DESIGN AND DEVELOPMENT OF SMAW ELECTRODE COATINGS FOR DISSIMILAR METAL WELDS IN USC POWER PLANTS

A Thesis Submitted by **Sumit Mahajan**

In partial fulfilment of the requirements for the award of the degree of **Doctor of Philosophy**

Indian Institute of Technology, Jodhpur Mechanical Engineering July 2020

Declaration

I hereby declare that the work presented in this thesis titled "Design and development of SMAW electrode coatings for dissimilar metal welds in USC power plants" submitted to the Indian Institute of Technology Jodhpur in partial fulfilment of the requirements for the award of the degree of Doctorate of Philosophy, is a bonafide record of the research work carried out under the supervision of Dr Rahul Chhibber (Associate Professor, Dept. of Mechanical Engineering, IIT Jodhpur). The contents of this thesis in full or in parts, have not been submitted to, and will not be submitted by me to any other Institute or University in India or abroad for the award of any degree or diploma.

Sumit Ma

Sumit Mahajan (P15ME004)

ii

Certificate

This is to certify that the thesis titled "**Design and development of SMAW electrode coatings for dissimilar metal welds in USC power plants**" submitted by Sumit Mahajan (P15ME004) to the Indian Institute of Technology, Jodhpur for the award of the degree of Doctorate of Philosophy is a bonafide record of the research work done by him under my supervision. To the best of my knowledge, the content of this report, in full or in parts, have not been submitted to any other Institute or University in India or abroad for the award of any degree or diploma.

Rohal Alibber

Dr. Rahul Chhibber IIT Jodhpur PhD Supervisor

iv

Acknowledgements

I would start by expressing my heartfelt thanks to Almighty God for His blessing and enabling me to accomplish this research work in the best of my mental and physical health.

I would like to express my sincere gratitude to my supervisor Dr Rahul Chhibber for his support, guidance and encouragement. I admire his vision and dedication towards the research, which also motivates me to meet his expectations. I respect and appreciate his patience and trust, which he has shown in me throughout my PhD journey. He has played an influential role in enabling me to evolve in all aspects of my life during my PhD journey.

I gratefully acknowledge Mr Ashwani Kumar (Vice President, JSPL India) for the help rendered in experimentation useful for this research at Jindal Panther Steel, Patratu and Jindal Stainless, Hissar. I would like to thank Dr Bikramjit Sharma (Assistant Professor, TIET Patiala) for his consistent help to conduct some experiments at TIET, Patiala. I would also like to thank Mr Ganpat Chaudhary and Mr Shubham Pandey (Technical Assistant, Deptt. Of Chemistry) for their help in basic and advanced characterization. I would also like to thank Central Workshop staff, with special mention to Mr Bharat (Support Staff) for his help in performing rigorous fabrications and experimentations.

I would also like to express my sincere thanks to the Department of Mechanical Engineering and IIT, Jodhpur for giving me the necessary academic and research facility to carry out my work. Their role in building my career in research and academic domain is significant.

I would like to express my appreciation to all members of the Welding group in IIT Jodhpur for their support, help and friendship. I would like to especially thank my friend cum brother Mr Lochan Sharma and Mr Waris Nawaz Khan for consistent help for making this research journey easy and mesmerizing.

I would like to express my deepest gratitude to my family; to my loving wife Ansha, for her continued support throughout all aspects of life during my stay at Jodhpur. Without her support, it would not have been possible to accomplish this task. Finally mentioning my parents and siblings, to whom I am utterly indebted for their encouragement and being my support system in all high and low phases.

