.4 Global stability of proposed controller 5.3.1 Mithon Results	85 86 87 97 98 100 104 107 110 110 111 111 112 113 114 115 115 116
5.1 5.2 5.3 5.4 5.5 5.6 5.7 Chap 6.1 6.2 6.3	Output impedance shaping Proposed second order impedance control 5.2.1 Reduction of magnitude of ripple content $i_{ref \triangle -n}$ 5.2.2 Reduction of maximum ripple current to DC ratio- i_{rm}/i_{dc} Controller parameter design Stability analysis with proposed control Simulation Experimental Validation 5.6.1 Equal DC load sharing 5.6.2 SRC mitigation with AC and DC load variation Conclusion ter 6: Adaptive Voltage Tuning Based Load Sharing in DC Microgrid Proposed Primary Control 6.1.1 Modelling of individual converter and DC Microgrid in error co-ordinates 6.1.2 Switching function 6.1.3 Control Law 6.1.4 Defining limits on value of λ_j Integral sliding mode secondary control 6.2.1 Small signal Modeling 6.2.2 Estimation of duty cycle Decomposition of uncertainty $\phi(x,t)$ 6.3.1 With Only matched uncertainty 6.3.2 With matched and unmatched uncertainty 6.3.3 Integral sliding surface 6.3.4 Global stability of proposed controller Simulation Results 6.4.1 Case 1: With and without control	85 86 87 97 98 100 104 107 110 110 110 111 111 112 113 114 115 115 116 117 119 121 121
5.1 5.2 5.3 5.4 5.5 5.6 5.7 Chap 6.1 6.2 6.3	Output impedance shaping Proposed second order impedance control 5.2.1 Reduction of magnitude of ripple content $i_{ref \bigtriangleup -n}$ 5.2.2 Reduction of maximum ripple current to DC ratio- i_{rm}/i_{dc} Controller parameter design Stability analysis with proposed control Simulation 5.6.1 Equal DC load sharing 5.6.2 SRC mitigation with AC and DC load variation Conclusion ter 6: Adaptive Voltage Tuning Based Load Sharing in DC Microgrid Proposed Primary Control 6.1.1 Modelling of individual converter and DC Microgrid in error co-ordinates 6.1.2 Switching function 6.1.3 Control Law 6.1.4 Defining limits on value of λ_j Integral sliding mode secondary control 6.2.1 Small signal Modeling 6.2.2 Estimation of duty cycle Decomposition of uncertainty $\phi(x,t)$ 6.3.1 With Only matched uncertainty 6.3.2 With matched and unmatched uncertainty 6.3.4 Global stability of proposed controller Simulation Results 6.4.1 Case 1: With and without control	85 86 87 97 98 100 104 107 110 110 111 111 112 113 114 115 115 116 117 119 121
5.1 5.2 5.3 5.4 5.5 5.6 5.7 Chap 6.1 6.2 6.3	Output impedance shaping Proposed second order impedance control 5.2.1 Reduction of magnitude of ripple content $i_{ref \triangle -n}$ 5.2.2 Reduction of maximum ripple current to DC ratio- i_{rm}/i_{dc} Controller parameter design Stability analysis with proposed control Simulation Experimental Validation 5.6.1 Equal DC load sharing 5.6.2 SRC mitigation with AC and DC load variation Conclusion ter 6: Adaptive Voltage Tuning Based Load Sharing in DC Microgrid Proposed Primary Control 6.1.1 Modelling of individual converter and DC Microgrid in error co-ordinates 6.1.2 Switching function 6.1.3 Control Law 6.1.4 Defining limits on value of λ_j Integral sliding mode secondary control 6.2.1 Small signal Modeling 6.2.2 Estimation of duty cycle Decomposition of uncertainty $\phi(x,t)$ 6.3.1 With Only matched uncertainty 6.3.2 With matched and unmatched uncertainty 6.3.3 Integral sliding surface 6.3.4 Global stability of proposed controller Simulation Results 6.4.1 Case 1: With and without control	85 86 87 97 98 97 98 100 104 107 110 110 110 111 112 113 114 115 115 116 117 119 121 121

6.6	6.5.2 Plug-and-play feature6.5.3 Load sharing with uncertainty in communicationConclusion	125 126 129
Chap	ter 7: Adaptive-SMC based Output Impedance Shaping in DC Microgrids Affected	
	by Inverter Load	131
7.1	Second order ripple sharing	133
7.2	Proposed Control Methodology	134
	7.2.1 Model of <i>i</i> th boost converter in error co-ordinates	134
	7.2.2 Sliding Mode Control based Adaptive Voltage Control	134
	7.2.3 Control Law	135
	7.2.4 Bounds and selection of the control parameters	137
	7.2.5 Existence of sliding mode	137
7.3	Small signal output impedance analysis	138
7.4	Stability of proposed controller	139
7.5	Proportional current sharing	142
	7.5.1 Dynamic consensus control	142
- (7.5.2 Dynamic droop control	143
7.6	Simulation Results	143
7.7	Experimental Results	146
	7.7.1 DC component sharing7.7.2 Equal second order ripple sharing	148
	7.7.3 Ripple reduction through Converter-1 and 3	148 148
	7.7.4 Ripple sharing among nodes	140
	7.7.5 Ripple sharing among nodes with different ripple references	151
7.8	Conclusion	153
7.0	conclusion	100
Chapter 8: Discussion and conclusion		
8.1	Future Work and Some Open Problems	155 158
	· · · · · · · · · · · · · · · · · · ·	100
References		