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Abstract

For decades, classical trajectory simulations have been used to determine reaction
mechanisms, energy flow pathways, product branching ratio, etc. Though atoms and molecules are
quantum mechanical in nature, classical mechanics is used because of the inherent computational
complexities associated with full quantum dynamics calculations. In a classical trajectory
simulation, Newtons’s or Hamilton’s equations of motion are time evolved using an appropriately
selected set of initial coordinates and momenta. The time propagated coordinates and momenta
are used to compute final properties of the system. A crucial aspect of trajectory integrations is
selecting an appropriate potential energy surface. Conventionally, this is done with model potentials
(classical force fields) and such calculations are fast but limited by accuracy. With the advancements
in parallel computing techniques and sophisticated algorithms, it is possible to compute the required
potentials and gradients (for trajectory integration) from a suitable electronic structure theory.
Such an on-the-fly approach known as direct dynamics - is quite popular today and has led to
identification of new mechanisms and pathways. Combining this method with electronic structure
calculations, few unimolecular and bimolecular reactions were modeled in the present work. Selected
reactions are of interest in combustion and interstellar chemistry.

The first reaction investigated was the bimolecular collision dynamics of H+
3 + CO in the

gas phase. The bimolecular reaction of H+
3 + CO is one of the cornerstone chemical processes in the

interstellar media. The products of this reaction are either formyl (HCO+) or isoformyl (HOC+)
cation along with H2 molecule. These are barrier-less proton transfer and exoergic processes which
results in the two isomers via ion-dipole complex formation. The reaction products are known to
initiate the formation of important organic molecules in the interstellar media. Several experimental
and theoretical investigations of the reaction probing structure and energetics, reaction mechanism,
product branching ratios and HCO+ ⇀↽ HOC+ isomerization have been reported. Ionic products
of this reaction initiate different reaction networks in the interstellar media and their relative
abundance in the space is a crucial quantity of interest. Direct dynamics simulations of H+

3 + CO
bimolecular reaction were performed using density functional PBE0/aug-cc-pVDZ level of theory
to model a recently reported velocity imaging experimental studies of the same reaction. Reaction
mechanisms, branching ratios, product energy and scattering angle distributions were computed
from the trajectory data. Results are in qualitative agreement with experiments and detailed
atomic level mechanisms are presented.

The second reaction studied was the unimolecular dissociation of γ-ketohydroperoxide
(KHP). γ-ketohydroperoxide [(3-hydroperoxy)propanal] is an important reagent in synthetic
chemistry. KHP is considered to be the primary source of radicals in low temperature combustion.
Automated reaction discovery methods were utilized previously to study the unimolecular
decomposition pathways of KHP. In the present work, direct chemical dynamics simulations at the
B3LYP/6-31+G* level of theory were performed to model the unimolecular decomposition of KHP
identifying important dissociation pathways. Simulations were carried out at three different total
energies mimicking thermal reaction conditions. Three dissociation channels among the previously
reported pathways were identified to be important. Korcek decomposition, which was proposed
earlier as a source of carbonyl compounds from thermal decomposition of KHP, was not observed in
the present high-temperature simulations. However, trajectories showed the formation of carbonyl
compounds such as aldehydes via other pathways. Further, Rice-Ramsperger-Kassel-Marcus
(RRKM) rate constants were computed and compared with the trajectory data.
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Thermal decomposition of thiophene, to understand the initial dissociation steps, were
modeled at the B3LYP/6-31+G* level of theory. Thiophene and its derivatives are present in
the asphaltenes contained in oil shale and play an important role in the combustion reactions
of alternative fuels. Electronic structure theory and experimental studies investigating the
decomposition mechanisms of thiophene have been reported. In the present work, direct dynamics
simulations were used to study the atomic level reaction mechanisms of gas phase pyrolysis of
thiophene.
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