v

Sumit Mahajan PhD Student

vi

List of Figures

Figures	Title	page
2.1	Electricity generation by source	5
2.2	Boiler steel materials for power plant applications	6
2.3	Power plant components require welding procedures during fabrication and service	7
2.4	Shielded metal arc welding setup and operation	
2.5	a) Weld metal oxygen vs. Flux oxide content b) Weld metal silicon vs. Flux oxide content	10
2.6	Coefficient of thermal expansion for various steels	16
2.7	Layout of a welded rotor and thermowell	16
2.8	Formation of soft zone and hard zone due to carbon migration in P22/P91 DMW`s,	17
2.9	Microstructure of the fusion line between P22/P91 DMW`s representing various zones after PWHT at 750°C a) For 1 h b) For 2 h c) For 10 h	17
2.10	Possible approaches for dissimilar welds between low and high chromium steels	18
2,11	Schaeffler diagram and problem associated with dissimilar welding	19
3.1	Flow chart of the present investigations	24
4.1	Three ingredient simplex design space	26
4.2	Four component tetrahedron	26
4.3	Experimental Ternary phase diagrams	27
4.4	Confined design space within the tetrahedron	28
4.5	Procedure to prepare pallets for twenty-one coating compositions	30
4.6	Estimation of contact angle and spreading area a) Pallet melting in a furnace b)	30
	Spreading area of E11 c) Contact angle measurement for different electrode compositions	,
4.7	Contact angle measurement	31
4.8	Welding electrode extruder setup	32
4.9	Base material plates and weld geometry of P22/P91 dissimilar weld	34
4.10	Base material plates and weld geometry of P91/SS304L dissimilar weld	35
4.11	Specimen preparation for various characterization from fabricated dissimilar welds	36
5.1	Predicted vs. actual plots	44-46
5.2	Weight vs. Temperature plots for various electrode coatings	47
5.3	Heat flow vs. temperature plots for various electrode coatings	48
5.4	Contour surface plots	50-51
5.5	Predicted Vs Actual values of estimated properties to calculate error percentage	54-55
5.6	a) XRD analysis of coating compositions b) FTIR spectra for coating compositions	55-56
5.7	Multipass bead on plate for developed coating compositions a) C4 b) C16 c) C14 d) C20 e) C2	58
5.8	Predicted vs. actual plots of various weld responses	60
5.9	Contour surface plots	62-63
5.10	Multipass bead on plate for developed coating compositions a) C5 b) C13 c) C15 d) C2 e) C7	66
5.11	Microstructural examination of P22/P91 dissimilar weld fabricated using electrodes	68
	Interface of weld/P91 (magnified) f) P91 base metal	
5.12	Micrographs of different regions of dissimilar weld using commercial electrodes CE a)	69
	P22 base metal b) Interface P22/Weld c) Weld metal microstructure d) Interface P91/Weld e) Interface of weld/P91 (magnified) f) P91 base metal	
5.13	Microhardness profile of fabricated welds	70
5.14	Fractured weld tensile test specimen fabricated using a) commercial electrode CE b)	72
E 45	Electro oue E2M C) Electro de E10M Etroso va atrain of tancilo tost for fabricato deval dano aire en	
5.15	Suess vs strain or tensile test for fabricated weid specimen	73
5.10	VED plots of post correction wold specimens	74
5.1/	SEM images with EDS line scap mapping of Daa steel under the superure of No. 50	/0
5.10	$_{1}$ scin images with EOS line scan mapping of P22 steel under the exposure of Nd ₂ SO ₄ + $_{1}$	11

