Contents

n (Page
Preface Acknowledgements		i iii
Contents		/// V
List of Figures		vii
	of Tables	viii
	of Symbols	xiii
LISL	of Abbreviations	XV
Cha	pter 1: Introduction	1
1.1		1
1.2 1.3		1 3 3
1.5	1.3.1 Born-Oppenheimer Approximation	3
	1.3.2 Density Functional Theory	4
1.4	Direct Dynamics	5
1.5	Present Work and Organization of Thesis	6
Cha	pter 2: Theoretical Methods and Techniques	7
2.1		7 7 7
2.2	2.1.1 Features of PES Automated Reaction Path Discovery Methods	9
2.2	2.2.1 Normal Mode Analysis	g
2.3	Born-Oppenheimer Direct Dynamics	10
	2.3.1 Trajectory Initial Conditions	11
	2.3.2 Integrator 2.3.3 Bimolecular Collisions	12 14
	2.3.4 Unimolecular Dissociation Reactions	14
2.4	RRKM calculations	15
2.5	Software	15
Cha	pter 3: Bimolecular Collision Dynamics of H_3^+ + CO Reaction	17
3.1		18
3.2	Potential Energy Profile	19
3.3		19 1 9
	3.3.1 Reactivity and Branching Ratio 3.3.2 Product Energy Distributions	22
	3.3.3 Scattering Angles	24
3.4	Discussion	24
3.5	Summary	28
Cha	pter 4: Unimolecular Dissociation of γ -Ketohydroperoxide	31
4.1		32
4.2	Results and Discussion	34
	4.2.1 Homolytic Dissociations 4.2.2 Malondialdehyde Channel	34 38
	4.2.3 Acrolein Channel	38
	4.2.4 Minor Channels	38
4.3	Discussion	41
4.4	Summary	43
Cha	pter 5: Thermal Decomposition of Thiophene	45
5.1	Methodology	46
5.2	Results 5.2.1 PES	48 48
5.3	Direct Dynamics	50
5.4	Summary	54
Ch -	mton 6. Commons	
∟na	pter 6: Summary	57
D		