	NaCl salt mixture at 750°C	
5.19	SEM images with EDS line scan mapping of commercial weld (CE) under the exposure of $Na_2SO_4 + V_2O_5$ salt mixture at 750°C	78
5.20	SEM images with EDS line scan mapping of weld (E2M) under the exposure of $Na_2SO_4 + V_2O_5$ salt mixture at 750°C	78
5.21	SEM image with EDS point analysis of commercial weld (CE) under the exposure of $Na_2SO_4 + V_2O_5$ salt mixture at 750°C	79
5.22	SEM image with EDS point analysis of weld (E2M) under the exposure of $Na_2SO_4 + V_2O_5$ salt mixture at 750°C	79
5.23	SEM images with EDS line scan mapping of commercial weld (CE) under the exposure of Na_2SO_4 + NaCl salt mixture at 750°C	80
5.24	SEM images with EDS line scan mapping of weld (E2M) under the exposure of Na_2SO_4 + NaCl salt mixture at 750°C	81
5.25	SEM image with EDS point analysis of commercial weld (CE) under the exposure of Na ₂ SO ₄ + NaCl salt mixture at 750 °C	81
5.26	SEM image with EDS point analysis of weld (E2M) under the exposure of Na_2SO_4 + NaCl salt mixture at 750 $^{\circ}\mathrm{C}$	82
5.27	Micrographs of base materials a) Optical micrograph of SS304L b) SEM image of SS304L c) Optical micrograph of P91 d) SEM image of P91	84
5.28	Micrographs of different regions of dissimilar weld using electrodes E7 a) Interface SS304L/IN-182 b) IN-182/82 weld at different magnifications c) SEM image of weld metal d) Buttering layer at different magnifications e) Interface P91/buttering interface f) SEM image of P91/buttering interface	84
5.29	Micrographs of different regions in dissimilar weld using commercial electrodes a) Interface SS304L/IN-182 b) IN-182/82 weld at different magnifications c) SEM image of weld metal d) Buttering layer at different magnifications e) Interface P91/buttering interface f) SEM image of P91/buttering interface	85
5.30	Microhardness profile of fabricated welds	86
5.31	Fractured weld tensile test specimen fabricated using a) Electrode E7M b) Electrode E16M c) commercial electrode	88
5.32	Stress vs strain plots of facbricated weld specimen	88
5.33	Fractography of welded tensile specimens fabricated using (a) Commercial electrodes (b) E7M electrodes	89
5.34	Weight gain plots for different specimen a) under the exposure of SM1 at 750 °C b) under the exposure of SM2 at 750 °C c) under the exposure of SM1 at 850 °C d) under the exposure of SM2 at 850 °C	90

List of Tables

Table	Title	page
1.1	Types of coal-based power plants	
1.2	Power plant boiler components and candidate materials	
2.1	Electrode coating constituents and their functions	
4.1	Chemical composition of various minerals (wt.%)	
4.2	Elemental composition of base materials (B) and core wire (F) (wt. %)	
4.3	Design Matrix of electrode coating formulations	
4.4	Temperature dependence of surface tension of minerals	31
4.5	Qualitative observations of ER90S-B3 core wire based laboratory developed electrodes	33
4.6	Qualitative observations of IN-82 core wire based laboratory developed electrodes	
4.7	Welding parameters	34
4.8	Various etchants used to observe microstructure of dissimilar welds	
5.1	Experimental results of various properties	41
5.2	ANOVA results of regression models for various properties	42-44
5.3	Optimum solution of electrode coating mixtures for various properties	53
5.4	Calculation of Error % for physicochemical and thermophysical properties	53
5.5	Calculation of Error % for wettability properties	
5.6	Qualitative analysis of deposited weld beads	
5.7	Chemical analysis of weld beads (wt.%) and microhardness	
5.8	ANOVA results of regression models for various weld responses	
5.9	Error (%) in chemical composition of multi-pass bead on plate for C, Si, Mn, Cr, Mo, and	64
	Hv	
5.10	Optimum electrode coating composition for chemical composition, and microhardness of weld deposits	64
5.11	Chemical and qualitative analysis of deposited welds with microhardness	
5.12	Modified electrode coatings to fabricate P22/P91 dissimilar weld	66
5.13	Modified electrode coatings to fabricate P91/SS304L dissimilar weld	
5.14	Chemical composition of P22/P91 welds fabricated using different electrodes	67
5.15	Average microhardness across different regions of the welds	
5.16	Tensile properties of welds	72
5.17	Impact properties of welds	73
5.18	Parabolic rate constant (K_n) (mg ² cm ⁻⁴ s ⁻¹) for different specimen	74
5.19	Coefficient of determination (R^2) and oxidation exponent (n)	75
5.20	Chemical composition of welds fabricated using Ni-based electrodes	83
5.21	Average microhardness across different regions of the fabricated welds	86
5.22	Tensile properties of welds	87
5.23	Impact properties of welds	
5.24	Parabolic rate constant (mg ² cm ⁻⁴ s ⁻¹) for weld specimens	90
Table A1	Effect of interaction of coating constituents on the various properties	97
Table A2	Effect of interaction of coating constituents on weld bead chemistry and	97
	microhardness	

List of Symbols

Symbol	Description	Units
y _{sl}	Interfacial tensions at the solid-liquid interface	(N/m)
y _{sg}	Interfacial tensions at the solid-gas interfaces	(N/m)
y _{LG}	Molten slag surface tension	(N/m)
Wa	Adhesion energy (specific surface energy)	(J/m ²)
θ	Contact angle	Degree (°)
n	No of experiments	-
k	No of regression variables	-
D	Composite desirability function	-
di	Desirability of specific response	-
T _c	Thermal conductivity	W/mK
T _D	Thermal diffusivity	mm²/s
ΔH	Change in enthalpy	J/g
SH	Specific heat	MJ/m ³ K
D	Density	g/cm ³
ΔW %	Percentage weight loss	%
Hv	Microhardness	-
CE	Carbon equivalent	-
K _p	Parabolic rate constant	mg²/cm⁴s
t	Oxidation time	S
Т	Temperature	°C
ΔW/A	Weight gain/unit area	mg/cm ²
η_{Cr}	Mass transfer coefficient (Chromium)	-
η_{Mn}	Mass transfer coefficient (Manganese)	-
$\eta_{\rm Nb}$	Mass transfer coefficient (Niobium)	-
η_{Si}	Mass transfer coefficient (Silicon)	-

xvi

List of Abbreviations

Abbreviation	Full form
РСС	Pulverized coal combustion
SC	Super critical
USC	Ultra super critical
AUSC	Advanced ultra super critical
IGCC	Integrated gasification combined cycle
SMAW	Shielded metal arc welding
GTAW	Gas tugsten arc welding
GMAW	Gas metal arc welding
SAW	Submerged arc welding
MMA	Manual metal arc
TIG	Tungsten inert gas
A-TIG	Activated Tungsten inert gas
DMW	Dissimilar metal weld
AC	Alternative current
DC	Direct current
DCEP	Direct current electrode positive
CaO	Calcium oxide source
CaF	Calcium fluoride
SiO	Silica
Al ₂ O ₂	Aluminium oxide
TiO	Butile
P	Phosphorous
Mg	Magnesium
Fe	Iron
S	Sulphur
Nb	Niobium
Al	Aluminium
Ni	Nickel
Mo	Molybdenum
Ti	Titanium
C	Carbon
BI	Basicity Index
IIW	International Institute of welding
ASTM	American Society for Testing and Materials
BM	Base metal
FM	Filler metal
WM	Weld metal
HAZ	Heat affected zone
CGHAZ	Coarse grain heat affected zone
FGHAZ	Fine grain heat affected zone
XRF	X-ray fluorescence
TGA	Thermogravimetric analysis
FTIR	Fourier Transform Infrared Spectroscopy
XRD	X-ray diffraction
SEM	Scanning electron microscopy
EDS	Energy dispersive spectrometry
ANOVA	Analysis of variance

SS	Sum of square
DOF	Degree of freedom
MS	Mean sum of square
CE	Commercial electrode
UTM	Universal testing machine
Ys	Yield strength (N/mm ²)
UTS	Ultimate tensile strength (N/mm ²)
%E	Percentage elongation
SM1	Salt Mixture 1 (Na2SO4 + 60% V2O5)
SM2	Salt Mixture 2 (Na2SO4 + 50% NaCl)